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 54 

Highlights 55 

• In the most comprehensive proteomic analysis of metformin exposure to date, we 56 

showed 97 proteins to be associated with metformin exposure in at least one study. 57 

• 14 proteins were consistently associated with metformin exposure in 2 or more 58 

platforms or studies. 59 

• Gene enrichment analysis shows that the strongest protein set is of intestinal origin. 60 

• These data provide further insight into the mechanism of action of metformin, 61 

potentially identify novel targets for diabetes treatment and highlight the need to 62 

account for metformin exposure in proteomic studies and where protein biomarkers 63 

are used for clinical care. 64 

 65 

Objective 66 

Metformin is one of the most used drugs worldwide. However, its mechanism of action 67 

remains uncertain. Given the potential to reveal novel insights into the pleiotropic effects of 68 
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metformin treatment, we aimed to undertake a comprehensive analysis of circulating 69 

proteins.  70 

Research Design and Methods 71 

We analysed 1195 proteins using the SomaLogic platform in 1175 participants, using cross-72 

sectional data from the GoDARTS and DCS cohorts; 450 proteins using the Olink platform in 73 

784 participants, using cross-sectional data from IMI-DIRECT; and combined longitudinal 74 

data from the IMPOCT, RAMP and S3WP-T2D cohorts with 372 proteins in 98 participants 75 

using the Olink platform. Finally, we performed systems level analysis on the longitudinal 76 

OLINK data to identify any possible relationships for the proteins changing concentration 77 

following metformin exposure. 78 

Results 79 

Overall, 97 proteins were associated with metformin exposure in at least one of the studies 80 

(Padj<0.05), and 10 proteins (EpCAM, SPINK1, t-PA, Gal-4, TFF3, TF, FAM3C, COL1A1, 81 

SELL, CD93) were associated in two independent studies. Four proteins, REG4, GDF15, 82 

REG1A, and OMD were consistently associated across all studies and platforms. Gene-set 83 

enrichment analysis revealed that the effect of metformin exposure was on intestinal tissues. 84 

In the longitudinal analysis 18% of proteins were significantly altered by metformin. 85 

Conclusions 86 

These data provide further insight into the mechanism of action of metformin, potentially 87 

identifying novel targets for diabetes treatment, and highlight the need to account for 88 

metformin exposure in proteomic studies and where protein biomarkers are used for clinical 89 

care where metformin treatment will generate false positive results. 90 

 91 
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 93 

 94 

Metformin works by several mechanisms known to have a positive impact on inflammation 95 

and metabolism; it does this by primarily acting on the liver and the gut(1), however the exact 96 

molecular mechanisms remain uncertain. The increasing availability of deep molecular 97 

phenotyping in patients treated with metformin, including genomic, transcriptomic, 98 

metabolic, proteomic and metagenomic data, offers the opportunity to gain further 99 

mechanistic insight into the mechanism of action of metformin in humans. Genome-wide 100 

association studies (GWAS) have provided some insight into the mechanism of action of 101 

metformin in people with type 2 diabetes(2).  In GWAS studies, two genetic variants have 102 

been reproducibly associated with glycaemic response to metformin – rs11212617 at a locus 103 

including ATM(3) and rs8192675, intronic in SLC2A2, associated with altered expression of 104 

GLUT2(4).  Other studies have reported on epigenetic markers(5), the transcriptome(6), the 105 

metabolome(7) and the microbiome(8) altering glycaemic response, weight change or 106 

intolerance in people with diabetes.    107 

There are limited proteomic studies of metformin exposure, and these have largely been 108 

targeted or using small panels.  A reproducible robust association has been described between 109 

metformin exposure and serum Growth differentiation factor 15 (GDF15) concentrations.  110 

This was first identified in a Luminex panel measuring 237 proteins from the ORIGIN 111 

study(9).  This has been subsequently replicated with mechanistic rodent studies establishing 112 

that metformin associated increase in GDF15 resulted in a reduction in food intake and body 113 

weight and that the origin of GDF15 associated with metformin exposure was the 114 

intestine(10).  More recently, Gummesson et al carried out a more comprehensive proteomic 115 
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analysis following metformin treatment. This further showed that GDF15 was increased 116 

following metformin treatment in addition to identifying other proteins significantly altered 117 

by metformin exposure; for example, EpCAM was reduced in those treated with 118 

metformin(11).    Given the potential for proteomic signatures after metformin exposure to 119 

inform on its mechanism of action and identify novel diabetes drug targets, here we extend 120 

these analyses, including the study by Gummesson et al. but greatly increasing the number of 121 

individuals included to 2,057 and increasing the number of studies to incorporate both cross-122 

sectional and longitudinal studies of metformin exposure, using two commonly used 123 

proteomic methods – Olink and SomaLogic. 124 

Research Design and Methods 125 

 126 

Cohorts 127 

GoDARTS: The Genetics of Diabetes Audit and Research Tayside Study (GoDARTS) is a 128 

cohort of ~8,000 individuals with T2D(12). Laboratory measurements were non-fasted. For 129 

SomaLogic analysis, samples from 599 patients were selected age >35 years, GAD antibody 130 

negative, with blood sampled close to diagnosis (median diabetes duration 1.4 years). 131 

DCS: The Hoorn Diabetes Care System (DCS) cohort is a prospective cohort with currently 132 

over 14,000 individuals with routine care data. In 2008–2014, additional blood sampling was 133 

done in 5500 participants, who provided written informed consent. These samples were used 134 

for this study. For SomaLogic analysis, samples from 576 patients were selected age >35 135 

years, GAD antibody negative, with blood sampled close to diagnosis (median diabetes 136 

duration 2.6 years)(13). 137 
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DIRECT:  This cohort included 784 patients with recently diagnosed type 2 diabetes.  The 138 

mean age at inclusion was 62 years with the youngest 35 years at baseline, which should 139 

exclude any individuals with MODY. Participants were diagnosed within two years before 140 

recruitment, were on lifestyle and/or metformin treatment only, and had glycated 141 

haemoglobin (HbA1c) < 60.0 mmol/mol (< 7.6%) within previous three months(14). 142 

S3WP-T2D:  This study was carried out to elucidate the changes in the proteome in the early 143 

stages of diabetes and how the proteome is affected by diabetes treatment including 144 

metformin(11). 52 previously undiagnosed patients were identified as having type 2 diabetes 145 

from a screening program and as a result, were recruited for the study. Patients were excluded 146 

if they had a pre-existing disease which would affect their ability to participate, severe 147 

hyperglycaemia needing hospital attention or immediate insulin therapy, or a major surgical 148 

procedure or trauma within 4 weeks. Included patients were treated for diabetes via first line 149 

therapy; weight management and exercise with or without metformin which was decided by a 150 

doctor. Protein levels in the blood were measured at baseline, one month and 3 months. Of 151 

the 52 participants, 51 completed the 3 month follow up visit and for 3 patients plasma 152 

samples were not available for the 1 month visit. This left data for 48 patients to be analysed. 153 

IMPOCT: The IMPOCT study was designed to investigate the impact of the OCT1 genotype 154 

and OCT1 inhibiting drugs on an individual’s ability to tolerate metformin. For our analysis, 155 

only the data from when individuals were treated with metformin and placebo was utilised, 156 

and not data from individuals on OCT1 inhibiting drugs. 38 healthy participants without 157 

diabetes were recruited for this study. They were on metformin for 4 weeks, titrated to a max 158 

dose of 1000mg BD which they took for the final week of the study. Protein levels in the 159 

blood were measured at baseline and after the 4 weeks of metformin treatment.  160 
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RAMP: The RAMP study was designed to investigate the response of individuals with ataxia 161 

telangiectasia to metformin and pioglitazone. For our analysis, we only utilised data from 162 

control patients (without ataxia telangiectasia) on metformin (not pioglitazone). 12 non-163 

diabetic, healthy controls, who had never been on metformin before were started on the drug. 164 

They were treated with metformin for 8 weeks, titrated to a maximum dose of 1000mg BD 165 

which they were on for the final 4 weeks of the study. Protein levels in the blood were 166 

measured at baseline and after the 8 weeks of metformin treatment. 167 

Proteomics assays 168 

We used two complementary affinity proteomics approaches to determine the relative levels 169 

of circulating proteins in blood samples(15). Each technology is capable to measure 170 

thousands of proteins, but a list of 500 proteins have been described to correlate with high 171 

confidence between the two platforms. Cross-sectional data from GoDARTS and DCS was 172 

analysed using SomaLogic; 1195 proteins were measured and included in the analysis after 173 

standardized QC. Olink panels were used as follows: 174 

DIRECT: The proteins were measured on five Olink panels:  Cardiometabolic, 175 

Cardiovascular II, Cardiovascular III, Development, Metabolism. After proteins were 176 

removed following quality control, this left 450 proteins to be analysed. 177 

S3WP-T2D: The proteins were measured on eleven Olink panels (Cardiometabolic, Cell 178 

Regulation, Cardiovascular II, Cardiovascular III, Development, Immune Response, 179 

Oncology II, Inflammation, Metabolism, Neurology, and Organ Damage). 180 

IMPOCT. The proteins were measured on five Olink panels (Cardiometabolic, 181 

Cardiovascular II, Cardiovascular III, Development and Metabolism). 182 
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RAMP.  These proteins were measured on the same five Olink panels as the IMPOCT study 183 

(Cardiometabolic, Cardiovascular II, Cardiovascular III, Development and Metabolism). 184 

After proteins were removed following quality control and to ensure each protein was 185 

included in all three studies, 372 proteins were analysed in the combined analysis of S3WP-186 

T2D, IMPOCT and RAMP. 187 

Statistical methods 188 

RHAPSODY: GoDARTS and DCS    189 

We undertook a linear regression for the biomarker as dependent variable, with metformin 190 

exposure (Y/N), adjusted for age and gender.  This was done for both DCS and GoDARTS 191 

and then data were combined using random effects meta-analysis.  A Bonferroni correction 192 

was applied for the 1195 assays included in the analysis.    193 

In both cohorts we then analysed the protein levels of the proteins significantly associated 194 

with metformin exposure, in relation to the daily metformin dose used by the participants. 195 

Protein levels were used as endpoints in linear regression analyses and metformin dose as 196 

predictor with adjustment for gender, age, BMI and HbA1c levels. Persons not using 197 

metformin were excluded prior to this analysis. Metformin dose was binned per 500mg to 198 

ease the interpretation of the data. i.e. the beta is the change in protein level per extra 500mg 199 

tablet of metformin. Similar results were obtained in analyses where metformin dose was 200 

included as a continuous variable. 201 

DIRECT 202 

A linear mixed model was applied using the lmer function of the R package lme4. In this 203 

model, the Olink NPX data was adjusted by information related to the donor (age at 204 

sampling, sex) the sampling event (date, centre) as well as technical aspects (assay plate).  205 
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Combined analysis:  S3WP-T2D, IMPOCT and RAMP 206 

The longitudinal data from the S3WP-T2D study described by Gummesson et al(11) were 207 

combined with the longitudinal data from two Dundee studies; IMPOCT and RAMP. In these 208 

studies, Olink panels were used to measure proteins before and after metformin exposure.  209 

Statistical analysis was performed using R Studio version 4.1.2. Proteins were analysed using 210 

linear mixed models, with the R package LmerTest. The metformin dose and study name 211 

were used as a fixed effect and the study individual was used as a random effect. Proteins 212 

were removed so that the all the proteins present in the combined study data were analysed in 213 

each of the three studies. This left 372 proteins to be analysed in the combined study data. 214 

The metformin dose was simplified and allocated a 0 if the individual was not on metformin 215 

and a 1 if the individual was on metformin treatment, regardless of the dose. P values were 216 

adjusted using the Bonferroni method.  217 

Adjusting for BMI with metformin exposure in S3WP-T2D and RAMP 218 

It has been shown that the proteome can vary in response to weight gain and weight loss(16), 219 

and that metformin is associated with weight loss.  Consequently, a further linear mixed 220 

model analysis was performed in which BMI was included as a covariate, in two of the three 221 

longitudinal cohorts where weight was measured before and after metformin initiation.   222 

The longitudinal data from S3WP-T2D and RAMP was combined, and the same 372 proteins 223 

were analysed as before using a linear mixed model. Again, R package LmerTest was used 224 

for this statistical analysis on R Studio version 4.1.2. Metformin dose, study name and BMI 225 

were used as fixed effects, with the study individual as a random effect. P values were also 226 

adjusted using the Bonferroni method. 227 
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Tissue specific gene expression and gene set analysis for proteins altered by metformin 228 

exposure 229 

Using Genotype Tissue Expression (GTEx) analysis we explored in what tissues the genes 230 

encoding the proteins altered by metformin were expressed.  We then used the enrichR 231 

package in R to evaluate which tissues were enriched for, based upon the change in proteins 232 

in response to metformin treatment in the combined analysis of SCAPIS, IMPOCT and 233 

RAMP. Proteins were converted to gene symbols and upregulated and downregulated 234 

proteins were tested separately. An adjusted P-value smaller than 0.05 was considered 235 

significant. 236 

Causal inference- pQTL  237 

Protein Quantitative Trait Loci (pQTL) analysis was carried out on 14 proteins that were 238 

significantly associated with metformin exposure in two or more studies.  pQTLs were 239 

obtained from Sun et al. (BioRxiv, 2022). pQTLs in cis were filtered based on the UniProt 240 

ID.  pQTLs associated with proteins were compared to available traits in the OpenGWAS 241 

database, but eQTLs, cancer-, peptide-, unknown metabolite traits were excluded. pQTLs and 242 

identified traits were harmonised using the harmonise_data function in the TwoSampleMR 243 

package. eQTLs were obtained from GTEx v8. EQTLs were considered significant if the p-244 

value was below GTEx’s P-value threshold. 245 

Results 246 

Cross sectional metformin exposure and the SomaLogic platform.  We first assessed 247 

differences in protein levels measured using the SomaLogic platform in metformin treated 248 

and untreated individuals from two cross-sectional studies as part of the IMI-RHAPSODY 249 

consortium, where proteomic analysis was undertaken on two populations with type 2 250 
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diabetes close to diagnosis. The baseline characteristics of the two included cohorts, 251 

GoDARTS and DCS cohort are shown in Supplementary Table 1. In the meta-analysis of 252 

these two datasets, 1195 proteins were analysed in 1175 subjects. After Bonferroni 253 

correction, levels of 34 proteins were significantly associated with metformin exposure 254 

(Supplementary Table 2).  The proteins where metformin exposure was associated with the 255 

largest difference in levels were REG4 (Beta=0.698, SE=0.084), GDF15 (Beta=0.657, SE 256 

0.098), PYY (Beta=0.662, SE=0.147) and FGF19 (Beta=-0.519, SE=0.115). Given that this 257 

analysis was cross-sectional, and associations may not be causally associated with metformin 258 

exposure we investigated the effect of metformin dose on protein concentrations, as a dose 259 

effect would support a causal relationship between metformin exposure and protein 260 

expression.  Of the 34 proteins whose concentration was associated with metformin exposure 261 

adjusted for gender, age, BMI and HbA1c, a nominally significant (p<0.05) dose effect was 262 

seen for most proteins (25/34).  After Bonferroni correction (p<0.05/34) increased metformin 263 

dose was associated with increased REG4, GDF15, CDH6 and PYY concentrations and 264 

decreased FGF19 and OMD concentrations (Supplementary Table 3).   265 

Cross Sectional metformin exposure and the Olink platform.  We then assessed 266 

differences in protein levels measured using the Olink platform in individuals from the IMI-267 

DIRECT cohort of patients with type 2 diabetes diagnosed within the prior 2 years.  Baseline 268 

characteristics of the IMI-DIRECT cohort are shown in Supplementary Table 1.  In this 269 

study, 450 proteins were analysed in 784 subjects. After Bonferroni correction, 13 proteins 270 

were significantly different between metformin users and non-users (Supplementary Table 4).  271 

The largest signal was seen for a reduction in EpCAM, followed by an increase in SPINK1, 272 

REG4 and GDF15). 273 
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Longitudinal metformin exposure and the Olink platform. We then analysed protein 274 

concentrations longitudinally in individuals before metformin treatment and after metformin 275 

initiation in 3 clinical trials. Baseline characteristics of included cohorts are shown in 276 

Supplementary Table 1.  Individual level data from the S3WP-T2D(11), IMPOCT and 277 

RAMP studies were combined, and 372 proteins were analysed in 98 subjects using Olink 278 

panels before and during metformin treatment. After Bonferroni correction, 68 proteins (18% 279 

of measured proteins) were found to be significantly changed with metformin treatment 280 

(Supplementary Table 5) and are represented in the volcano plot (Figure 1).  The top 8 most 281 

significant proteins are labelled in the figure and are as follows from most significant to least 282 

significant: REG4, GDF-15, EpCAM, SPINK1, REG1A, LDL receptor, IGFBP-2 and t-PA.  283 

We analysed the longitudinal data in males and females separately (Supplementary Table 10) 284 

and show a consistent signal by sex for the top 6 most significant proteins.  However, there 285 

were differences, with 30 proteins including IGFBP-2 and t-PA being significantly changed 286 

following metformin in males but not females. Similarly, CDH5, FAM3C, HAOX1 and 287 

CCL15 were significantly changed after metformin in females but not males. 288 

As metformin is associated with weight loss, we then evaluated whether the change in protein 289 

concentration with metformin exposure was attenuated by BMI change in two of the 290 

longitudinal cohorts where BMI was measured before and after metformin initiation (S3WP-291 

T2D and RAMP).  Complete attenuation of the change in protein concentration would 292 

suggest that the difference is secondary to, or causal for, BMI change. As a positive control, 293 

LEP (Leptin) is significantly reduced by metformin treatment, but adjusting for metformin 294 

associated BMI change attenuates the effect by 61%, with loss of significance (p=0.15).  295 

Supplementary Table 9 provides the results for the impact of metformin on protein 296 

concentration with and without adjustment for BMI.  Adjusting for BMI reduces the number 297 

of Bonferroni significant proteins from 31 out of 372 proteins analysed across these two 298 
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studies to 21 proteins.  Other than for leptin, the largest attenuation by adjusting for BMI was 299 

seen with FUCA1 (84.2% attenuation); GUSB (29.5% attenuation); SELE (26.3% 300 

attenuation), IGFBP2 (21% attenuation) and FCN2 (15% attenuation).  Interestingly there 301 

was no attenuation (0%) for GDF15, a protein previously reported to potentially mediate the 302 

weight change caused by metformin(10). 303 

 304 

Given the large number of proteins identified to be altered in our longitudinal analysis we 305 

used GTEX(17), HPA(18), and STRING(19) to obtain system-level insights about possible 306 

relationships for the 68 proteins identified. The tissue expression (mRNA and protein) from 307 

GTEX of the top 68 proteins altered by metformin in the longitudinal analysis is shown in 308 

Figure 2.  Note that the expression reported here is tissue specific expression and does not 309 

relate to metformin exposure.  Expression of genes for proteins most changed by metformin 310 

exposure were seen predominantly in the pancreas and intestine. In a gene set enrichment 311 

analysis (Supplementary Table 7), upregulated proteins were enriched for colon (OR=20.4, 312 

Padj = 6.49x10-5 ), based on overlap with REG4, REG1A, GDF15, TFF, SPINK1, CCL15, 313 

PIGR and LGALS4.  Downregulated proteins were enriched for omentum (OR=5.2, Padj = 314 

2.93x10-6) and liver (OR = 4.84, Padj = 7.52x10-6). We also explored possible protein 315 

interactions using the default functions of the STRING database(19). This revealed that many 316 

proteins have known or predicted interactions with each other (Figure 3). Among them, a 317 

group of proteins involved in cell adhesion (KEGG pathway, P=2.8x10-8) were particularly 318 

connected based on experimental evidence.  319 

 320 

Proteomic signatures of metformin across study and platform. Across the three studies, 321 

there were 14 proteins where metformin exposure was associated with protein concentration 322 

in at least two studies; the direction and effect sizes for these associations are shown in Figure 323 
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4. Four proteins were consistently associated with metformin exposure in the 3 studies 324 

(including 2 cross-sectional and 1 longitudinal design) and across the two platforms (Olink 325 

and SomaLogic); these were REG4, GDF15, REG1A and OMD.    8 additional proteins 326 

were consistently associated with metformin exposure across the two studies using Olink; 327 

these were EpCAM, SPINK1, t-PA, Gal-4, TFF3, TF, FAM3C, COL1A1.  There were 2 328 

proteins associated with metformin exposure common between the cross-sectional 329 

SomaLogic and longitudinal Olink studies; these were SELL and CD93. Protein Quantitative 330 

Trait Loci (pQTL) analysis was carried out for these 14 proteins. 11 proteins had at least one 331 

associated pQTL, while Ep-CAM, SELL and CD93 did not (Supplementary table 8). There 332 

were limited informative pQTL: trait associations that could be linked to metformin 333 

exposure.   A few examples include: where metformin and a pQTL both cause an increase in 334 

GDF-15, neutrophil counts are increased, and monocyte counts are decreased; where 335 

metformin lowers OMD, the A allele at rs35209758 which is also associated with lower 336 

OMD is associated with an increase in Asporin and Hematopoietic progenitor cell antigen 337 

CD34; where metformin increases FAM3C, the A allele at rs36198735 that is associated with 338 

higher FAM3C is associated with higher heel bone mineral density. 339 

 340 

Conclusions    341 

We have undertaken the most comprehensive proteomic analysis of metformin exposure in 342 

people with and without diabetes to date.  Our analysis spans different proteomic approaches 343 

and large cross-sectional studies and longitudinal studies with measures before and during 344 

metformin treatment. Overall, 97 proteins were associated with metformin exposure in at 345 

least one study.  The concentration of 4 proteins (REG4, GDF15, REG1A and OMD) were 346 

associated with metformin exposure across all platforms and studies, and a further 10 proteins 347 

were consistently associated with metformin exposure in two independent studies.  348 
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Enrichment analysis shows that the strongest protein-set is of intestinal origin, consistent with 349 

the very high concentrations of metformin seen in intestinal epithelial cells.  An increase in 350 

GDF-15(9) and a decrease in EpCAM(11) after metformin has been previously described and 351 

our results have confirmed these findings.  352 

Our data add to the already robust literature that metformin increases serum GDF-15.  GDF-353 

15 is a protein that increases in concentration due to cellular stress caused by mitochondrial 354 

dysfunction, hypoxia, and exercise(20).  It has been previously shown that the intestine 355 

(particularly the lower small intestine and colon) was a main site of increased GDF-15 356 

expression following metformin treatment(10).  Although GDF-15 is associated with adverse 357 

outcomes such as increasing age, cancer and cellular stress, pharmacologically increasing 358 

GDF-15 could be beneficial.  In wild-type mice treated with a high fat diet, metformin 359 

prevented weight gain – an effect not seen in mice lacking GDF15 or lacking the GDF 360 

receptor (GFRAL1)(10).  These results establish in mice that the weight benefit observed 361 

with metformin treatment was mediated by metformin associated increase in GDF15.  In the 362 

CAMERA trial of 74 non-diabetic participants there was a weak correlation between serum 363 

GDF15 concentrations and weight loss in metformin treated individuals(10).   However, our 364 

data do not support a role for GDF15 in mediating the weight benefits of metformin as, 365 

unlike for leptin, we show no attenuation of the GDF15 association with metformin when 366 

adjusting for weight change.   367 

Our tissue enrichment analysis identified a set of 8 proteins originating from the intestine as 368 

the strongest tissue contributing to the metformin signature:  REG4, GDF15, REG1A, 369 

IGFBP2, TFF3, SPINK1, Gal-4, PIgR, with all but IGFBP2 and PlgR identified in two or 370 

more studies.  Two are Regenerating gene (REG) proteins – REG4 and REG1A – which are a 371 

part of the calcium-dependent (C-type) lectin superfamily(21).   These proteins have been 372 
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shown to be responsible for triggering cellular proliferation and are associated with some 373 

malignancies such as colorectal cancer(22). REG4 can act as a marker for both 374 

enteroendocrine cells and Paneth cells in the small intestine(23) and deep crypt secretory 375 

cells (the colon equivalent of Paneth cells) in the colon(24), and has been shown to modulate 376 

intestinal inflammation and is associated with ulcerative colitis and Crohn's disease(21).  377 

Trefoil Factor Peptide 3 (TFF3) has a role in colonic epithelial homeostasis and response to 378 

gastrointestinal inflammation and mucosal injury(25). Increased TFF3 in mouse hepatocytes 379 

has been shown to cause inhibition of genes involved in gluconeogenesis such as PEPCK, 380 

G6pc and PGC-1α, reducing hepatic glucose output(26). Moreover, adenoviral 381 

overexpression of TFF3 was shown to improve glucose tolerance and insulin sensitivity in 382 

diabetic mice(26). In addition, TFF3 has been demonstrated to increase beta cell mass in rat 383 

pancreatic islets(27).  Serine Protease Inhibitor Kazal Type 1 (SPINK 1) is produced by 384 

pancreatic acinar cells and has two main functions; acting as a trypsin inhibitor which acts to 385 

protect the pancreas and acting as a cell growth and survival factor which leads to tumour 386 

progression(28). Its role in pancreas protection is very important as mutations in the SPINK1 387 

gene are associated with different forms of chronic pancreatitis(29). 388 

The strong association of these intestinal-related proteins with metformin treatment may 389 

simply reflect the high exposure of intestinal epithelial cells to metformin and does not 390 

necessarily implicate these proteins as mediating any beneficial or potentially harmful effects 391 

of metformin.  A pQTL association with a trait could help inform on any causal benefit or 392 

harm, although a pQTL in a non-metformin exposed state may differ from a pQTL under 393 

metformin treatment.  For example, metformin increases GDF-15 and a pQTL SNP 394 

associated with increased serum GDF15 (in population level data) was associated with 395 

increased neutrophil and lower lymphocytes.  This is consistent with GDF15 being associated 396 

with adverse conditions (age, cancer, cellular stress) but not consistent with the known effect 397 
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of metformin to lower neutrophil:lymphocyte ratio(30).  Thus, although we do find pQTL 398 

associated traits, these need to be interpreted with caution. However, whilst we cannot 399 

conclude that the intestinal signature for the metformin proteome mediates metformin, it is 400 

important to be aware of these strong associations as they could potentially be major 401 

confounders in any proteomic analysis where some people may be metformin treated, and 402 

clinically where a protein concentration is being used as a clinical biomarker, such as a 403 

tumour marker.  For example, REG4 is a postulated tumour marker for pancreatic 404 

adenocarcinoma(31), gastric and colorectal cancer(32), EpCAM is a well-known tumour 405 

marker associated with many cancers including colorectal, ovarian and breast cancers(33) and 406 

REG1A has been recently associated with the development of pancreatic cancer(34). 407 

The use of two proteomic platforms in both cross sectional and interventional studies, 408 

totalling 2057 participants is a major strength of our study.  However, we recognise there are 409 

limitations.  Firstly, newer proteomic panels include substantially more proteins (e.g. Olink 410 

Explore HT measures >5300 proteins, and Somascan measures 7000 proteins).  Secondly 411 

whilst we combine 3 studies that measure proteins before and after metformin initiation, the 412 

number of participants in these longitudinal studies remains small, especially when 413 

considering the impact of metformin on BMI change.  Finally, whilst we establish a large 414 

number of robust signals and for some infer causal association, we don’t establish a causal 415 

mechanism for any of the associations.  This will require further work with, for example, 416 

mouse models as has been demonstrated for the mechanistic contribution of GDF15 to 417 

metformin action(10).   418 

In conclusion, we have carried out a comprehensive study on changes to the proteome 419 

following metformin treatment.  We identified many proteins that are increased or decreased 420 

with metformin treatment, with enrichment for proteins originating from the intestine.  421 

Overall, we have shown that the proteomic signature of metformin provides further insight 422 
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into the mechanism of action, as well as highlighting the potential for false positive signals in 423 

human proteomic studies if metformin treatment is not considered as an exposure.   424 
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 451 

Figure Legends 452 

Figure 1 Effect of metformin on plasma protein levels.  Volcano plot showing if protein 453 

concentrations are significantly increased or decreased following metformin treatment in the 454 

longitudinal Olink analysis. Estimate (beta coefficient) is plotted on the x axis and -log10 of 455 

the unadjusted p value (calculated from the linear mixed model) is plotted on the y axis. 456 

Proteins with an adjusted p value (Bonferroni method) of less than 0.05 are represented by a 457 

yellow dot and all other non-significantly changed proteins are represented by a grey dot. 458 

Proteins which have an increased concentration following metformin treatment have a 459 

positive effect size whereas proteins which have a decreased concentration following 460 

metformin treatment have a negative effect size. 461 

 462 

Figure 2: GTEx Analysis Showing the Tissues of Origin of Proteins signficantly altered 463 

by metformin exposure. The plot on the left shows the tissues where the mRNA 464 

corresponding to the significant proteins are expressed. The plot on the right shows the tissue 465 

of origin of the significant proteins. The plot in the middle visualises the significant proteins 466 

based upon the longitudinal Olink analysis and whether they are increased or decreased 467 

following metformin treatment alongside their tissue of origin. Proteins/gene expression in 468 

this figure are ranked in decreasing order of significance. Only 59 of the 68 significant 469 

proteins could be included in this analysis due to some proteins missing in the proteomics 470 
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data. The 9 proteins missing are SEMA7A, GAL-4, LEP, SELE, ADGRG2, CCL15, 471 

CD300LG, TIMD4 and PGF. 472 

Figure 3.  A. Protein relationships for the 68 proteins associated with metformin 473 

exposure in the longitudinal Olink study based on StringDB. A large numer of proteins 474 

showed experimentally validated interactions shown with with pink lines, were co-expressed 475 

(black lines) or were mentioned together (green lines). Experimentally validated interactions 476 

are shown in thicker lines (pink, light blue). 477 

 478 

Figure 4. Comparison of effect size across the three studies (Only proteins that are shared 479 

in at least two studies are shown). X-axis, effect size; y-axis, protein. 480 

 481 

 482 

 483 

  484 
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