Proteome-wide autoantibody screening and holistic autoantigenomic analysis unveil COVID-19 signature of autoantibody landscape

3

4	Kazuki M Matsuda, MD, PhD, ^{1*} Yoshiaki Kawase, PhD, ^{2*} Kazuhiro Iwadoh, MD,
5	PhD, ¹ Makoto Kurano, MD, PhD, ³ Yutaka Yatomi, MD, PhD, ⁴ Koh Okamoto, MD, MS,
6	PhD, ⁵ Kyoji Moriya, MD, PhD, ^{5,6} Hirohito Kotani, ¹ MD, PhD, ¹ Teruyoshi Hisamoto,
7	MD, PhD, ¹ Ai Kuzumi, MD, PhD ¹ , Takemichi Fukasawa MD, PhD ^{1,7} , Asako
8	Yoshizaki-Ogawa, MD, PhD ¹ , Masanori Kono, MD, PhD, ⁸ Tomohisa Okamura, MD,
9	PhD, ⁸ Hirofumi Shoda, MD, PhD, ⁸ Keishi Fujio, MD, PhD, ⁸ Kei Yamaguchi, PhD, ⁹
10	Taishi Okumura, ⁹ Chihiro Ono, ⁹ Yuki Kobayashi, PhD, ⁹ Ayaka Sato, ⁹ Ayako Miya, ⁹
11	PhD, Naoki Goshima, PhD, ⁹ Rikako Uchino, ¹⁰ Yumi Murakami, PhD, ¹⁰ Hiroshi
12	Matsunaka, PhD, ¹⁰ Hiroshi Imai, PhD, ² Shinichi Sato, MD, PhD, ¹ Rudy Raymond,
13	PhD, ² Ayumi Yoshizaki, MD, PhD ^{1,7#}
14	
15	1. Department of Dermatology, The University of Tokyo Graduate School of Medicine,
16	Tokyo, Japan

- 17 2. Department of Computer Science, The University of Tokyo Graduate School of
- 18 Information Science and Technology, Tokyo, Japan

- 19 3. Department of Clinical Laboratory Medicine, The University of Tokyo Graduate
- 20 School of Medicine, Tokyo, Japan
- 21 4. Graduate School, International University of Health and Welfare, Tokyo, Japan
- 22 5. Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
- 23 6. Division of Infection Prevention and Control, Postgraduate School of Healthcare,
- 24 Tokyo Healthcare University, Tokyo, Japan
- 25 7. Department of Clinical Cannabinoid Research, The University of Tokyo Graduate
- 26 School of Medicine, Tokyo, Japan
- 27 8. Department of Allergy and Rheumatology, The University of Tokyo Graduate
- 28 School of Medicine, Tokyo, Japan
- 29 9. ProteoBridge Corporation, Tokyo, Japan
- 30 10. NOV Academic Research, TOKIWA Pharmaceutical Co., Ltd., Tokyo, Japan
- 31
- 32 * Equally contributed.
- 33

34

35 **# Corresponding authors**

- 36 Ayumi Yoshizaki, MD, PhD
- 37 Department of Dermatology and Department of Clinical Cannabinoid Research, The
- 38 University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo,
- **39** Japan, 1138655
- 40 Phone: +81-3-3815-5411
- 41 ORCID: 0000-0002-8194-9140
- 42 E-mail: <u>ayuyoshi@me.com</u>
- 43 _____

44 Abstract

45	This study presents "aUToAntiBody Comprehensive Database (UT-ABCD)", a
46	proteome-wide catalog of autoantibody profiles in 284 human individuals. The subjects
47	included patients diagnosed with Coronavirus disease 2019 (COVID-19), systemic
48	sclerosis (SSc), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic
49	antibody-associated vasculitis (AAV), atopic dermatitis (AD), as well as healthy
50	controls (HC). Our investigation employed proteome-wide autoantibody screening
51	(PWAS) that utilizes 13,350 autoantigens displayed on wet protein arrays, covering
52	approximately 90% of the human transcriptome. Our findings demonstrated significant
53	elevation of autoantibody levels in COVID-19, SSc, and SLE patients. Unique sets of
54	disease-specific autoantibodies were identified, highlighting the role of autoantibodies
55	against proteins associated with cytokine signaling in immune systems and viral
56	infection pathways. Employing machine learning, we distinguished COVID-19 cases
57	with high accuracy based on autoantibody profiles, notably identifying antibodies
58	against proteins encoded by BCORP1 and KAT2A as highly specific to COVID-19.
59	Longitudinal analysis revealed dynamic changes in autoantibody levels throughout the
60	course of COVID-19, independent of disease severity. Our research highlights the
61	effectiveness of integrating PWAS and autoantigenomics in exploring immune

- 62 responses in COVID-19 and other diseases. It provides a deeper understanding of the
- 63 autoimmunity landscape in human disorders and introduces a new bioresource for
- 64 further investigation.

65

66 Introduction

67	Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe
68	acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ¹ has brought a global
69	pandemic since early 2020 with threat on human health and public safety throughout the
70	world. ² The pathophysiology of COVID-19 is characterized by multiple organ injuries
71	triggered by excessive immune response. ^{3,4} Cytokine storm in the lung causes acute
72	respiratory distress syndrome, which leads to hypoxemia, respiratory failure,
73	requirement of ventilation, and even death. One of the biggest challenges in clinical
74	management of COVID-19 patients lies in accurately identifying and categorizing cases
75	at higher risk of such serious clinical course. Known risk factors include older age, male
76	gender, smoking, diabetes, obesity, hypertension, immunodeficiency, and
77	malignancies. ⁵

Humoral immunity plays pivotal roles in COVID-19. Although dramatic success of mRNA vaccines and SARS-CoV-2 neutralizing monoclonal antibodies in preventing serious illnesses, accumulating evidence have suggested the vicious roles of dysregulated humoral immunity. As well as earlier work linking anti-cytokine antibodies to mycobacterial, staphylococcal and fungal diseases,^{6,7} autoantibodies against cytokines have been described in COVID-19.⁸ Especially, anti-type I Interferon

84	antibodies distinguished ~10% of life-threatening pneumonia and ~20% of deaths from
85	COVID-19.9-11 A high-throughput screening by yeast display of the secretome further
86	revealed the presence of autoantibodies against several immune factors, including
87	chemokines. ¹² In addition, autoantibodies characteristic of systemic autoimmune
88	disorders, such as anti-phospholipid antibodies, anti-nuclear antibodies and rheumatoid
89	factor, were reported in COVID-19.13 More recently, association between COVID-19
90	severity and autoantibodies targeting G protein-coupled receptors and renin-angiotensin
91	system-related proteins has been reported. ¹⁴
92	To comprehensively understand such clinical significance of autoantibodies in

93	human diseases including COVID-19, high-precision autoantibody measurement with a
94	proteome-wide scale is necessary. Herein, we engaged our unique technology for
95	proteome-wide autoantibody screening (PWAS) that covers approximately 90% of the
96	human transcriptome, ^{15–17} in the serum samples derived from individual patients. Our
97	pipeline integrates human cDNA library (HuPEX), ¹⁸ a wheat germ cell-free system for
98	high-throughput <i>in vitro</i> protein synthesis, ^{19–21} and technology for manipulating protein
99	arrays kept in moist conditions during the entire handling process, ²² namely wet protein
100	arrays (WPAs). We have applied this method in multiple inflammatory or malignant
101	disorders for validating its potential for illustrating the "autoantibody landscape" of

102	human disorders, which revealed its usefulness for holistic evaluation of disease-related
103	autoantibodies, ¹⁷ developing novel biomarkers, ¹⁵ and moreover, investigating unknown
104	pathophysiology driven by autoantibodies. ¹⁶
105	Our aim was to demonstrate the utility of our omics-based methodology for
106	autoantibody evaluation and data interpretation procedure, so-called "autoantigenomics,"
107	targeting COVID-19. In 2020, Moritz et al. defined autoantigenomics as a branch of
108	systems immunology, which holistically analyze the repertoire of autoantibodies
109	engaging omics-based bioinformatical approaches including hierachical cluster analysis,
110	enrichment analysis, and machine learning. ²³ The concept of autoantigenomics stand on
111	hypotheses that there might be differences in the sets of targeted antigens underlying
112	intra-disease heterogeneity in human, which would be supported by our novel data
113	shown below.

114

115 **Results**

116 *Overview*

117	We recruited 73 patients with COVID-19, 32 patients with systemic sclerosis
118	(SSc), 60 patients with systemic lupus erythematosus (SLE), 29 patients with
119	anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV), 26 patients with
120	atopic dermatitis (AD), and 64 healthy controls (HC) for serum sample collection
121	(Supplementary Table 1). For each individual serum, PWAS was performed (Fig. 1).
122	The digest of the results will be available as "aUToAntiBody Comprehensive Database
123	(UT-ABCD)". We found that sum of autoantibody levels (SAL) was significantly
124	elevated in patients with COVID-19, SSc, or SLE, compared to HCs, while there was
125	no statistically significant difference in SAL between AD or AAV patients and HCs
126	(Fig. 2A). This tendency was consistent across both gender and age groups.
127	(Supplementary Fig. 1).
128	

129 Identification of disease-specific autoantibodies

We identified distinct sets of autoantibodies that showed a more than twofold
significant increase in each disease condition relative to HCs (Fig. 2B). Notably, certain
autoantibodies were unique to each disease (Fig. 2C). To illustrate the variability in

133	serum levels of these disease-specific autoantibodies across individuals, we utilized
134	uniform manifold approximation and projection (UMAP), resulting in distinctive
135	patterns on the UMAP plots for each condition (Fig. 2D). Gene ontology analysis
136	linked to the genes responsible for the proteins targeted by such disease-specific
137	autoantibodies pointed to shared biological functions, with a focus on viral infection
138	pathways and cytokine signaling in immune system, in COVID-19, SLE, and AAV (Fig.
139	2E and 2F). Holistic analysis of autoantibodies targeting cytokines, or their receptors
140	displayed on our WPAs revealed that strong positivity for autoantibodies targeting type
141	1 interferon was specifically observed in COVID-19 patients, while weak positivity was
142	seen in SLE patients (Supplementary Fig. 2).

143

144 Selection of machine learning frameworks

To further investigate the association between autoantibody profiles and COVID-19, we adopted a machine learning approach. We tested nine different methods to differentiate COVID-19 cases from the others: simple linear regression, Ridge regression, logistic regression with data normalization, logistic regression with data standardization, support vector machine with data normalization, support vector machine with data standardization, light gradient boosting machine (LightGBM), and

151	extremely gradient boosting decision trees (XGBoost). As a result, XGBoost showed
152	the highest value of the area under the receiver-operator characteristics curve for
153	distinction of COVID-19 cases from the others (Supplementary Table 2).
154	Consequently, we opted to focus on this method for our subsequent analysis.
155	

156 Performance of XGBoost

157 In our subsequent analysis using the entire dataset, we experimented with 158 binary (COVID-19 vs. others), ternary (mild COVID-19 vs. moderate to severe 159 COVID-19 vs. others), and multiclass (mild COVID-19 vs. moderate to severe 160 COVID-19 vs. AAV vs. AD vs. SSc vs. SLE vs. HCs) classifications through XGBoost. 161 The most significant autoantibodies identified across all models are depicted in Fig. 3A, 162 **3B**, and **3C**, with autoantibodies against translational products from *BCL6 Corepressor* 163 Pseudogene 1 (BCORP1) emerging as a top feature in every model. Similarly, 164 antibodies against K-Acetyltransferase 2A (KAT2A) were consistently prominent. 165 Notably, Anti-BCORP1 and anti-KAT2A Abs were highlighted as important items in 166 all the candidate machine learning methods tested (Supplementary Fig. 3). There was a correlation between anti-BCORP Abs and anti-KAT2A Abs as illustrated in Fig. 3D, 167 168 3E, and 3F. Remarkably, established serum markers for SSc and SLE, such as

169	anti-topoisomerase 1 (TOP1) Abs, anti-centromere protein-B (CENPB) Abs,
170	anti-tripartite motif-containing protein 21 (TRIM21) Abs, anti-small nuclear
171	ribonucleoprotein polypeptide (SNRP)-A Abs, and anti-SNRPB Abs, were also
172	identified. The visualization of mean serum levels of these prominent markers through
173	spider charts revealed distinctive patterns across the different conditions (Fig. 3G, 3H,
174	and 3I). The models incorporating these markers as features achieved the highest
175	accuracy in both binary and ternary classifications and showed significantly better
176	outcomes than chance in the complex seven-class classification (Supplementary Table
177	3).

178

179 Clinical relevance of autoantibodies

The serum levels of the top 20 autoantibodies highlighted through multi-class classification for each participant were depicted in a heatmap (**Fig. 4A**). Hierarchical clustering identified three unique groups of autoantibodies: cluster I, which included two autoantibodies highly specific to COVID-19 (anti-BCORP1 and anti-KAT2A Abs); cluster II, comprising autoantibodies that are commonly elevated across various conditions; and cluster III, involving well-established biomarkers for SSc and SLE. Principal component analysis (PCA) effectively distinguished between seven categories

187	(Fig. 4B), particularly using principal component (PC) 2 as an indicator for COVID-19
188	(Fig. 4C). Correspondingly, antibodies against BCORP1 and KAT2A constituted the
189	predominant contribution to PC2 (Fig. 4D). Serum levels of anti-BCORP1 and
190	anti-KAT2A Abs were prominently elevated in COVID-19, along with a part of cases
191	with SLE (Fig. 4E and 4F). This trend was consistent among both sex and age groups
192	(Supplementary Fig. 4). We also explored the link between COVID-19 clinical
193	outcomes and the presence of anti-BCORP1 or anti-KAT2A Abs. Applying a threshold
194	set at the mean plus two standard deviations above healthy controls (indicated by the
195	red dashed lines in Fig. 4B and 4C), we identified 61 of the 73 total COVID-19 cases
196	as having elevated levels of anti-BCORP1Abs and 34 cases with elevated levels of
197	anti-KAT2A Abs. While no significant association was found between elevated
198	anti-BCORP1 Abs and clinical features (Supplementary Table 4), elevation of
199	anti-KAT2A Abs was significantly linked to a reduced need for intensive care,
200	including intubation and mechanical ventilation (odds ratio = 0.19, $P = 0.02$;
201	Supplementary Table 5).

202

203 *Time course of autoantibody levels during COVID-19*

204	Finally, we conducted longitudinal analysis of the humoral immune response in
205	COVID-19 patients targeting paired serum samples from an "early" timepoint (within
206	10 days after symptoms began) and a "late" timepoint (11-20 days after symptom onset)
207	from 41 individuals. These samples were used for PWAS and for assessing IgG levels
208	against SARS-CoV-2 particles: the nucleocapsid protein (N), spike protein (S), and the
209	receptor binding domain (RBD) of S. Consistent with our prior findings, early timepoint
210	samples showed IgG against N, S, and RBD in only a small part of the patients, with a
211	marked increase in most patients by the late timepoint (Fig. 5A). To the contrary, SAL
212	remained unchanged over time (Fig. 5B). Further exploration revealed a significant
213	decrease in 293 autoantibodies and increase in 116 autoantibodies over the course of the
214	infection, including those targeting BCORP1 and KAT2A (Fig. 5C and 5D). There was
215	no observed correlation between these autoantibodies and IgG levels against N, S, and
216	RBD (Fig. 5E). Notably, both anti-BCORP1 and anti-KAT2A Ab levels rose over time
217	independent of disease severity (Fig. 5F). Additional analysis did not find any
218	correlation between these two autoantibodies and IgG targeting N, S, and RBD at either
219	timepoint or their progression over time (Fig. 5G and 5H).
220	

221 Discussion

222	Herein we conducted PWAS subjecting serum samples derived from HCs and
223	patients with COVID-19, AD, AAV, SLE, and SSc (Fig. 1). We demonstrated that our
224	PWAS methodology enables us to identify disease-specific autoantibodies (Fig. 2A, 2B,
225	and 2C), which demonstrate the distinct distribution of autoantibodies and common
226	biological processes among different conditions (Fig. 2D, 2E, and 2F). The contrast in
227	autoantibody profiles was accentuated through the application of a machine learning
228	approach, particularly leveraging the XGBoost framework (Fig. 3 and 4). We also
229	investigated the longitudinal change of autoantibody profiles along with the time course
230	of COVID-19 and its correlation with emergence of antibodies targeting COVID-19
231	particles (Fig. 5). Collectively, these results supported our hypothesis that the
232	combination of PWAS and omics-based bioinformatic methodologies is adaptable to
233	human disorders including COVID-19. Additionally, our findings in this study as well
234	as our previous works provide a comprehensive catalog of autoantibody profiles in
235	various diseases and open the door to creating innovative diagnostic methods that can
236	differentiate between various disease mechanisms affecting multiple organs, utilizing
237	distinct autoantibody patterns measured by WPAs. ^{15,17}

238	The machine learning-based approach has discovered that the presence of
239	anti-BCORP1 antibodies is highly specific to COVID-19 (Fig. 4E). Despite BCORP1
240	being categorized as a pseudogene, it appears to undergo transcription into mRNA, as
241	several transcriptomic studies have reported the presence of BCORP1-derived
242	sequences. ^{24,25} Especially, Deng MC's research has shown that the transcription levels
243	of BCORP1 in peripheral blood mononuclear cells of COVID-19 patients correlate with
244	early functional recovery and 1-year survival. ²⁵ However, it remains unclear whether
245	BCORP1 mRNA is translated into functional proteins, and further investigation is
246	needed in this regard. Moreover, our discovery of anti-BCORP1 Abs in both males and
247	females raises questions, as BCORP1 is located on the Y chromosome. This leads us to
248	consider the possibility of cross-reactivity of these antibodies against foreign antigens,
249	such as proteins comprising SARS-CoV-2 virions. However, we could not find any
250	correlation between serum levels of anti-BCORP1 Abs and antibodies targeting
251	SARS-CoV-2 particles at any of the timepoints examined, nor in their changes over
252	time (Fig. 5G). Another hypothesis is cross-reaction between the antigen we produced
253	from BCORP1 cDNA and other human proteins. The BCL2 co-repressor (BCOR) gene,
254	the counterpart of BCORP1 found on the X chromosome, has a nucleotide sequence that
255	is over 99% identical to BCORP1. It is conceivable that the BCOR protein is the actual

target of the detected anti-BCORP1 Abs in our study. However, this theory remains
unconfirmed as our cDNA library did not include *BCOR* cDNA to validate this
hypothesis.

259 Anti-KAT2A antibodies were also found to be specifically elevated in the sera of COVID-19 patients (Fig. 4F). Like anti-BCORP1 Abs, the levels of anti-KAT2A 260 261 Abs increased over the course of COVID-19 but were not correlated to antibodies 262 targeting SARS-CoV-2 particles (Fig. 5H). This observation indicates that 263 autoantibodies to KAT2A emerge because of autoantigen exposure due to tissue 264 damage triggered by COVID-19, not as a reflection of cross-reaction between 265 SARS-CoV-2 virions. KAT2A functions as a histone acetyltransferase that plays a role 266 in the epigenetic regulation of the genome by modifying chromatin structures. There is 267 notable research by John K. et al., indicating that the SARS-CoV-2 ORF8 protein 268 mimics the histone H3's ARKS motifs, which interfere with the role of KAT2A role in host cell epigenetic regulation.²⁶ Intriguingly, patients who did not show an increase in 269 270 anti-KAT2A antibodies were more often those requiring intensive care and mechanical 271 ventilation (Supplementary Table 5). This observation has led to the proposition that 272 the presence of anti-KAT2A Abs could be indicative of an effective immune response 273 to the virus by KAT2A upregulation, a hypothesis that warrants further research.

274	Our study has multiple strengths. First, the wheat-germ in vitro protein
275	synthesis system and technique for manipulation of WPAs realized high-throughput
276	expression of various human proteins including exoproteome upon a single platform.
277	Second, as a result, our autoantibody measurement could cover a wider range of
278	antigens at an almost proteome-wide level, which enabled us to apply omics-based
279	bioinformatical approaches for interpreting the data. Third, we investigated the
280	longitudinal change of autoantibody profiles within COVID-19 patients, along with the
281	measurement of antibodies targeting SARS-CoV-2 particles. The limitation of our
282	present study includes its retrospective design and a relatively small number of the
283	subjects. Furthermore, we could not distinguish whether the autoantibodies found in our
284	measurement were predisposed before COVID-19 or newly appeared after infection. In
285	addition, functional assays for the autoantibodies such as neutralizing assays or in vivo
286	studies are lacking. Therefore, insights into the direct contribution of each autoantibody
287	to the pathophysiology of COVID-19 are limited. Our next challenges would include
288	collecting serum samples before and after COVID-19 by accessing to population-based
289	cohorts, evaluating the function of each autoantibody against their target molecules, and
290	testing their contribution to the pathogenesis in animal experiments.
291	

292 References

293	1.	Grp, C. S. & Version, P. The species Severe acute respiratory syndromerelated
294		coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol.
295		5, 5346–544 (2020).
296	2.	Hu, B., Guo, H., Zhou, P. & Shi, ZL. Characteristics of SARS-CoV-2 and
297		COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).
298	3.	Mehta, P. et al. COVID-19: consider cytokine storm syndromes and
299		immunosuppression. Lancet 295, 1033–1034 (2020).
300	4.	Huang, C. et al. Clinical features of patients infected with 2019 novel
301		coronavirus in Wuhan, China. Lancet 395 , 497–506 (2020).
302	5.	Dessie, Z. G. & Zewotir, T. Mortality related risk factors of COVID 19: a
303		systematic review and meta analysis of 42 studies and 423,117 patients. BMC
304		Infect. Dis. 21, 855 (2021).
305	6.	Puel, A., Bastard, P., Bustamante, J. & Casanova, JL. Human autoantibodies
306		underlying infectious diseases. J. Exp. Med. 219, e20211387 (2022).
307	7.	Cheng, A. & Holland, S. M. Anti-cytokine autoantibodies: mechanistic insights
308		and disease associations. Nat. Rev. Immunol. (2023)

doi:10.1038/s41577-023-00933-2.

310	8.	Muri, J. et al. Autoantibodies against chemokines post-SARS-CoV-2 infection
311		correlate with disease course. Nat. Immunol. 24, 604-611 (2023).
312	9.	Bastard, P. et al. Autoantibodies against type I IFNs in patients with
313		life-threatening COVID-19. Science (80). 370, (2020).
314	10.	Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of
315		uninfected individuals over 70 years old and account for ~20% of COVID-19
316		deaths. Sci. Immunol. 6, (2021).
317	11.	Eto, S. et al. Neutralizing Type I Interferon Autoantibodies in Japanese Patients
318		with Severe COVID-19. J. Clin. Immunol. 42, 1360–1370 (2022).
319	12.	Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19.
320		<i>Nature</i> 595 , 283–288 (2021).
321	13.	Chang, S. E. et al. New-onset IgG autoantibodies in hospitalized patients with
322		COVID-19. Nat. Commun. 12, 5417 (2021).
323	14.	Cabral-marques, O. et al. Autoantibodies targeting GPCRs and RAS-related
324		molecules associate with COVID-19 severity. Nat. Commun. 13, 1220 (2022).
325	15.	Matsuda, K. M. et al. Autoantibody Landscape Revealed by Wet Protein
326		Array : Sum of Autoantibody Levels Re fl ects Disease Status. Front. Immunol.

327 13, 1–14 (2022).

328	16.	Matsuda, K. M., Kotani, H., Yamaguchi, K., Okumura, T. & Fukuda, E.
329		Significance of anti-transcobalamin receptor antibodies in cutaneous arteritis
330		revealed by proteome-wide autoantibody screening. J. Autoimmun. 135, 102995
331		(2023).
332	17.	Kuzumi, A. et al. Comprehensive autoantibody profiling in systemic
333		autoimmunity by a highly-sensitive multiplex protein array. Front. Immunol. 14,
334		(2023).
335	18.	Goshima, N. et al. Human protein factory for converting the transcriptome into
336		an in vitro-expressed proteome. Nat. Methods 5, 1011–1017 (2008).
337	19.	Sawasaki, T., Ogasawara, T., Morishita, R. & Endo, Y. A cell-free protein
338		synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. U. S. A.
339		99 , 14652–14657 (2002).
340	20.	Sawasaki, T. et al. A bilayer cell-free protein synthesis system for
341		high-throughput screening of gene products. FEBS Lett. 514, 102–105 (2002).
342	21.	Endo, Y. & Sawasaki, T. Cell-free expression systems for eukaryotic protein
343		production. Curr. Opin. Biotechnol. 17, 373–380 (2006).

344	22.	Fukuda, E. et al. Identification and characterization of the antigen recognized by
345		the germ cell mAb TRA98 using a human comprehensive wet protein array.
346		Genes to Cells 26, 180–189 (2021).
347	23.	Moritz, C. P. et al. Autoantigenomics: Holistic characterization of autoantigen
348		repertoires for a better understanding of autoimmune diseases. Autoimmun. Rev.
349		19 , 102450 (2020).
350	24.	Fagerberg, L. et al. Analysis of the human tissue-specific expression by
351		genome-wide integration of transcriptomics and antibody-based proteomics. Mol.
352		Cell. Proteomics 13, 397–406 (2014).
353	25.	Deng, M. C. Multi-dimensional COVID-19 short- and long-term outcome
354		prediction algorithm. Expert Rev. Precis. Med. drug Dev. 5, 239–242 (2020).
355	26.	Kee, J. et al. SARS-CoV-2 disrupts host epigenetic regulation via histone
356		mimicry. <i>Nature</i> 610 , 381–388 (2022).
357	27.	Yamakawa, K. et al. Japanese rapid/living recommendations on drug
358		management for COVID [] 19: updated guidelines (July 2022). Acute Med. Surg.

359 9, 1–21 (2022).

360	28.	Nakano, Y. et al. Time course of the sensitivity and specificity of
-----	-----	---

- anti-SARS-CoV-2 IgM and IgG antibodies for symptomatic COVID-19 in Japan.
- 362 *Sci. Rep.* **11**, 1–10 (2021).
- 363 29. Qian, C. et al. Development and multicenter performance evaluation of fully
- automated SARS-CoV-2 IgM and IgG immunoassays. *Clin. Chem. Lab. Med.* 58,
- **365** 1601–1607 (2020).
- 366 30. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis
- 367 of systems-level datasets. *Nat. Commun.* **10**, 1523 (2019).
- 368

369

370 Materials and Methods

371 Human subjects

372	We consecutively enrolled patients administered to our institution for
373	COVID-19 from April 2020 to April 2021. Inclusion criteria were a SARS-CoV-2
374	positive nasopharyngeal swab test by real-time reverse transcription-polymerase chain
375	reaction (RT-PCR) and age \geq 18 years. Clinical data were collected by retrospective
376	review of electric medical records. We gathered basic patient information, symptoms,
377	medications, histopathologic features, and laboratory findings from the closest time
378	point from the date of serum collection. The disease severity was assessed following the
379	Japanese guideline for managing COVID-19 patients. ²⁷ In brief, individuals requiring
380	intensive care or mechanical ventilation were categorized as severe COVID-19, those
381	exhibiting hypoxemia among the remaining cases were classified as moderate to severe
382	COVID-19, and all other patients were considered to have mild COVID-19. We also
383	gathered serum samples from HCs and patients with AD, AAV, SLE, and SLE. This
384	study has been approved by The University of Tokyo Ethical Committee (Approval
385	number 0695). Written informed consent has been obtained from all the participants.
386	

387 Measurement of IgG targeting SARS-CoV-2 particles

388	The process of quantifying IgG antibodies that target specific SARS-CoV-2
389	proteins, namely the nucleocapsid protein, spike protein, and the spike protein's
390	receptor binding domain, was conducted as outlined previously using a commercial
391	SARS-CoV-2 IgG kit (YHLO Biotechnology Company, Ltd., Shenzhen, China). ^{28,29}
392	This involved an assay where serum samples were combined with magnetic beads
393	coated with the viral proteins and a substance to prepare the samples. This mix was then
394	washed, combined with an acridinium-conjugated anti-human IgG, and washed again.
395	The subsequent steps included adding solutions to induce a chemiluminescent reaction,
396	the intensity of which was measured by the iFlash3000 CLIA analyzer (YHLO
397	Biotechnology Company, Ltd.) A threshold of 10 AU/mL was used for the detection,
398	following the guidelines provided by the manufacturer.
399	
400	Autoantibody measurement
401	WPAs were arranged as previously described. ¹⁵ First, proteins were
402	synthesized in vitro utilizing a wheat germ cell-free system from 13,350 clones of the
403	HuPEX. ¹⁸ Second, synthesized proteins were plotted onto glass plates (Matsunami
404	Glass, Osaka, Japan) in an array format by the affinity between the GST-tag added to
405	the N-terminus of each protein and glutathione modified on the plates. The WPAs were

406	treated with human serum diluted by 3:1000 in the reaction buffer containing 1x
407	Synthetic block (Invitrogen), phosphate-buffered saline (PBS), and 0.1% Tween 20.
408	Next, the WPAs were washed, and goat anti-Human IgG (H+L) Alexa Flour 647
409	conjugate (Thermo Fisher Scientific, San Jose, CA, USA) diluted 1000-fold was added
410	to the WPAs and reacted for 1 hour at room temperature. Finally, the WPAs were
411	washed, air-dried, and fluorescent images were acquired using a fluorescence imager
412	(Amersham Typhoon, Cytiva, Marlborough, MA, USA). Fluorescence images were
413	analyzed to quantify serum levels of autoantibodies targeting each antigen, following
414	the formula shown below:

Autoantibody level [AU] =
$$\frac{F_{autoantigen} - F_{negative \ control}}{F_{positive \ control} - F_{negative \ control}} \times 100$$

- *AU*: arbitrary unit
- *F*_{autoantigen}: fluorescent intensity of autoantigen spot
- *F*_{negative control}. fluorescent intensity of negative control spot
- *F* positive control. fluorescent intensity of positive control spot

421 Machine learning

422	We applied supervised machine learning techniques using the Python code
423	with the scikit-learn library to analyze the measurement data for autoantibodies from
424	284 patients. At random forest, decision trees were built and trained in parallel on
425	subsets of sampled instances and features. Meanwhile, at XGBoost decision trees were
426	built sequentially to improve each other. The final prediction of the random forest was
427	the majority of its decision trees, while that of XGBoost was from their weighted
428	average. The performance of the classifiers was evaluated in area under the
429	operator-receiver characteristics curve (AUC), accuracy, precision, recall, and F1-score,
430	calculated by 5-fold cross validation. The accuracy is the ratio of the correct positive
431	and negative prediction, the precision is the ratio of the correct positive prediction, the
432	recall (or, sensitivity) is the ratio of the correct positive prediction among all true
433	positive instances, and F1-score is the harmonic mean of precision and sensitivity.

434

435 Statistical analysis

436 Differentially elevated autoantibodies were defined as more than 2-fold 437 changes in the serum levels with a P value < 0.01. Gene Ontology Analysis using 438 web-based tools targeted the list of the entry clones coding the differentially highlighted 439 autoantigens was performed for gene-list enrichment analysis, gene-disease association

- 440 analysis, and transcriptional regulatory network analysis with Metascape.³⁰ Other data
- 441 analyses and presentations were conducted using Stata IC/15.0 (StataCorp, TX, USA).

442

443 Data visualization

Box plots, scatter plots, hierarchical clustering and correlation matrix were visualized by using R (v4.2.1). Box plots were defined as follows: the middle line corresponds to the median; the lower and upper hinges correspond to the first and third quartiles; the upper whisker extends from the hinge to the largest value no further than 1.5 times the interquartile range (IQR) from the hinge; and the lower whisker extends from the hinge to the smallest value at most 1.5 times the IQR of the hinge.

451 Acknowledgements

452	We thank Ms. Maiko Enomoto and her colleagues for secretary work. We
453	thank Ms. Teruko Tani and Ms. Mayumi Odagiri for their assistance in clinical data
454	collection. We appreciate Ms. Maiko Matsuda, VESPER Studio Inc., Tokyo, Japan, for
455	her contribution of illustrating skills.
456	

457 Author Contributions

458	KM Matsuda primarily engaged in autoantibody measurement, clinical data
459	collection, data analysis, visualization, and writing the first draft of the manuscript. Y
460	Kawase primarily contributed to machine learning analysis. K Iwadoh also participated
461	in machine learning analysis. M Kurano, Y Yatomi, K Okamoto, and K Moriya
462	participated in sample collection and clinical data acquisition regarding COVID-19. H
463	Kotani, A Kuzumi, T Fukasawa, A Yoshizaki-Ogawa took part in the sample collection
464	of SSc. T Hisamoto was in charge of sample collection of AD. M Kono, T Okamura, H
465	Shoda, and K Fujio oversaw sample collection of SLE. K Yamaguchi, T Okumura, C
466	Ono, Y Kobayashi, A Sato, A Miya, and N Goshima prepared wet protein arrays,
467	provided technical assistance for autoantibody measurement, participated in data
468	analysis, setup of UT-ABCD, and revised the manuscript. R Uchino, Y Murakami and
469	H Matsunaka provided technical assistance for autoantibody measurement. H Imai and
470	R Raymond supervised the study. S Sato conceptualized and supervised the study. A
471	Yoshizaki conceptualized, launched, and supervised this study, and was involved in
472	revising the manuscript.
473	

474 Conflict-of-interest statement

475	K Yamaguchi, T Okumura, C Ono, Y Kobayashi, A Miya, A Sato, and N
476	Goshima were employed by ProteoBridge Corporation. T Fukasawa and A Yoshizaki
477	belong to the Social Cooperation Program, Department of Clinical Cannabinoid
478	Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan,
479	supported by Japan Cosmetic Association and Japan Federation of Medium and Small
480	Enterprise Organizations. T Okamura belongs to the Social Cooperation Program,
481	Department of Functional Genomics and Immunological Diseases, The University of
482	Tokyo Graduate School of Medicine, Tokyo, Japan, supported by Chugai
483	Pharmaceutical Corporation. The remaining authors declare that the research was
484	conducted in the absence of any commercial or financial relationships that could be
485	construed as a potential conflict of interest.
486	

487

Figure legends

Figure 1. Scheme of PWAS pipeline.

In the first step, proteins were synthesized *in vitro* from the proteome-wide human cDNA library (HuPEX). Promotors (P), Enhancers (E), and FLAG-GST tags were fused to open reading frames of the expression clones by Gateway LR reaction. After polymerase chain reaction amplification and *in vitro* transcription, translation was performed using the wheat germ cell-free synthesis system. In the second step, we prepared WPAs by plotting synthesized proteins onto glass slides in an array format. WPAs were treated with serum samples derived from diseased patients or HCs. Autoantibodies were detected by fluorochrome-conjugated anti-human IgG Ab. In the third step, autoantibody quantification was performed based on the fluorescent values. Analysis of acquired high-dimensional autoantibody profiles was conducted by multiple omics-based approaches. ORF: open reading frame.

(A) Box plots that show SAL in each condition. NS: P > 0.01, *: P < 0.01, ***: P < 0.01

Figure 2. Identification of disease-specific autoantibodies.

0.0001. (**B**) Volcano plots that illustrate differentially elevated autoantibodies within each condition. Red horizontal dash lines indicate P values = 0.01. Red vertical dash lines indicate Log2 Fold Change (Disease/HC) = ±1. (C) Venn diagram that demonstrates the subsumptions among disease-specific autoantibodies. (**D**) UMAP plot that illustrates the distribution of disease-specific autoantibody profiles of each individual. (**E**) Heat map that shows the result of enrichment analysis targeting the genes responsible for the proteins targeted by such disease-specific autoantibodies. (**F**) Circos plot that depicts the overlap of the gene lists responsible for the proteins targeted by the disease-specific autoantibodies at the biological function level.

Figure 3. Autoantibodies highlighted in each machine learning model. Autoantibodies that are mostly highlighted according to feature importance in two-class (A), three-class (B), and multi-class (C) classifications. Correlograms depict correlations, showcasing the connection between the highest-ranked autoantibodies in two-class (D), three-class (E), and multi-class (F) classifications. The correlation strength is denoted by Spearman's rho on the color scale. Circle sizes represent the significance of the p-values, with only those with P < 0.01 being displayed. Radar charts present the average normalized quantities of the most important autoantibodies in each model, with line colors distinguishing between different disease categories in two-class (G), three-class (H), and multi-class (I) classifications.

Figure 4. COVID-19 signature of autoantibody landscape. (**A**) The heatmap's columns display the serum autoantibody concentrations highlighted in the multi-class classification using XGBoost. (**B**) PCA graph plots individual participants as points, with color coding to differentiate among various disease classes. (**C**) The loading diagram illustrates the contributions to PC1 and PC2, with I, II, and III marking the clusters defined in (A). (**D**) The bar graphs show the loadings of each autoantibody on PC1 and PC2. (**E**) A box plot presents the serum levels of anti-BCORP1 Abs in the subjects. (**F**) Another box plot indicates the serum levels of anti-KAT2A Abs in the subjects. Red vertical dash lines indicate mean + 2SD in HC.

Figure 5. Longitudinal change of humoral immune response in COVID-19. (A)

This box plot outlines the serum concentrations of IgG antibodies against N, S, or RBD in patients with COVID-19 at two intervals: "early" signifies within 10 days of symptom onset, and "late" refers to 11-20 days after symptoms appear. A red dashed line marks the threshold for a positive test result. ***: P < 0.0001. (B) These box plots demonstrate the SAL in patients with COVID-19 during the "early" and "late" time points. NS: P > 0.01. (C) The volcano plot highlights biomarkers that are significantly increased (in red) or decreased (in blue) over time in patients with COVID-19. (D) A Venn diagram illustrates the overlap between autoantibodies that changed over time and those specific to COVID-19. (E) The correlogram visualizes the relationships between the overlapping autoantibodies that either increased over time or are specific to COVID-19, with the color scale indicating the strength of correlation according to Spearman's rho and circle sizes depicting the significance of p-values, focusing on those with P < 0.01. (F) These box plots depict the time-based evolution of serum levels of anti-BCORP1 and anti-KAT2A antibodies in COVID-19 patients, categorized by disease severity. (G)(H) The scatter plots illustrate the correlation between serum levels of anti-BCORP or anti-KAT2A Abs and IgG antibodies against the COVID-19 components at different time points, as well as their progression over time. The red lines

and the surrounding shaded areas indicate the regression line and the 95% confidence

interval, respectively.

Supplementary Figure 1. The sum of autoantibody levels by sex and age. (A) The

sum of autoantibody levels (SAL) in males. (B) SAL in females. (C) SAL for age < 50

years old. (**D**) SAL for age ≥ 50 years old.

Supplementary Figure 2. Autoantibodies to cytokines or their receptors. (A) The heatmap's columns display the serum autoantibody concentrations targeting cytokines in each subject evaluated by our proteome-wide autoantibody screening. (B) The heatmap's columns display the serum autoantibody concentrations targeting cytokine receptors in each subject evaluated by our proteome-wide autoantibody screening. (C) A box plot presents the serum levels of anti-interferon alpha 2 (IFNA2) Abs in the subjects. (D) Another box plot indicates the serum levels of anti-interferon alpha 4 (IFN4A) Abs in the subjects.

Supplementary Figure 3. Feature importance of top highlighted autoantibodies in other candidate machine learning frameworks. (A) Simple linear regression. (B) Ridge regression. (C) Logistic regression with normalization. (D) Logistic regression with standardization. (E) SVM with normalization. (F) SVM with standardization. (G) LightBGM. (H) Random Forest.

Supplementary Figure 4. Serum levels of anti-BCORP1 and anti-KAT2A Abs by

sex and age. (A) Serum levels of anti-BCORP1 Abs by sex. F: female, M: male. (B)

Serum levels of anti-BCORP1 Abs by age. (C) Serum levels of anti-KAT2A Abs by sex.

(D) Serum levels of anti-KAT2A Abs by age. Red vertical dash lines indicate mean +

2SD in HC.

COVID-19

UMAP Plot

