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Abstract 

Brain related disorders are characterised by observable behavioural symptoms. Smartphones can 

passively collect objective behavioural data, avoiding recall bias. Despite promising clinical 

utility, analysing smartphone data is challenging as datasets often include a range of 

missingness-prone temporal features. Hidden Markov Models (HMMs) provide interpretable, 

lower-dimensional temporal representations of data, allowing missingness. We applied an HMM 

to an aggregate dataset of smartphone measures designed to assess social functioning in healthy 

controls (HCs) (n=247), participants with schizophrenia (n=18), Alzheimer’s disease (AD) 

(n=26) and memory complaints (n=57). We selected a model with socially “active” and 

“inactive” states, generated hidden state sequences per participant and calculated their “dwell 

time”, i.e. the percentage of time spent in the socially active state. We identified lower dwell 

times in AD versus HCs and higher dwell times related to increased social functioning 

questionnaire scores in HCs, finding the HMM to be a practical method for digital phenotyping 

analysis.  
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Introduction 

Many psychiatric and neurological diseases exhibit observable behaviours that are indicative of 

the underlying condition. For example, social functioning is negatively impacted in a broad 

range of conditions, including schizophrenia (SZ), Major Depressive Disorder (MDD), anxiety 

disorders and Alzheimer’s disease (AD) (e.g.1-3), often cumulating in social withdrawal. Social 

withdrawal, indicated by reduced social interaction1, can be observed as people engage less with 

those around them. However, successfully measuring behavioural components such as social 

withdrawal is challenging, as reports of behaviour are subjective and susceptible to recall bias, 

with questionnaires often being burdensome to complete. There is therefore a need to develop 

practical, objective tools to monitor these symptoms, for example to predict or measure clinically 

relevant changes. 

The field of digital phenotyping is developing to meet such a need. Digital phenotyping 

involves the development of behavioural or physiological markers calculated from digital 

measures (i.e. “digital phenotypes”). These measures avoid issues of recall bias as they are 

objective and can be acquired in real-time as participants go about their day, also meaning they 

have high ecological validity. A popular tool to collect digital phenotyping data is the 

smartphone. Given the highly common place of smartphones in society, the smartphone is 

convenient as it does not require participants to change their behaviour or routines; a monitoring 

application, for example “Behapp”,4 “Mood mirror”5 or “RADAR-base pRMT”,6 can be installed 

on their own phone and run passively in the background to collect data, without user 

intervention.  

Modern smartphones have a large number of sensors and functionalities, including 

various applications (apps), calling capabilities, WiFi, Global Positioning System (GPS), 

accelerometer and Bluetooth, which can be leveraged to model different aspects of behaviour 

(including social contacts, movement patterns and app usage (e.g. 7, 8)). Moreover, there are 

many ways in which these data can be processed. For example, the duration, circadian rhythm or 

statistical measures can be calculated (such as mean and standard deviation of a behaviour across 

time) or the occurrences of the behaviour counted.9 This often leads to datasets with many 

features reflecting various different smartphone-measured behaviours. A major problem 

affecting digital phenotyping is that platforms are often prone to missing data due to the 

difficulties of real-world longitudinal data collection, leading to missing values across all or a 

subset of these features.9  

This gives rise to multiple analytic challenges: processing the collected feature sets, often 

representing a wide range of seemingly distinct observed behaviours with potentially similar 

underlying causes, requires many model decisions. Appropriate methods are therefore needed to 

analyse this multi-faceted data containing missingness, in order to produce meaningful, lower-

dimensional data representations. These representations may be more usable and informative 

about the underlying behavioural states of participants relative to the individual features. Models 

should also aim to be interpretable by not only researchers but also clinicians (and patients), to 

facilitate their use in clinical practice. A further property that would enable their use in this 
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context is that they can preserve the time domain, as one of the goals of smartphone digital 

phenotyping is to be able to make useful clinical predictions that can enable early intervention. 

Many digital phenotyping studies have focused on time-averaged features and analyses, and a 

shift towards more direct investigations of temporal dynamics is expected to improve clinical 

utility.9  

Currently, digital phenotyping studies employ a broad range of approaches. For example, 

investigating associations between neuropsychiatric symptoms and summary measures (e.g. total 

number of places visited, mean duration of communication app usage),10 clustering of digital 

phenotypes to investigate transdiagnostic symptom classification,11 linear mixed effects models 

accounting for repeated measures of time-averaged features (12-15), multivariate anomaly 

detection to identify relapse in SZ16 and joinpoint regression to identify changes in the trajectory 

of digital phenotypes (e.g. step count).17 

In this study we propose the use of a Hidden Markov Model (HMM) (e.g.18) as a method 

to model digital phenotyping time series data. This provides several appealing features, namely 

that HMMs 1) can meaningfully combine different behavioural features, 2) reflect changes in 

behaviour over time, 3) provide readily interpretable summary statistics and 4) naturally 

accommodate missingness. HMMs provide interpretable, lower dimensional representations of 

the data using latent (i.e. hidden) states, where the observed time series channels are represented 

as a sequence of these hidden states. Each hidden state has associated “emission probabilities” 

indicating the probability that the state corresponds to the observed behaviours, allowing for 

informative behavioural states to be derived by representing more than one feature per state. 

Changes in behaviour through time are modelled via transitions between these hidden states. 

Importantly for digital phenotyping, HMMs contain intrinsic mechanisms for handling missing 

data. HMMs have been used in many applications for modelling behaviour, for example to 

model drinking patterns in people with an alcohol use disorder,19 cocaine dependence,20 sleep 

patterns represented in neuroimaging data,21 and mobility data (e.g. 22, 23).  

While our approach is widely applicable to digital phenotyping time series, in this work 

we demonstrate its application to data collected using the Behapp monitoring application 

(www.behapp.com), which collects passive data related to app usage, calls, GPS, WiFi and 

overall phone usage, reflecting the periods the phone was unlocked. We applied an HMM to a 

combined dataset of phone usage and communication-related features from participants in the 

“Psychiatric Ratings using Intermediate Stratified Markers” (PRISM)24 and Hersenonderzoek 

(HO)10 studies, demonstrating how an HMM can successfully represent digital phenotyping time 

series. The model was initially trained on a set of HCs with low missingness to provide a high-

quality dataset for training, and then applied to HCs with higher missingness, and participants 

with AD, SZ and healthy participants with memory complaints (“subjective cognitive 

complaints”; SCC), to investigate generalisability. Hidden state sequences were generated for 

these participants, and we then calculated a digital phenotype derived from the HMM for each 

participant, namely the “dwell time”. The dwell time provides the percentage of time the 

participant spent in a hidden state. This digital phenotype was then linked to clinical measures 
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including diagnostic group and social functioning, demonstrating the clinical value of this 

approach. 
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Results 

Sample statistics 

An overview of our approach is shown in Figure 1. This study utilised data from participants in 

the PRISM and HO datasets, which jointly contained 247 HCs, 18 participants with SZ, 26 with 

AD and 57 participants with SCC. Participants with AD and HCs were present in both datasets, 

whereas participants with SZ were provided by PRISM and participants with SCC were provided 

by HO.  

 

Figure 1: Flowchart highlighting the main processing and modelling steps involved in the HMM 

approach. Panel f) shows our main clinical findings: lower socially active dwell time in AD 

versus HCs, and a positive relationship between socially active dwell time and social functioning 

in HCs. HC: healthy control, SZ: schizophrenia, AD: Alzheimer’s disease, SCC: 

Healthy/subjective cognitive complaints. 

In the PRISM and HO datasets, HCs were age matched to the diagnostic groups, with the 

PRISM sample being matched to both SZ and AD and the HO sample age-matched only to AD. 

After aggregation of datasets, this results in a bimodal age distribution. More specifically, due to 

the expected differences in age between participants with SZ and AD, the HCs are on average 

older than participants with SZ and younger than those with AD. However, note that the 
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difference in age between the diagnostic groups is a consequence of aggregating multiple 

samples. From the age histograms presented in Figure 2, it is clear that the HC group spans the 

full range of each diagnostic group, and we also performed additional sensitivity analyses with 

matched diagnostic groups to confirm group comparison findings. Training set and overall 

validation set age distributions are shown in supplemental Figure S1. 

PRISM data was collected across sites in the Netherlands and Spain, whilst HO data was 

collected solely in the Netherlands. PRISM recorded participant race, with nearly all participants 

identifying themselves as white, whereas HO did not report participant race. The demographics 

of the HCs, split by training versus validation set assignment, are provided in supplemental Table 

S1. 

 

Figure 2: a) Distribution of ages for all validation participants, b) distribution of ages for 

validation participants with social measures. Plotted using kernel density estimation. 

Hidden Markov Model derivation and interpretation 

When training the HMM, the number of hidden states used by the model must be chosen. During 

our hyperparameter selection, we evaluated two- and three-state models, which both converged, 

however it was seen that one of the states in the three-state model comprised a very small 

percentage of the state sequences for the training segments (<2%) and was viewed as redundant 

(a four-state model was consequently not investigated). Two was therefore chosen as an 

appropriate number of states for the model, and the two-state model with the highest model 

likelihood was used in the subsequent analyses. 
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The emission probabilities of the states generated by the two-state model are shown in 

Figure 3. Using these emission probabilities to interpret the hidden states, it is evident that they 

represent socially active and socially inactive states. That is, the first state (S1) corresponds to 

phone usage with a very high probability that communication apps are also being used by the 

participant. There is a smaller probability of social media usage and outgoing/incoming phone 

calls. This state also includes a low probability of missing data. Due to the use of communication 

methods in this state, such as calls and app usage, this hidden state is referred to as the “socially 

active” hidden state. The second state (S2) corresponds to a much smaller probability of phone 

usage, with the probability of all other channels near zero, and is referred to as the “socially 

inactive” hidden state. We show a demonstrative example of how the hidden states correspond to 

the observed channels in Figure 4, illustrating different observed channel configurations that can 

correspond to each of the hidden states.  

 

 

Figure 3: Emission probabilities of the selected two-state model. S1: State 1, S2: State 2. 
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Figure 4: Examples of which behaviours may correspond to the hidden states. Socially active 

state: various social behaviours are displayed, including calls and app usage; socially inactive 

state: no phone usage, or phone usage without corresponding social behaviours. 

After model training, the hidden state sequence corresponding to each participant’s time 

series was generated. The dwell time for each validation participant can then be calculated from 

the hidden state sequence, with missing data in the validation set removed, and compared to 

clinical scores and diagnostic group. We chose to drop the missing portions from these time 

series before hidden state sequence generation, otherwise a participant with, for example, half of 

their time series missing would show all of this missing period as being socially active (see 

Figure 3). As the selected model only contains two states and the dwell time (i.e. the proportion 

of time spent in each state) is a percentage value, only the dwell times corresponding to one of 

the states needed to be investigated. We therefore focus on the dwell times from the “socially 

active” state, and so further reference to “dwell time” derived from the HMM solely refers to 

dwell times in the socially active state.  

An example of one participant’s hidden state sequence alongside the input sequence is 

shown in Figure 5, and an example of another participant can be seen in Figure 6. It is 

immediately apparent that the subject shown in Figure 5 spends considerably more time in the 

socially active state relative to the subject shown in Figure 6. It can be seen that the participants 

in both Figure 5 and Figure 6 oscillate quite frequently between the socially active and inactive 

states, which is not surprising due to expected diurnal variation (e.g. 25). More clearly, higher 

social activity during the daytime and lower social activity during night-time can be seen in 

Figure 7. Additionally, the probability of starting a hidden state sequence in the socially active 

and inactive states were 0.246 and 0.754 respectively, showing that it is more probable to begin 
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the time series in the socially inactive state. This is to be expected as all of the time series began 

at midnight, so many participants would have been asleep.  

 

 

Figure 5: The observed time series composed of hourly bins (bottom five rows) of a participant 

compared with their corresponding predicted hidden state sequence (top row); S1: State 1 

(socially active state), S2: State 2 (socially inactive state). 

 

Figure 6: The observed time series composed of hourly bins (bottom five rows) of another 

participant compared with their corresponding predicted hidden state sequence (top row); S1: 

State 1 (socially active state), S2: State 2 (socially inactive state). 
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Figure 7: An example of a two-day period of a participant’s time series; S1: State 1 (socially 

active state), S2: State 2 (socially inactive state); 0: midnight. 

Measures of social functioning and loneliness 

For validation purposes, we make use of a measure of social functioning for each participant in 

the PRISM dataset, namely the Social Functioning Scale (SFS)26 (see Figures S2 and S3 in the 

supplementary materials for score distributions). We therefore investigated possible relationships 

between social functioning and socially active dwell times for the various available participant 

groups in the validation set (i.e. HCs, participants with SZ or AD). The number of participants in 

each group is small, so we consider our results to be preliminary indicators of possible 

relationships between the HMM-derived digital phenotypes and social functioning. 

Linear regression models were run to investigate possible relationships between SFS 

scores and dwell times, with age included as an additional predictor in the models. Separate 

models were run for each of the diagnostic groups, with one model run for all groups combined 

(Table 2). FDR corrected p-values (considering four tests) are presented with results considered 

significant at p < .05. A significant positive relationship between social functioning and dwell 

times was found for the HCs (FDR corrected p-value = 0.0041), with every one percent increase 

in dwell time corresponding to a 0.1248 increase in SFS score, but no significant relationship 

was found for the other diagnostic groups. For the overall validation group, an effect of age was 

found (FDR corrected p-value = 0.0136), however this effect was driven by the lower SFS scores 

of the SZ group. 

A measure of loneliness27 was also provided for the PRISM participants, however no 

significant relationship between loneliness and dwell times was found. The results from these 

linear regression models are presented in supplemental Table S2, as well as histograms of the 

distribution of loneliness scores (Figures S4 and S5).  

Diagnostic group 

A multinomial logistic regression model was run to investigate differences in socially active 

dwell time between the different diagnostic groups and the HC group in the validation set (i.e. 

the reference category) (see Figure 8). Age was again included as an additional predictor in the 

model, and FDR corrected p-values (considering three tests) are presented to provide an indicator 
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of significance at p < .05 (Table 3). Dwell time was found to be a significant predictor of AD 

relative to HCs (FDR corrected p-value = 0.0002); participants with AD generally showed lower 

dwell times (i.e. spending less time in the socially active state) relative to HCs (odds ratio = 

0.9455). No significant relationship of dwell time on SZ or SCC group was found relative to 

HCs. Due to the broad age range of HCs, sensitivity analyses of age were carried out for each 

diagnostic group (supplemental Table S3), with a subsample of HCs age-matched to each 

respective diagnostic group, with the AD result remaining significant (FDR corrected p-value = 

0.0003). 

 

Figure 8: A box plot of the dwell times for the different diagnostic groups (HC: healthy control, 

SZ: schizophrenia, AD: Alzheimer’s disease, SCC: Healthy/subjective cognitive complaints); 

there is a significant difference between the HC and AD groups. 

  

Further clinical measures 

For participants with AD and the HCs in the PRISM dataset, Mini-Mental State Examination 

(MMSE)28 scores, measuring cognitive impairment, were provided. Whilst across validation 

participants an effect of dwell time was found on MMSE (FDR corrected p-value = 0.0157), no 

significant relationship was found within diagnostic groups, so it is likely that this significant 

value is capturing the group differences of HC versus AD, rather than a specific effect of dwell 

time on MMSE (see Table 4). No significant effect of age was found on MMSE (age-related 

model results are provided in Table S4 in the supplementary materials, as well as score 

distributions in Figures S6 and S7). 

The PRISM dataset also provided Positive and Negative Syndrome Scale (PANSS)29 

scores for participants with SZ, however no significant relationships between any of the PANSS 

scores (positive, negative, general psychopathology, composite and total) and dwell time were 

found. The results from these linear regression models are presented in Table S5 in the 

supplementary materials, as well as histograms of the distribution of PANSS scores per subscale 

(Figure S8). 
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Discussion 

A central aim of digital phenotyping is to develop objective measures that can be used to monitor 

clinically-relevant behaviours and symptom changes. In this study we proposed a method for 

deriving meaningful, interpretable digital phenotypes using the HMM, a time series model that 

can accommodate missingness. We applied this model to general phone usage and 

communication smartphone measures, calculating the socially active dwell time phenotyped by 

the HMM. Our smartphone measures were collected passively, reducing burden on participants, 

and we protected participant privacy by abstracting app measures to descriptive levels, without 

collecting content. We investigated the association of the socially active dwell time with various 

social and clinical measures, including diagnostic group and a questionnaire on social 

functioning (SFS). We found that a two-state HMM, that switches between socially active and 

socially inactive states, could suitably represent the participants’ five-channel smartphone time 

series. We observed a significant difference in the HMM-derived “socially active” dwell times 

between HCs and participants with AD, with participants with AD exhibiting lower dwell times. 

This difference was robust to age sensitivity analysis. A significant relationship between dwell 

times and social functioning was also identified for HCs, with higher dwell times corresponding 

to higher social functioning. 

The HMM has several strengths: it uses lower-dimensional hidden states to represent the 

various observed behaviours, which can be easily interpreted for each state using the emission 

probabilities (Figure 3). The socially active state could be interpreted as being linked to observed 

communication-related behaviours, whilst the socially inactive state reflected a lack of these 

behaviours, such as other kinds of, or no, phone usage. Transitions between these hidden states 

were indicative of behavioural changes throughout time, for example daily behavioural patterns 

(Figure 7). The HMM can also handle missing data points during model estimation, 

incorporating a probability of missingness into one of the hidden states (see Figure 3). Hidden 

states may allow for some individual behaviours to be represented as comparable behaviours. For 

example, Figure 6 shows a time series with no social media usage, whereas Figure 5 shows 

highly recurrent social media usage, and both of these participants can have their respective 

behaviours represented using the socially active state despite individual differences in what 

social activity may mean for each participant. This type of modelling approach can therefore 

allow for a certain amount of flexibility in the behaviours of the participants, dependent on the 

number of hidden states used in the model.  

A summary measure of the HMM, the socially active dwell time, was calculated per 

validation participant so that a model-derived digital phenotype could be compared to clinical 

and social measures. The observed difference in dwell time between participants with AD and 

HCs, with AD dwell times lower than HCs, is consistent with the understanding that AD is 

associated with impaired social functioning,1 and demonstrates a potential objective measure of 

this difference. A positive relationship between social functioning and dwell time was identified 

for HCs. Given the large influence of communication-related behaviours contributing to the 

socially active state, this relationship may in part be reflecting higher scores in the 
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communication-related questions in the SFS. Regarding cognitive impairment, an overall 

significant relationship between dwell times and MMSE was found, but not when separate 

models were run for HCs and participants with AD. This difference is likely reflecting group 

differences in dwell time between HCs and AD.  

Differences in dwell time relative to HCs were not observed for SCC participants or 

participants with SZ. These results may be unsurprising as by definition SCC participants are 

very similar to HCs, with the difference in inclusion criteria being that SCC participants 

experience memory complaints. Similarly, the participants with SZ did, for the most part, exhibit 

quite low symptom severity. The number of participants with SZ was also small. Whilst the 

PRISM study only placed exclusion criteria on positive symptoms (to exclude psychosis), the 

negative symptoms in the sample did not turn out to be very severe either, and overall most 

participants could be classified as “mildly ill” based on their total PANSS score.30 This is 

indicative of a selection of less affected patients. The mild PANSS scores, as well as low 

loneliness scores, may also contribute to the absence of an identified relationship between these 

scales and dwell time. Significant relationships between social functioning and dwell time for 

participants with AD and SZ were also not observed. It is possible that participants with AD and 

SZ may overestimate their social functioning,31 which could be reflected in their self-report SFS 

scores. This may complicate any possible relationship between this social functioning measure 

and dwell time for these groups. A further interesting factor that could affect these relationships 

is the impact of different symptom profiles on dwell time. 

To expand upon the current work, the HMM method could be applied in a larger 

population of SZ participants exhibiting broader symptom severity and different symptom 

profiles. Given the reluctance of many people with acute psychotic symptoms to being 

monitored, it may be necessary to monitor participants for a longer period of time, beginning 

with low symptom severity at study enrolment, to allow for more fluctuations in symptom 

severity to be observed (e.g. 16). The HMM method can also be applied to other disorders, 

including Major Depressive Disorder (to be included in PRISM 2). A wider range of smartphone 

channels can also be included in the HMM, for example calls could be encoded to reflect the 

variation in who is called/is calling each hour. With a larger number of input channels, the 

derived hidden states could reflect more specific behavioural states. The optimal number of 

hidden states may then be driven both by the number of input channels, and the underlying 

behavioural states of the participants themselves. With a higher order model, the hidden states’ 

emission probabilities would not necessarily correspond to distinct single behaviours; for 

example with the inclusion of GPS channels, there could be two hidden states that correspond to 

time spent at home, with one state also reflecting communication activities and the other 

reflecting no communication.  

For the current analysis, each hidden state sequence was generated per participant, but 

dwell time comparisons were only made between groups. To shift towards individual predictions 

(for example predicting symptom scores or relapse along the time series), the dwell time for 

windows of the sequence, or potentially the sequence likelihood, could be extracted and changes 
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along the time series evaluated. This would also maintain the time component of the analysis; 

our current analysis uses a time series model but then compares a summary HMM measure to 

clinical measures. For clinical applications, the eventual goal would be to be able to make 

individual predictions along the time series. 

To improve the management of missing data, there are several more avenues that can be 

explored. Data is often expected to be missing due to technical difficulties, but it is also possible 

that data can be missing due to user behaviour, for example if the user switches the phone off, 

turns on flight mode or deletes the app from their phone. Future studies could consider recording 

these specific behaviours (which would currently be more feasible with Android phones, rather 

than iOS), to provide a better indicator of data missing due to technical difficulties versus user 

behaviour. With regards to managing missing data specifically in the context of HMMs, with 

higher dimensional input data it may be appropriate to allow for separate “missing states”. If 

missingness occurs in certain channels but not others, it is possible for this to be reflected in the 

hidden states (e.g. a state corresponding to missing GPS data but present phone usage). 

Due to high rates of missingness, we made four main decisions to handle missing data: 1) 

to focus model training on high data availability time series, 2) to use a model that can 

accommodate missing data, 3) to exclude GPS channels from the current time series analysis due 

to low levels of data availability affecting these specific channels and 4) to exclude missing 

timepoints from the validation time series before hidden state sequence generation. Whilst we 

view decisions 1) and 2) as useful strategies for managing missing data, decision 3), and to a 

lesser degree decision 4), were unfortunate consequences that in future studies should be avoided 

with improved data collection. The datasets used in this study were collected with early versions 

of Behapp, and throughout data collection no indicator of missingness was known. Indicators of 

missing data were developed retrospectively using WiFi and GPS sampling frequencies to assist 

analyses of these time series. Incoming data monitoring has now been improved in more recent 

Behapp versions, as well as the overall data collection process. Researchers using Behapp can 

therefore now track data collection as it is ongoing, and take action if sustained periods of data 

are missing. This could involve contacting participants to ensure they have not accidentally 

disabled desired functionalities for sustained periods. 

For interpretation purposes, we have named the two hidden states as “socially active” and 

“socially inactive”. However a person could, of course, be socially active offline without using 

their phone. For example, a person may be socialising with friends at home without using their 

phone. We therefore acknowledge limits to our naming convention, and recommend caution 

when interpreting hidden states. Other sensors could be used to give an indicator of other people 

in the participant’s vicinity, such as Bluetooth32, but passive smartphone data will nevertheless 

remain somewhat of a proxy for social activity. In a similar vein, we used the App Store 

classification to group apps, but participants may use the apps for purposes other than this 

classification (e.g. some people use Instagram for communication, and less so for social media). 

Whilst in our two-state model these discrepancies would be inconsequential, with a larger 

number of hidden states these discrepancies could potentially lead to misleading interpretations 
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of a person’s behaviour. In clinical application, the patient’s behaviours could be discussed with 

the clinician at the beginning of Behapp usage to assist in understanding and interpreting their 

personal digital phenotypes.  

Smartphone-based digital phenotyping is a promising tool for monitoring and predicting 

mental health outcomes. However, methods are needed for managing this multi-faceted time 

series smartphone data. We proposed the use of an HMM to model digital phenotyping time 

series, as this method can 1) combine different behavioural features, 2) reflect temporal 

behavioural changes 3) be easily interpreted and 4) manage missingness. We developed a two-

state model that represented various smartphone channels as “socially active” and “socially 

inactive” states, and calculated the socially active dwell time for each participant’s time series. 

We identified a significant difference between HC and AD dwell times, with AD dwell times 

lower than HCs, showing how this HMM-derived digital phenotype may be a useful measure to 

indicate differences in social functioning. We also observed a significant positive relationship 

between dwell time and social functioning for HCs, which could reflect the increase in 

communication behaviours in the socially active state and their connection with social 

functioning. The HMM is an interpretable method to model behaviour based on digital 

phenotyping data and with further development provides an appealing approach for making 

clinical predictions of symptom changes and relapse across a range of neuropsychiatric diseases. 
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Method 

Participants 

This study utilised data from participants in PRISM and HO. We chose to combine these datasets 

to increase sample size, and due to the overlap in Alzheimer’s populations and consequentially, 

similarly age-matched HCs.  

PRISM 

The PRISM study aims to investigate social withdrawal in two brain disorders, SZ and probable 

AD (24,33). Participants with AD, SZ, and age- and gender- matched HCs were recruited across 

centres in Spain (Hospital General Universitario Gregorio Marañón and Hospital Universitario 

de La Princesa, in Madrid) and the Netherlands (University Medical Center Utrecht, Leiden 

University Medical Center and Amsterdam UMC, location VUmc).  

Participants with SZ were required to be within the age range of 18-45 years (inclusive), 

and to have a DSM-IV (Diagnostic and Statistical Manual of Mental Disorders) diagnosis of SZ 

confirmed by the Mini-International Neuropsychiatric Interview (MINI). Participants were 

required to have experienced at least one psychotic episode, to have had a maximum disease 

duration of 10 years since diagnosis, and for any antipsychotic medication dosage to have been 

stable for a minimum of 8 weeks. As PRISM aimed to investigate social withdrawal linked with 

negative symptoms (and not as a consequence of other sources such as psychosis), participants 

with SZ were excluded if they rated highly for positive symptoms (≥22 on the positive symptom 

factor of the 7-item Positive and Negative Syndrome Scale (PANSS)29). Participants with AD 

were required to be within the age range of 50-80 years, to meet the classification of “Probable 

AD” based on the National Institute on Aging and the Alzheimer’s Association (NIAAA) 

criteria, and to have a Mini-Mental State Examination (MMSE)28 score of 20-26. For both 

participants with SZ and AD, it was required that participants were not socially withdrawn due to 

other reasons such as their external circumstances, a comorbid medical disorder or disability. 

HCs were recruited in the age ranges of 18-45 and 50-80, and were required to have an 

approximately average MMSE score according to their age and years of education. Participants 

were excluded if they met the criteria for an Axis-I psychiatric disorder (assessed by the MINI), 

or a neurological disease associated with cognitive impairment. For further details of 

inclusion/exclusion criteria for all participant groups see the PRISM study overview.24  

In addition to Behapp data collection, measures of clinical and social functioning were 

acquired. The self-report Social Functioning Scale (SFS)26 and the De Jong Gierveld Loneliness 

and Affiliation Scale27 were administered to all participants, the MMSE was administered to HCs 

and participants with AD, and the PANSS was administered to participants with SZ.  

Hersenonderzoek 

Participants with probable AD, “Healthy/subjective cognitive complaints” (SCC) participants 

and age-matched HCs were recruited across the Netherlands by The Dutch Brain Research 

Registry (Hersenonderzoek.nl), providing demographics and health-related information online 

via the Hersenonderzoek.nl platform.10 Participants indicated the presence of probable AD. To 
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classify participants as SCC or HC respectively, participants indicated the absence of 

neurological or psychiatric diseases with or without memory complaints. The minimum age for 

inclusion was 45 years. 

Ethical approval and informed consent 

PRISM was approved by the Ethics Review Board of each of the five participating centres in 

Spain and the Netherlands, and participants were deemed by the researcher and caregivers to be 

sufficiently competent to participate. Approval for HO was provided by the Ethical Review 

Board VU University Medical Centre. All participants provided informed consent before 

participation commenced. 

Behapp acquisition 

The smartphone application “Behapp” (www.behapp.com) was installed on participants’ 

smartphones. Behapp passively collected smartphone-usage data for a period of 42 days without 

storing any content of messages and calls, in compliance with the European Privacy 

Regulation.34 The classification of each app used by participants was gathered from the Google 

Play Store, so that apps could be grouped by type, including social media and communication 

apps. During the time of data collection (PRISM: August 2017 – May 2019; HO: March 2018 – 

January 2020), Behapp was only available on Android smartphones, and so PRISM participants 

who did not have their own Android smartphone were supplied with one for the duration of study 

participation. However, this was not done for HO participants in accordance with the study 

design, and only two PRISM participants used a study-provided phone. For each activity (e.g. 

use of an app), the respective start and end timestamps were stored. 

Preprocessing 

Smartphone channels 

Phone usage was split into five categories, referred to as “channels”: social media app usage, 

communication app usage, incoming calls, outgoing calls, and overall phone usage. GPS 

channels were also available. Since many of these measures are sparsely sampled, each channel 

was aggregated into hourly bins, and the percentage of each hour for which each activity was 

carried out was calculated. For example, a participant may spend 100% of an hour using their 

phone, 50% on social media, 40% on communication apps, 0% making/receiving calls and 10% 

using another functionality such as Google Maps. Even with the temporal resampling, many of 

these phenotypes have highly zero-inflated distributions (see Figure S9 in the supplementary 

materials), which can be difficult to handle natively. Therefore, for each hourly timepoint, these 

percentages were grouped into discrete bins instead of continuous percentages: binary bins 

reflecting either no or some activity carried out in the hour (0% activity; >0-100% activity). 

Two measures were developed to identify whether data had been correctly collected by 

Behapp for each hour, which capitalise on the sampling frequency of the location and other data 

sources like WiFi data (which are both independent of personal phone usage); as this frequency 

is expected to be greater than once per hour, a frequency lower than one sample per hour in the 

location data indicates missing location data, and a frequency lower than one sample per hour in 
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all types of data (including WiFi) indicates that overall data was not being collected successfully. 

Therefore one of these measures reflected overall data availability, and the other measure was 

specific to GPS data availability. The distributions for these measures are provided in 

supplemental figures S10-S13. These measures were required so that we could differentiate 

between values that were zero because a participant was not using their phone, and values that 

were zero because data was not successfully collected. Due to low GPS data availability acquired 

using the version of Behapp used in these studies, it was decided not to include the GPS channels 

in the current analysis. Therefore any missingness that occurs in the included channels occurs 

across all channels at the same timepoints (i.e. it is not possible to have data missing at a 

timepoint in, for example, only the social media channel and not the other channels). 

To account for any changes in behaviour that may have arisen from study onboarding 

(i.e., participant attending assessments at study location), the first day of each participant’s 

Behapp data was excluded. As a consequence, all time series began at midnight. If the overall 

data availability measure indicated missing data, then the channels were marked as “NaN”. Since 

missing data are handled natively by the HMM implementation we employed,18 as explained 

below, no missing data imputation was carried out on the data. 

Division into training and validation sets based on missing data and diagnostic group  

Participants were split into training and validation sets, with the training set used to train the 

model and the validation set used to investigate relationships between HMM-derived digital 

phenotypes and clinical measures. All participants with SZ, AD or SCC were assigned to the 

validation set (as well as a subset of withheld HCs), so that the HMM could be trained on HCs, 

akin to training on a reference category. To ensure that the HMM was trained on high quality 

data (i.e. time series with low levels of missingness), HCs meeting an overall data availability 

criterion of at least 90% of timepoints available across their time series were assigned to the 

training set. No minimum requirement was set for Behapp participation length, so that shorter 

time series that did not have missingness issues during data collection were still included. We 

randomly selected 15 of these high data availability HCs and retained them in the validation set, 

to allow for some amount of data availability matching between HCs in the training and 

validation sets, also increasing the number of HCs in the validation set with social and clinical 

scale measures available. The distributions of time series lengths for training and validation 

participants are provided in Figures S14 and S15 in the supplementary materials, and 

distributions of data availability are provided in Figures S10-S13. 

Overview of Hidden Markov Model 

The HMM models the observed smartphone data channels using a smaller number of hidden 

states, where each hidden state corresponds to probable values in these observed channels. 

Through time the participant then switches between different hidden states. The HMM model 

was implemented and fitted using the R package “depmixS4”.18 During model training, the 

expectation-maximization algorithm is used to maximise the expected joint log-likelihood of the 

model parameters. The depmixS4 package allows for missing values in the dataset, which means 
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that missing values are effectively omitted from the calculation of the log-likelihood. Each 

response variable (i.e. observed channel) was modelled using a multinomial distribution with an 

identity link function. This is the preferred multinomial link function in depmixS4 when no 

covariates are present, due to its computational speed. As all of the input channels were binned 

into binary bins to manage the zero-inflation, this resulted in a binomial distribution for each 

response variable.  

We investigated a range in the number of hidden states, and for each hidden state number 

ran the model ten times with different random seed initialisations. As the input data included a 

total of five channels, the possible number of hidden states used by the HMM ranged from two to 

four. Due to the small range of possible hidden states, this hyperparameter was not formally 

optimised, but selected based on observations regarding the composition of the hidden state 

sequences corresponding to each model order. After the number of hidden states was chosen, the 

HMM model using the seed which provided the highest model likelihood for this number of 

states was selected and used in subsequent analyses.  

We then applied the trained HMM to the validation dataset and generated the hidden state 

sequences corresponding to these participants’ time series using the Viterbi algorithm. Note that 

the hidden state sequence is equal in length to the observed time series. In our implementation, 

applying the trained HMM to the validation dataset does not involve retraining the model; this 

step is simply required due to the different time series lengths of the validation participants 

compared to the lengths in the training set. 

Hidden Markov Model measures 

Various probabilities reflecting each of the hidden states are learnt during model training, which 

can be used to describe the model and to understand what behaviours each of the hidden states 

are associated with. This includes emission, starting and transition probabilities:  

Emission probability:  The emission probability for each state refers to the probability that a 

hidden state corresponds to given values in each of the observed channels, and can therefore be 

used to interpret what observed behaviours each hidden state represents. A state may correspond 

to activity in some observed behavioural channels and not others, and this can be identified with 

the emission probability. 

Starting probability: The starting probability indicates the probability of beginning the sequence 

in each hidden state. If a time series often begins with the same observed values, then the hidden 

state corresponding to these values will have a high starting probability. 

Transition probability: The transition probability gives the probability of switching into another 

hidden state from each state (or the probability of staying in the same state). For example, for 

behaviours with long durations, the transition probability of staying in the associated hidden state 

may be high relative to the probability of transitioning to a non-related hidden state. 

 

Additionally, other measures can be calculated from the hidden state sequence itself. In this 

study we focus on a measure referred to as the “dwell time”: 
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Dwell time: The dwell time per hidden state, also known as fractional occupancy, gives the 

percentage of time during which a state was occupied. This can be calculated for any desired 

level of granularity, for example, for all participants together, for each participant, or for a 

specific time period. In this study the dwell time was calculated per participant in the validation 

set, as we had a single value from each scale available per participant, i.e. no repeated measures. 

As the validation set contained a range of data availability, any missing data timepoints were 

dropped from the time series before hidden state sequence generation, so that the calculation of 

dwell time only reflected the available data. 

As we used a two-state model in this study, we concentrated solely on the dwell time in 

the socially active state, and do not refer to a socially inactive dwell time in the analyses. 

 

Comparison of dwell time to social and clinical measures 

The dwell times were compared to two social measures using linear regression models: social 

functioning (SFS)26 and loneliness27 (available for participants in the PRISM study). For each of 

these scales, separate models were run for each of the diagnostic groups and one model was run 

for the combined groups. Dwell times were then compared between the different diagnostic 

groups and HCs (available for participants in both PRISM and HO) using multinomial logistic 

regression. Linear regression models were also run for clinical scales reflecting cognitive 

impairment (MMSE) and schizophrenia symptoms (PANSS) (available for the AD (and HCs) 

and SZ participants in the PRISM study respectively). In the case of PANSS scores, separate 

models were run for the total score and the subscores (positive, negative, general 

psychopathology and composite). 

For all regression models age was included as a predictor, and for the logistic regression, 

sensitivity analyses of age were also carried out for each diagnostic group, due to the broad age 

range in HCs as a consequence of age-matching to both SZ and AD. For the SZ sensitivity 

analysis, the maximum SZ participant age was used as the maximum cut-off age for HCs, and for 

AD and SCC each respective minimum participant age was used as the minimum cut-off age for 

HCs. Binomial logistic regression models were then run for each diagnostic group compared to 

improved age-matched HCs. 
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Data availability 

The datasets analysed during the current study are available from the corresponding author on 

reasonable request. 

Code availability 

All scripts used in the analyses are available at https://github.com/predictive-clinical-

neuroscience/HMM_Digital_Phenotyping 
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Tables 

Table 1: Demographics of each of the diagnostic groups.  

Diagnostic group Number Age 

(Mean ± 

std) 

Gender Dataset Country Education 

years (Mean ± 

std) 

Healthy control 247 59 ± 13 F=140; 

M=107 

PRISM=28; 

HO=219 

NL=234; 

ES=13 

6 ± 4 

Schizophrenia 18 31* ± 6 F=7; 

M=11 

PRISM=18; 

HO=0 

NL=12; 

ES=6 

15 ± 3 

Alzheimer’s 

disease 

26 67* ± 7 F=10; 

M=16 

PRISM=19; 

HO=7 

NL=18; 

ES=8 

13 ± 7 

Healthy/subjective 

cognitive 

complaints 

57 61 ± 7 F=36; 

M=21 

PRISM=0; 

HO=57 

NL=57 5 ± 2 

*Statistically significant difference in age from HCs. std: standard deviation; F: female, M: 

male; NL: the Netherlands, ES: Spain.  

 

Table 2: Results from linear regression models predicting SFS score from dwell time; each row 

corresponds to a different model for different group-based splits of the validation set.  

Group Coefficient Standard 

error 

t value p-value FDR corrected 

p-value 

All validation 

participants (n=49) 

0.1148 0.0683 1.6793 0.0999 0.3995 

Healthy control 

(from validation set) 

(n=12)  

0.1248 0.0262 4.7647 0.0010 0.0041* 

Schizophrenia  

(n=18) 

0.1291 0.1078 1.1977 0.2496 0.9985 

Alzheimer’s disease 

(n=19) 

-0.2676 0.1049 -2.5500 0.0214 0.0856 
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Table 3: Results from a multinomial logistic regression model predicting diagnostic group 

(versus healthy controls (n=156)) using dwell time (age was also included as a predictor). 

Group Coefficient Standard 

error 

Odds Wald 

statistic 

p-value FDR 

corrected 

p-value 

Schizophrenia 

(n=18) 

-0.0107 0.0164 0.9894 -

0.6544 

0.5129 1.0000 

Alzheimer’s 

disease (n=26) 

-0.0560 0.0142 0.9455 -

3.9474 

0.0001* 0.0002* 

Healthy/subjective 

cognitive 

complaints  (n=57) 

-0.0165 0.0081 0.9836 -

2.0347 

0.0419* 0.1256 

 

Table 4: Results from linear regression models predicting MMSE score from dwell time; each 

row corresponds to a different model for different group-based splits of the validation set. 

Group Estimate Standard 

error 

t value p-value FDR corrected 

p-value 

All validation 

participants (n=31) 

0.0610 0.0206 2.9696 0.0061 0.0182* 

Healthy control 

(from validation 

set) (n=12) 

0.0139 0.0107 1.3008 0.2256 0.6769 

Alzheimer’s 

disease (n=19) 

0.0603 0.0339 1.7780 0.0944 0.2832 
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