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Major depressive disorder (MDD) is a multifaceted condition that affects millions of people world-
wide and is a leading cause of disability. There is an urgent need for an automated and objective
method to detect MDD due to the limitations of traditional diagnostic approaches. In this paper,
we propose a methodology based on machine and deep learning to classify patients with MDD and
identify altered functional connectivity patterns from EEG data. We compare several connectivity
metrics and machine learning algorithms. Complex network measures are used to identify structural
brain abnormalities in MDD. Using Spearman correlation for network construction and the SVM
classifier, we verify that it is possible to identify MDD patients with high accuracy, exceeding litera-
ture results. The SHAP (SHAPley Additive Explanations) summary plot highlights the importance
of C4-F8 connections and also reveals dysfunction in certain brain areas and hyperconnectivity in
others. Despite the lower performance of the complex network measures for the classification prob-
lem, assortativity was found to be a promising biomarker. Our findings suggest that understanding
and diagnosing MDD may be aided by the use of machine learning methods and complex networks.

I. INTRODUCTION

Major depressive disorder (MDD) is a common men-
tal condition that affects over 274 million people world-
wide, according to information on depression provided by
the Global Burden of Disease (GBD) study of 2019 [1].
It is ranked as the second most significant contributor
to the worldwide disease burden, measured in disability-
adjusted life years, spanning both developed and devel-
oping countries [2]. MDD is a disabling condition marked
by the presence of at least one distinct depressive episode
enduring for a minimum of 2 weeks [3]. It is characterized
by a persistent and pervasive low mood, loss of interest
or pleasure in most activities, and a range of other symp-
toms that significantly impact daily functioning [4, 5].

Previous work has shown that MDD is a multifaceted
disorder involving complex neurobiological mechanisms,
including the interplay of nerve growth factors, neurose-
cretory systems, biogenic monoamines and brain-derived
neurotrophic factors [6, 7]. Despite advances in under-
standing its neurobiology, there is currently no estab-
lished mechanism that explains all aspects of the disorder
[3, 4].

The diagnosis of MDD currently relies on doctor-
patient communication and scale analysis, which is prone
to problems such as low sensitivity, subjective bias and
inaccuracy [8, 9]. Therefore, there is an urgent need for
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an objective, automated method capable of predicting
clinical outcomes in depression, ultimately improving the
accuracy of depression detection and treatment.

Recently, a large amount of data has been generated
from MDD [10, 11]. Researchers have used different tech-
niques to study MDD, such as functional magnetic res-
onance imaging (fMRI) [10, 12, 13], positron emission
tomography (PET) [14, 15], and electroencephalography
(EEG) [11, 16–19]. Recently, EEG has emerged as an
important non-invasive and cost-effective tool that re-
veals real-time electrical activity and provides insights
into neural oscillations and connectivity patterns associ-
ated with MDD. In particular, researchers have identified
specific patterns and changes in brainwave activity, such
as changes in frequency, amplitude and connectivity, that
are indicative of MDD [19–21].

These observed changes have allowed the neuroimag-
ing community to consider analytical methods to fa-
cilitate the classification of patients for different disor-
ders [21–24], such as autism [25], schizophrenia [26] and
Alzheimer [27]. Similarly, machine learning methods
have been applied to the diagnosis of MDD through the
analysis of EEG data [21–24, 28, 29], recognising subtle
and intricate patterns within large datasets and identi-
fying distinct features or biomarkers [19, 30]. The appli-
cation of machine learning to EEG analysis has provided
a more objective and data-driven approach to diagnosis,
paving the way for personalised and effective interven-
tions.

In a recent study [24], three machine learning al-
gorithms were used to classify individuals with MDD:
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support vector machine (SVM), multilayer perceptron
(MLP), and the extended K-nearest neighbours (E-KNN)
model. The use of all features in conjunction with the lin-
ear SVM classifier resulted in an accuracy of 93.75%. The
proposed E-KNN model showed an accuracy of 93.10%,
while MLP achieved an accuracy of 92.18%. Subse-
quently, Movahed et al. [21] used different types of EEG
features derived from MDD, including statistical, spec-
tral, wavelet, functional connectivity and nonlinear anal-
ysis methods. The Radial Basis Function Kernel Support
Vector Machine (RBFSVM) classifier, which combines all
feature sets, showed the best performance of all classifiers
used, resulting in an average accuracy of 99%, sensitivity
of 98.4%, specificity of 99.6%, f1-score of 98.9% and a
false discovery rate of 0.4%.

Deep learning methods have also been applied to MDD
diagnosis [31–36]. For example, Mumtaz and Qayyum
[31] presented two approaches using deep learning tech-
niques to diagnose depression. Initially, they proposed
a convolutional neural network (CNN), followed by a
model that incorporated both CNN and long short-term
memory (LSTM) techniques. The classification accura-
cies reported for the CNN and CNN-LSTMmethods were
98.32% and 95.97% respectively.

Several other studies have been conducted on the clas-
sification of MDD using EEG-derived data. Table I pro-
vides a list of papers along with the respective results of
each investigation, including details of the machine learn-
ing and deep learning classifiers, providing a comparative
overview of their performance.

In addition to brain signal data, researchers have re-
cently incorporated network science as an additional
method for understanding the fundamental properties of
functional brain networks associated with various disor-
ders [25–27, 37–39]. Numerous studies in the literature
have examined depression through the lens of brain net-
works [19, 40–46], providing valuable insights into the
brain’s functionality in relation to this disorder. These
studies use advanced methods to analyse the intricate
connectivity patterns within brain networks, with the
aim of distinguishing people with MDD from healthy sub-
jects.

For example, in an EEG sleep study [40], acutely de-
pressed patients showed significantly lower path length
and no significant changes in cluster coefficient. They
also showed a lower mean level of global synchronisation
and a loss of small-world features. Nevertheless, the ex-
istence of numerous conflicting findings underlines the
need for additional studies and further investigation. In
particular, regarding path length, some authors observed
longer path lengths in depressed patients [42, 43], while
others reported shorter path lengths [40, 46]. Table II
provides an overview of the studies, their results and the
specific complex network measures used to differentiate
MDD from healthy controls.

Thus, previous studies have shown that the analysis
of raw EEG data and the use of complex networks are
promising approaches to improve the diagnosis of MDD.

In this paper, unlike previous work, we integrate machine
learning with network science into a single framework to
study MDD data.

Our primary goal is to diagnose MDD and under-
stand the distinctive brain topological properties associ-
ated with this condition. We investigate the influence of
reconstruction methods and machine learning algorithms
on the classification process to achieve an accurate di-
agnosis. We verify that the Spearman correlation coef-
ficient emerges as the most effective connectivity met-
ric for network construction. We compute complex net-
work measures from the connectivity matrix to deter-
mine the brain differences in MDD compared to typi-
cal development (TD). Specifically, the functional MDD
brain network is characterised by increased assortativity,
decreased connectivity density, and a more randomised
topology. Our analysis also complements previous stud-
ies by incorporating data enrichment through multiple
time windows to analyse brain signals. By integrating
these different methods, metrics and machine learning
algorithms, we achieve more accurate results than those
reported in previous studies.

II. DATA AND DATA PRE-PROCESSING

The MDD dataset used in this paper was obtained by
[22]. It consisted of two groups of participants: 34 MDD
patients (17 women and 17 men, mean age = 40.3±12.9)
and 30 age-matched healthy controls (9 women and 21
men, mean age = 38.2 ± 15.6). Participants were re-
cruited from the outpatient clinic of the Hospital Univer-
siti Sains Malaysia (HUSM), Malaysia. EEG signals were
recorded with the eyes closed from 19 scalp channels in-
cluding frontal (Fp1, Fp2, F3, F4, F7, F8, Fz), temporal
(T3, T4, T5, T6), parietal (P3, P4, Pz), occipital (O1,
O2) and central (C3, C4, Cz) regions. The Cz electrode
used as a reference was removed, leaving a total of 18
electrodes. For further details see [22].

The EEG dataset was pre-processed according to the
methodology described by Toutain et al. [47]. The clean-
ing process was performed using EEGLAB from MAT-
LAB. A bandpass filter from 0.5 to 48 Hz was applied and
the data were then segmented into 1.05 second epochs.
A threshold of ±70µV was used, and epochs containing
artefacts above the threshold (such as those associated
with eye movements or muscle activity) were removed.
Only eye closed EEG data from 29 MDD patients and 28
TD subjects were used in this study.

III. METHODOLOGY

Our methodology is illustrated in Figure 1.
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TABLE I. Summary of results on the performance of machine learning and deep learning methods for MDD classification using
EEG time series.

Reference Year Data EEG data Methods AUC Accuracy Recall Precision f1-Score

[22] 2017
33 MDD
30 TD

19 channels

Power of frequency bands/
Alpha asymmetry

LR
NB/
SVM

-
98.33/
97.6/
98.4

96.66/
96.6
97.5

- -

[36] 2018
15 MDD
15 TD

4 channels

Right/left hemisphere
time series records

CNN -
95.49/
93.54

94.99/
91.89

- -

[31] 2019
33 MDD
30 TD

19 channels
EEG time series

CNN/
CNN+LSTM

-
98.32/
95.97

98.34/
93.67

99.78/
99.23

97.65/
95.14

[23] 2020
34 MDD
30 TD

19 channels

Power of frequency bands/
Alpha asymmetry

SVM/
LR/
NB/

Decision tree

-

88.33/
85.82/
86.63/
87.50

89.41/
73.57/
87.42/
89.28

- -

[24] 2020
34 MDD
30 TD

19 channels
Frequency bands

SVM/
MLP/
E-KNN

-
93.75/
92.18/
93.10

94.11/
91.11/
88.23

- -

[21] 2021
34 MDD
30 TD

19 channels
Combining feature sets RBFSVM - 99.0 98.4 - 98.9

TABLE II. Overview of results related to network-based features. SW: Small-Worldness, FC: Functional Connectivity, PL:
Path-Length, CC: Clustering Coefficient, BC: Betweeness Centrality, GE: Global Efficiency, LE: Local Efficiency, NS: Node
Strength, ND: Node Degree.

Reference Year
Complex network

features
Findings related to MDD group

[40] 2009 PL, CC Decreased PL and no significant changes in CC

[41] 2017 SW, FC Decreased SW and increased FC

[42] 2018 PL, CC, GE, NS Increased PL and decreased CC, GE, NS

[46] 2018 PL, CC Decreased PL and decreased CC

[43] 2018 PL, FC Increased PL and decreased FC

[44] 2019 CC, BC Decreased CC and decreased BC

[45] 2020
GE, LE, BC,

ND, NS
Increased GE and BC, no changes in LE, ND and NS,

and a more randomized structure

A. Connectivity matrices

From the 18-channel EEG time series, the connec-
tivity matrix was constructed using Pearson Correla-
tion (PC), Spearman Correlation (SC), Mutual Informa-
tion (MI), Transfer Entropy (TE), Ledoit-Wolf Shrinkage
(LW), Sparse Canonical Correlation Analysis (SCC) and
Synchronization (Sync), as shown in Figure 1(A). Each
matrix was then reduced to vectors and used as input to
the ML algorithm, as shown in Figure 1(B). The Support
Vector Machine (SVM) algorithm was used to determine
the most appropriate metric for constructing the connec-
tivity matrices.

We used SVM because it has been widely employed in
the literature to classify brain disorders [48]. Its relative
simplicity and flexibility make it suitable for addressing
various classification problems. In addition, SVM has
a lower computational cost than other methods and is
known to be robust to overfitting. Furthermore, it gener-

ally shows good predictive performance even with limited
sample size, which is common in neuroscience.

The dataset was divided into training and test sets,
with 25% of the data constituting the test set. A k-fold
cross-validation procedure was used for model selection
and hyperparameter optimisation, where k = 10, along
with the grid search method.

Once the optimal brain connectivity metric was iden-
tified, the following machine learning classifiers were
used: (i) Naive Bayes (NB), (ii) Random Forest (RF),
(iii) Logistic Regression (LR), (iv) Multilayer Perceptron
(MLP), and (v) Extreme Gradient Boosting (XGBoost-
ing).

Accuracy was adopted as the standard performance
metric for evaluating both connectivity metrics and ma-
chine learning and deep learning classifiers. Other com-
mon metrics such as AUC, precision and recall were also
included. To evaluate the performance of the classifiers,
we examined the confusion matrix, the receiver operat-
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FIG. 1. The methodology for distinguishing MDD from TD patients. In (A), EEG signals are pre-processed and the most
appropriate method for constructing the connectivity matrix is identified (see subsection IIIA). In (B), machine learning
algorithms are used to find the most significant brain regions to discriminate between MDD and TD subjects. In (C), complex
network measures quantify the main topological difference between TD and MDD brains (see subsection III B).

ing characteristic (ROC) curve and the learning curve.
Using the best connectivity metric and the best ma-
chine learning classifier, the SHAPley additive explana-
tion (SHAP) method was used to identify the differences
between MDD and TD brain regions.

B. Complex network measures

An undirected binary graph was generated for each
connectivity matrix to extract different complex network

measures, as shown in Figure 1(C). The complex network
measures were stored in an attribute matrix, where each
column represents a complex network measure and each
row represents a subject.

The following complex network measures were calcu-
lated to describe brain structure Average Shortest Path
Length (APL) [49], Betweenness Centrality (BC) [50],
Closeness Centrality (CC) [51], Diameter [52], Assor-
tativity Coefficient [53, 54], hub score [55], eccentricity
[56], eigenvector centrality (EC) [57], average degree of k-
nearest neighbours [58] (Knn), mean degree [59], entropy

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.07.24308619doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.07.24308619


5

of the degree distribution (ED) [60], transitivity [61, 62],
second moment of the degree distribution (SMD) [63],
complexity, k-core [64, 65], density [66] and efficiency
[67]. These 17 complex network measures were used in
previous studies [25–27, 68, 69].

In addition, the average path length within the largest
community of each network was calculated. The resulting
single value was added to the attribute matrix. The com-
munity detection algorithms used were fastgreedy (FC),
infomap (IC), leading eigenvector (LC), label propaga-
tion (LPC), edge betweenness (EBC), spinglass (SPC)
and multilevel community identification (MC). The ab-
breviations have been extended to include the letter ’A’
(for average path length) to denote the respective ap-
proach (AFC, AIC, ALC, ALPC, AEBC, ASPC and
AMC).

The most accurate classifier algorithm, together with
the most appropriate connectivity metric, was used to
classify MDD patients. Performance evaluation included
confusion matrix, ROC curve and learning curve. In ad-
dition, the SHAP method was used to identify the most
relevant complex network measures to distinguish the
topology of the MDD brain.

IV. RESULTS

A. Connectivity matrices

First, we conducted a performance analysis using the
entire time series. To achieve this, connectivity matrices
were constructed by applying connectivity-related met-
rics to compute the relationships between pairwise time
series. The results are shown in Figure 2.

According to Figure 2, the AUC values of the training
set were higher than 0.5, which is expected for a random
classification. However, the accuracy of all metrics in the
training set was poor, with values below 0.79. Further-
more, there were remarkably high errors in both AUC
and accuracy and poor performance of the test set for
almost all metrics. These results are indicative of over-
fitting, suggesting that the model may have learned to fit
the training data too closely and was unable to generalise
well to unseen data. Increasing the size of the datasets
may be necessary to address this issue.

To overcome the problem of small data sets in neuro-
science, in this paper we use a sliding window data aug-
mentation approach, similar to what was done previously
in [25]. The 300-second EEG time series was divided into
non-overlapping segments with window sizes of 5, 10, 20,
30, 40, 50, 60, 80, 100, 120 and 150 seconds to increase
the sample data. These segments were used as input to
the SVM classifier to identify the optimal window size
for each connectivity metric.

To determine the optimal window size, we sought a
balance between AUC and accuracy values for both the
test and training sets. We also considered the error values
associated with these metrics, giving preference to lower

error rates.
After examining the results shown in Figure 3, it was

evident that PC and SC exhibited superior performance
compared to other metrics, with SC slightly outperform-
ing PC. In particular, the most encouraging results were
observed for window sizes below 60 seconds, where both
training and test sets showed excellent performance with
minimal variance. Based on our analysis, the optimal
window size for PC and SC data was determined to be
20s and 10s respectively. With a window size of 20 sec-
onds, we obtained 435 connectivity matrices for the MDD
class and 420 for the TD class. Similarly, a window size
of 10 seconds corresponded to 870 connectivity matrices
for the MDD class and 840 for the TD class.
The other connectivity metrics displayed significant

variance across almost all window sizes. The perfor-
mance of TE and MI data did not yield a satisfactory
result for any of the window sizes tested, and there was
no discernible trend between performance and window
size. Therefore, a window size of 5s seconds was cho-
sen, resulting in 1740 connectivity matrices for the MDD
class and 1680 for the TD class. This window size was
also chosen for LW and SCC, and a window size of 10s
seconds was chosen for synchronisation.
Table III presents the results for each connectivity ma-

trix constructed using each of the pairwise statistical
metrics, along with their respective optimal window sizes.
SVM was used to determine the most effective metric for
classifying MDD and TD brains.
Among the applied connectivity methods, PC (AUC =

1, 000, accuracy = 0.991) and SC (AUC = 1, 000, accu-
racy = 0.995) showed the best performance for the test
set compared to the other metrics. However, SC was cho-
sen over PC because of its ability to capture non-linear
relationships and handle non-normally distributed data,
which are common characteristics of brain connectivity
data.
Three measures were used to evaluate the performance

of classification models: (i) confusion matrix, (ii) ROC
curve and (iii) learning curve. The results are shown in
Figure 4.
After identifying the best connectivity metric, we com-

pared different machine learning methods to determine
the one that provides the most accurate classification.
Table IV shows the results for each machine learning
method using the connectivity matrices constructed us-
ing the Spearman correlation coefficient.
According to the table IV, all algorithms except the

NB classifier showed high performance. Comparing the
results for the test set, SVM gave the best performance
(AUC = 1, 000, Accuracy = 0.995), closely followed by
MLP (AUC = 1, 000, Accuracy = 0.991). However, SVM
emerges as the preferred choice due to its ability to handle
high-dimensional data efficiently, its robustness to over-
fitting, especially when dealing with small sample sizes,
and its lower computational cost. In addition, SVM pro-
vides clear decision boundaries, which facilitates the in-
terpretability and understanding of the classification pro-
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(a) (b)

FIG. 2. (a) AUC and (b) accuracy measures for each connectivity metric without using the sliding window.

TABLE III. Results obtained from SVM using different statistical methods to construct the brain network.

Method Window size Subset AUC Accuracy Recall Precision

PC 20s
Train 0.999± 0.002 0.983± 0.018 0.983± 0.018 0.984± 0.016
Test 1.000 0.991 0.991 0.991

SC 10s
Train 0.999± 0.001 0.988± 0.004 0.988± 0.004 0.988± 0.004
Test 1.000 0.995 0.995 0.995

TE 5s
Train 0.605± 0.020 0.576± 0.022 0.576± 0.022 0.576± 0.022
Test 0.628 0.584 0.584 0.584

MI 5s
Train 0.762± 0.031 0.699± 0.017 0.699± 0.017 0.700± 0.017
Test 0.759 0.703 0.703 0.703

LW 5s
Train 0.987± 0.006 0.945± 0.010 0.945± 0.010 0.945± 0.010
Test 0.990 0.954 0.954 0.955

SCC 5s
Train 0.987± 0.006 0.945± 0.009 0.945± 0.009 0.948± 0.009
Test 0.990 0.954 0.954 0.955

Sync 10s
Train 0.981± 0.010 0.938± 0.024 0.900± 0.021 0.900± 0.021
Test 0.975 0.944 0.891 0.891

TABLE IV. Results obtained from machine learning classifiers using the connectivity matrices constructed by employing
Spearman correlation coefficient and times series with a window size of 10s.

ML methods Dataset AUC Accuracy Recall Precision

SVM
Train 0.999± 0.001 0.988± 0.004 0.988± 0.004 0.988± 0.004
Test 1.000 0.995 0.995 0.995

MLP
Train 0.998± 0.002 0.984± 0.007 0.984± 0.007 0.984± 0.007
Test 1.000 0.991 0.991 0.991

RF
Train 0.991± 0.006 0.943± 0.018 0.943± 0.018 0.946± 0.017
Test 0.995 0.944 0.944 0.949

NB
Train 0.762± 0.028 0.729± 0.020 0.729± 0.020 0.791± 0.021
Test 0.783 0.743 0.743 0.810

LR
Train 0.995± 0.005 0.964± 0.016 0.964± 0.016 0.965± 0.015
Test 0.995 0.974 0.974 0.974

XGBoost
Train 0.993± 0.004 0.963± 0.010 0.963± 0.019 0.964± 0.019
Test 0.998 0.958 0.958 0.958

cess.
Our method achieved remarkable performance, sur-

passing the results found in the literature (see table I).
In addition, we carefully examined potential overfitting
problems and computed the AUC metric, a step not

taken in other studies in the literature. The results of
the confusion matrix, ROC curve and learning curve have
already been shown in Figure 4.
As the performance reached almost 100%, we deliber-

ately included random noise in the connectivity matrices
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FIG. 3. Performance measures (AUC and accuracy) for the training and test set for all the connectivity metrics with different
sliding window sizes.

of the MDD and TD groups to gain insight into the re-
silience of the model and its ability to recognise patterns
even in the presence of perturbations, thus contributing
to a more comprehensive understanding of its learning
dynamics and performance under different conditions.

The noise was randomly generated from a Gaussian
distribution with a mean of zero and a standard deviation

ranging from 0.1 to 10. The response of the model’s
performance under these conditions was measured by the
average AUC and average accuracy of the test set, and
the results are shown in Figure 5.

Figure 5 shows that both AUC and accuracy values de-
crease as the error amplitude increases, roughly following
a decreasing logarithmic function. This analogous trend
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(a) Confusion matrix (b) ROC curve

(c) Learning curve

FIG. 4. Results from the SVM classifier using as input the connectivity matrices constructed via SC and times series with a
window size of 10s.
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FIG. 5. Performance of the test set for the SVM model with random Gaussian noise with a mean equal to zero and a standard
deviation that varies from 0.1 to 10.

was also observed in the autism study by Alves et al.
[25], and suggests that the model can identify patterns
even in the presence of noise.

SHAP scores were then calculated to assess the im-
portance of brain connections. Prior to this, we per-
formed a Recursive Feature Elimination (RFE) analy-
sis with Cross-Validation (CV) to identify the most rel-
evant features that were essential for maintaining opti-
mal performance with less computational cost to obtain
the SHAP values. The RFECV was performed using an

SVM model. From Figure 6 it can be seen that the model
achieved higher accuracy with 277 features. Therefore,
the full feature set was not necessary for optimal effi-
ciency.

As shown in Figure 6(b), maximum performance is
achieved using the full data set. In addition, the gap
between the validation curve and the training curve re-
mained consistent with the results obtained using all fea-
tures (see Figure 4(c)), as did the variability over the
validation curve. As shown in Table V, the performance
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FIG. 6. RFECV (a) and the learning curve (b) of the SVM model. In (a), it can be seen that optimal performance is achieved
with 277 features. In (b), the learning curves considering the training data set (1282 connectivity matrices) are shown for the
training accuracy (blue) and the validation accuracy (orange), and it can be seen that the maximum performance was obtained
using the entire training set.

TABLE V. Results obtained from SVM classifier using the 277 features selected by the RFECV.

ML method Subset AUC Accuracy Recall Precision

SVM
Train 0.999± 0.001 0.988± 0.004 0.988± 0.004 0.988± 0.004
Test 1.000 0.995 0.995 0.995

remained sufficiently high. Based on these results, we
used the 277 features derived from the RFECV analysis
to obtain SHAP values, as shown in Figure 7.

The most important brain connections that are cru-
cial for distinguishing MDD patients from TD patients
are ranked in Figure 7. The connection between region
C4 and F8 emerged as the most important for distin-
guishing MDD patients from TD patients. Low PC val-
ues (blue dots) for this connection are indicative of the
MDD group, whereas high PC values (red dots) are asso-
ciated with the TD group. The second most important
connection was between region Fp1 and Fp2. Low PC
values (blue dots) for this connection characterise MDD
individuals, while high correlation values (red dots) are
essential for identifying TD patients.

B. Complex network measures

We constructed the corresponding undirected binary
graphs from the connectivity matrices derived using the
Spearman correlation coefficient on segmented time series
with a window size of 10 seconds. We then extracted
various complex network measures from all graphs and
stored them in a matrix. This matrix served as input to
the SVM classifier, as this ML algorithm showed the best
performance, as reported in the previous subsection. The
results for the SVM algorithm using the complex network
measures are shown in table VI.

According to the results in Table VI, the AUC and

accuracy values on the test set were 0.875 and 0.804, re-
spectively. Using network metrics for the classification
problem did not lead to superior performance compared
to using connectivity matrices (see Table IV). However,
it did lead to an acceptable performance. The confusion
matrix, ROC curve and learning curve were used to eval-
uate the performance and the results are shown in Figure
8.

The influence of the complex network measures on the
model’s performance was then assessed using the SHAP
summary plot.

The complex network measures crucial to discriminat-
ing MDD patients from TD patients are ranked according
to their global importance in Figure 9. All features are
shown in order of global importance, with the first being
the most important and the last being the least impor-
tant.

According to Figure 9, the most critical network mea-
sures for discriminating between MDD and TD subjects
were assortativity, entropy of the degree distribution
(ED) and density, in that order. High values (red dots) of
assortativity have a high positive contribution to the de-
tection of MDD patients. In contrast, low values of these
variables (blue dots) have a high negative contribution to
the detection of MDD patients. Low values (blue dots)
of ED and Density have a high positive contribution to
the detection of MDD patients. In addition, high values
(red dots) of these variables have a high negative con-
tribution to the detection of MDD patients. The same
interpretation can be applied to the other variables.
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FIG. 7. Feature importance ranking for the SVM classifier, with the brain regions ranked in descending order of importance
for MDD. Figure 7(a) illustrates the average impact of each feature for the TD class and MDD class. Figure 7(b) shows the
effect of each feature for the classification related to MDD class.

TABLE VI. Results obtained by the SVM classifier using the complex network measures computed using the connectivity
matrices constructed by the Spearman correlation coefficient with a window size of 10s.

ML method Subset AUC Accuracy Recall Precision

SVM
Train 0.843± 0.033 0.766± 0.047 0.766± 0.047 0.770± 0.047
Test 0.875 0.804 0.804 0.804

V. DISCUSSION

A. Connectivity matrices

Among all applied connectivity methods, SC exhibited
the best performance for the test set, with AUC and ac-
curacy values of 1.000 and 0.995, respectively (see Table
III). To the best of our knowledge, these results exceed
those reported in the literature (see Table I). The SC
metric is a nonparametric measure of rank correlation
[70], widely employed as a tool in neuroscience and brain
research, with consistently favourable results [71–74]. It
plays a crucial role in the study of brain disorders by
assessing the monotonic relationship [75] between brain
regions, that is, as the signal of one region increases, so
does the signal of the other region, or as the signal of one
region increases, the signal of the other region decreases.

In addition, SC assesses the strength and direction of a
monotonic association, allowing complex, non-linear de-
pendencies between brain regions to be captured [76].
This suggests that the relationship between brain ac-
tivities associated with depression may tend to become

monotonic, not necessarily linear.

The confusion matrix (Fig. 4(a)) clearly shows that the
SVM model achieves a 99% of probability in distinguish-
ing the TD class from the MDD class and also indicates
a 100% of probability that the SVM model can distin-
guish the MDD class from the TD class. This indicates
that sensitivity (true positives) slightly exceeds speci-
ficity (true negatives), suggesting that the SVM model
using connectivity matrices as input is marginally better
at identifying patients with MDD than those with TD.
The area under the ROC curve (Fig. 4(b)) is equal to
1.00 for both classes, indicating that the SVM model can
discriminate perfectly between the TD and MDD classes.

The learning curve analysis presented in Figure 4(c)
reveals some key insights. The training score remains
high regardless of the size of the training set. Conversely,
the test score increases with the size of the training data
set, indicating that performance improves with more data
until it reaches a plateau. This indicates that it is not
useful to acquire new data, as the generalisation perfor-
mance of the model will not increase further. There is
also a relatively small gap between the training and cross-
validation scores when considering the entire dataset, in-
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(a) Confusion matrix (b) ROC curve

(c) Learning curve

FIG. 8. Results obtained from SVM classifier using the complex network measures that were calculated by connectivity matrices
constructed through Spearman correlation coefficient with sliding window of 10s.

0.00 0.02 0.04 0.06 0.08 0.10
mean(|SHAP value|) (average impact on model output magnitude)

ASPC

SMD

BC

APL

ASC

ALPC

AEBC

K-core

Transitivity

Diameter

AIC

AMC

Knn

EC

Hub score

CC

Mean degree

Density

ED

Assortativity

TD
MDD

(a)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
SHAP value (impact on model output)

ASPC

SMD

BC

APL

ASC

ALPC

AEBC

K-core

Transitivity

Diameter

AIC

AMC

Knn

EC

Hub score

CC

Mean degree

Density

ED

Assortativity

Low

High

Fe
at

ur
e 

va
lu

e

(b)

FIG. 9. Feature importance ranking for the SVM classifier with the complex network measures ranked in descending order of
importance for Major Depressive Disorder (MDD). Figure 9(a) shows the average influence of each metric for the TD class and
the MDD class. Figure 9(b) shows the effect of each metric for classification in relation to the MDD class.
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dicating that the model generalises well and has a good
bias-variance trade-off.

Alternative machine learning methods were explored
to assess whether there was an improvement in perfor-
mance. As shown in table IV, both SVM and MLP gave
satisfactory results. However, SVM produced slightly
better results. Considering this analysis, SVM was se-
lected as the ML method for the subsequent steps.

Although the classification performance achieved high
values, the results from the insertion of random noise
(Figure 5) suggest that the model can identify patterns
even in the presence of noise. In other words, the model
generalises to noisy data and learns the underlying pat-
terns.

Based on the SHAP summary plot (Figure 7), the criti-
cal discriminator between MDD and TD patients was the
connection between region C4 and F8, which was ranked
as the most significant. This connection was followed
by the connection between regions Fp1-Fp2. The SHAP
plot showed that the most critical connections were lo-
cated in both the right and left hemispheres of the brain,
particularly in the frontal lobe. These results were con-
sistent with previous findings in the literature, such as in
[16, 77, 78].

In particular, low SC values in C4-F8 and Fp1-Fp2
connections contributed to the identification of the MDD
group. The schematic brain plot in Figure 10 illustrates
the key connections associated with altered connectivity
in the neural network structure of individuals with MDD.

The C4 electrode is positioned in a brain region that
is associated with the motor cortex and voluntary move-
ment control [81, 82], which is involved in the planning,
control, and execution of voluntary movements [83]. The
F8 electrode is positioned in the right frontal area of the
brain. This region involves various cognitive functions,
such as attention, decision-making, social skills, emo-
tional processing, and social cognition [84–87]. Results
from the literature suggest that the frontal lobe plays a
vital role in depression [77, 86].

Disruption in C4-F8 brain connectivity in individuals
with depression may suggest deficits in attention, work-
ing memory, decision-making, and problem-solving. This
observation is in accordance with the findings of the liter-
ature [88, 89], where the frontoparietal was shown to ex-
hibit lower functional connectivity in patients with MDD
than in healthy participants.

Frontal lobe dysfunction has been reported in patients
with MDD [72, 86, 90]. In [72], the authors identified
that, in addition to the frontal lobe, the central lobes are
also involved in the impairment associated with MDD.
This suggests that the fronto-central regions could serve
as reliable indicators of attention deficits in MDD pa-
tients, which appears to be linked to the severity of sub-
jective depressive symptoms. Our results are consistent
with these previous findings in the literature. Addition-
ally, a recent study on mental disorders with suicide [91]
found impairment in the fronto-central regions of the sui-
cidal group, suggesting that the brain’s electrical activity

in these regions may be damaged, leading to an increased
risk of suicide in mental disorders.
The Fp1 electrode is located over the left frontopo-

lar lobe and is involved in cognition, working memory
and perception [92]. The Fp2 electrode is placed over
the right frontopolar cortical area and is related to af-
fective processing and social cognition [92]. A disruption
in connectivity between FP1 and FP2 could lead to cog-
nitive dysfunction, including difficulties with concentra-
tion, memory and decision-making, which are often seen
in people with MDD. It may also contribute to difficul-
ties in regulating emotions, leading to symptoms such as
persistent sadness, irritability and mood swings, which
are common in MDD. These findings are consistent with
the literature [93].
Figure 7 illustrates the impact of MDD on both hemi-

spheres of the brain, in line with findings in the literature
[22, 77, 94–96]. In addition, Mohan et al. [97] high-
lighted the central brain region, particularly C3 and C4,
as highly effective in detecting depression. Furthermore,
Yang et al. [98] highlighted the importance of analysing
the MDD brain by considering a combination of frontal,
temporal and central lobe regions, confirming some of the
critical regions identified in our study.

B. Complex network measures

As can be seen from the results presented in Table VI,
using network metrics for the classification problem did
not yield comparable or better performance than using
connectivity matrices. The AUC and accuracy results for
the test set were 0.875 and 0.804, respectively (see table
IV).
The confusion matrix (Fig. 8(a)) shows that the SVM

model achieved an accuracy of 77.6% in discriminating
the TD class from the MDD class and 83.0% in the dif-
ferentiation of the MDD class from the TD class. This
means that the sensitivity exceeds the specificity, sug-
gesting that the SVM model, when using the attribute
matrix as input, is also better at identifying patients with
MDD than those with TD. The ROC curve (Fig. 8(b))
shows an 87% of probability that the SVM model can
discriminate between the TD and MDD classes.
Regarding the learning curve (Fig. 8(c)), we can see

that the training score is very high when using few sam-
ples for training, and it decreases as the number of sam-
ples increases until a certain amount of data, after which
it stabilizes. In contrast, the test score is initially low
and increases with the addition of more samples. Be-
sides, there is a significant difference between training
and validation accuracy.
The results indicate that complex network measures

did not provide accurate results compared to connectivity
matrices. This finding suggests that the differences be-
tween the brains of healthy people and those with MDD
are very subtle and not captured by the measures we
used. Subtle differences between the brains of controls
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FIG. 10. The most relevant connections are found in the two-dimensional schematic (ventral axis), highlighted in descending
order of importance in orange and purple. The brain plot was developed using the Braph tool [79], based on the coordinates
in [80].

and people with mental disorders have been observed be-
fore [99].

Despite that, the investigation regarding complex net-
work measures offers valuable insight to uncover signif-
icant characteristics of the topology of the MDD brain
and how it is discerned from the TD brain. These mea-
sures provide an understanding of the intricate connec-
tivity patterns within the brain network, allowing for the
identification of key features that contribute to the man-
ifestation of MDD. Hence, we examined the impact of
complex network measures on the model’s performance
using the SHAP summary plot.

As shown in the SHAP summary plot (Figure 9), as-
sortativity emerges as the primary discriminator between
MDD and TD patients, ranking as the most significant
complex network measure. ED and density are also rel-
evant features for the diagnosis of MDD. The assorta-
tivity coefficient is a topological measure that refers to
the tendency of nodes to connect to others with similar
characteristics [54, 100]. Specifically, it measures the cor-
relation between the degrees of neighbouring nodes in the
network. From the SHAP summary plot, high values of
assortativity are associated with the MDD group. This
result contrasts with the literature, which found no differ-
ence in assortativity values between MDD and TD [101]
or lower assortativity in MDD patients [102]. Higher as-
sortativity tends to show a higher degree of modularity
and leads to more robust networks, which has already
been reported in the literature [45, 46].

The entropy of the degree distribution (ED) is an av-

erage measure of the heterogeneity of the network and
can be used to quantify network complexity [103]. A
high entropy means that there is a wide range of node
degrees in the network, indicating a more heterogeneous
structure. Our results suggest that MDD brains present
smaller values of ED, indicating a less structured topol-
ogy. Our results are also consistent with [44–46, 104].
We also observed a lower density value in MDD brains,

as indicated by the SHAP summary plot. Density quan-
tifies the extent to which nodes in the network are con-
nected to each other [105]. A density of 0 indicates a
completely disconnected network, while a density of 1
represents a completely connected network. Networks
with higher densities often have more robust connectivity,
while networks with lower densities may be more sparse,
with fewer connections as seen in functional MDD brain
network.

VI. CONCLUSIONS AND FUTURE WORK

Our research helps to understand the characteristics of
MDD brains. The analysis of different approaches to con-
struct the connectivity matrix showed that the Spearman
correlation coefficient, especially with a sliding window
of 10 seconds, had the highest accuracy in discriminating
between MDD and TD subjects. The SVM model was
the best classifier. Our results showed an AUC of 1.00
and an accuracy of 0.993 for the test set. This perfor-
mance exceeds the results documented in the literature.
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From the SHAP summary plot, the right fronto-central
connection, specifically F8-C4, are the regions most as-
sociated with MDD. Low PC scores for this connection
are also associated with the MDD group, suggesting a
disruption in the connectivity of brain networks that af-
fect emotional regulation, cognitive processing and social
cognition.

The second most important connection (Fp1-Fp2) as-
sociated with MDD is located in the frontopolar region
of the brain, in both the right and left hemispheres.
These regions are associated with affective processing,
social cognition, working memory and perception. Low
SC scores for this connection are associated with MDD
patients and may be related to poor concentration, mem-
ory and decision-making difficulties. It may also con-
tribute to problems in regulating emotions, leading to
mood swings. These features are often observed in peo-
ple with MDD.

Abnormal EEG patterns were found to be prevalent
in both hemispheres of the MDD brain, which is con-
sistent with existing literature. Interestingly, the ap-
plication of complex network measures showed inferior
classification performance compared to connectivity ma-
trices. The test set yielded an AUC of 0.875 and an

accuracy of 0.804. However, the network approach high-
lighted the importance of some measures such as assor-
tativity, entropy of the degree distribution and density of
connections. The functional MDD brain network has a
more homogeneous degree distribution, resulting in a less
structured topology, which could reduce the efficiency of
information flow.

Our future study could include comparing local and
global data to identify the most effective approach for
patient differentiation and topology interpretation. In
addition, exploring the different frequencies of EEG sig-
nals may provide insights into potential improvements in
predictive accuracy and a deeper understanding of the
intricate dynamics of MDD-related brain changes.
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C. Hägele, P. Sterzer, M. Adli, A. Heinz, and
G. Northoff, Attentional modulation of emotional
stimulus processing in patients with major depres-
sion—alterations in prefrontal cortical regions, Neuro-
science letters 463, 108 (2009).

[90] Y. Liao, X. Huang, Q. Wu, C. Yang, W. Kuang, M. Du,
S. Lui, Q. Yue, R. C. Chan, G. J. Kemp, et al., Is de-
pression a disconnection syndrome? meta-analysis of
diffusion tensor imaging studies in patients with mdd,
Journal of Psychiatry and Neuroscience 38, 49 (2013).

[91] M. Duan, L. Wang, X. Liu, F. Su, L. An, and S. Liu, Ab-
normal brain activity in fronto-central regions in mental
disorders with suicide: An eeg study, in 2021 43rd An-
nual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC) (IEEE, 2021)
pp. 1035–1038.

[92] S. Bludau, S. B. Eickhoff, H. Mohlberg, S. Caspers,
A. R. Laird, P. T. Fox, A. Schleicher, K. Zilles, and
K. Amunts, Cytoarchitecture, probability maps and
functions of the human frontal pole, Neuroimage 93,
260 (2014).

[93] P. W. Fettes, M. Moayedi, K. Dunlop, F. Mansouri,
F. Vila-Rodriguez, P. Giacobbe, K. D. Davis, R. W.
Lam, S. H. Kennedy, Z. J. Daskalakis, et al., Abnor-
mal functional connectivity of frontopolar subregions in
treatment-nonresponsive major depressive disorder, Bi-
ological Psychiatry: Cognitive Neuroscience and Neu-
roimaging 3, 337 (2018).

[94] T.-W. Lee, Y.-T. Wu, Y. W.-Y. Yu, M.-C. Chen, and
T.-J. Chen, The implication of functional connectivity
strength in predicting treatment response of major de-
pressive disorder: a resting eeg study, Psychiatry Re-
search: Neuroimaging 194, 372 (2011).

[95] J. L. Stewart, J. A. Coan, D. N. Towers, and J. J. Allen,
Resting and task-elicited prefrontal eeg alpha asymme-
try in depression: Support for the capability model,
Psychophysiology 51, 446 (2014).

[96] C. Greco, O. Matarazzo, G. Cordasco, A. Vinciarelli,
Z. Callejas, and A. Esposito, Discriminative power of
eeg-based biomarkers in major depressive disorder: A

systematic review, IEEE Access 9, 112850 (2021).
[97] Y. Mohan, S. S. Chee, D. K. P. Xin, and L. P. Foong,

Artificial neural network for classification of depressive
and normal in eeg, in 2016 IEEE EMBS conference on
biomedical engineering and sciences (IECBES) (IEEE,
2016) pp. 286–290.

[98] J. Yang, Z. Zhang, P. Xiong, and X. Liu, Depression de-
tection based on analysis of eeg signals in multi brain re-
gions, Journal of Integrative Neuroscience 22, 93 (2023).

[99] G. F. de Arruda, L. da Fontoura Costa, D. Schubert,
and F. A. Rodrigues, Structure and dynamics of func-
tional networks in child-onset schizophrenia, Clinical
Neurophysiology 125, 1589 (2014).

[100] M. Rubinov and O. Sporns, Complex network measures
of brain connectivity: uses and interpretations, Neu-
roimage 52, 1059 (2010).

[101] M. D. Sacchet, G. Prasad, L. C. Foland-Ross, P. M.
Thompson, and I. H. Gotlib, Support vector ma-
chine classification of major depressive disorder us-
ing diffusion-weighted neuroimaging and graph theory,
Frontiers in psychiatry 6, 21 (2015).

[102] G. Wagner, F. de la Cruz, S. Köhler, F. Pereira,
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