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Abstract

Disease surveillance is an integral component of government policy, allowing public
health professionals to monitor transmission of infectious diseases and appropriately
apply interventions. To aid with surveillance efforts, there has been extensive
development of mathematical models to help inform policy decisions, However, these
mathematical models rely upon data streams that are expensive and often only
practical for high income countries. With a growing focus on equitable public health
tools there is a dire need for development of mathematical models that are equipped to
handle the data stream challenges prevalent in low and middle income countries, where
data is often incomplete and subject to aggregation. To address this need, we develop a
mathematical model for the joint estimation of the effective reproduction number and
daily incidence of an infectious disease using incomplete and aggregated data. Our
investigation demonstrates that this novel mathematical model is robust across a variety
of reduced data streams, making it suitable for application in diverse regions.

Author summary

Monitoring the transmission of infectious diseases is an important part of government
policy that is often hindered by limitations in data streams. This is especially true in
low and middle income countries where health sectors have less funding. In this work we
develop a mathematical model to enhance disease surveillance by overcoming these data
limitations, providing accurate inferences of relevant epidemiological parameters.

Introduction 1

During the COVID-19 pandemic, effective and timely infectious disease surveillance was 2

an integral part of government policy [1]. This emphasis on disease surveillance led to 3

the development and extension of tools that can provide efficient and reliable updates 4

on the effective reproduction number [2–6]. However, the majority of these tools rely 5

upon a line list of infections or regular daily measurements of case incidence, 6

measurements that can only be obtained with consistent and dedicated effort by the 7

countries’ government and health care sectors. 8

The cost of daily surveillance during the pandemic was deemed warranted, but as 9

COVID-19 has become widespread, endemic and a part of daily life, the majority of 10

countries have reduced their surveillance effort and are resorting to reporting weekly (or 11

larger) windows of case data. For example, the public reporting of COVID-19 infections 12
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within Australia is now weekly, in line with the reporting of other infections such as 13

influenza [7]. This change to reporting timelines leads to a reduced load on the health 14

sector, but does come with the cost of reducing the fidelity of data, on which 15

mathematical models rely [1, 8]. To understand this reduced data landscape new 16

mathematical methods must be developed. 17

In recent work [4, 9], it is highlighted that there is a need for algorithms that can 18

calculate the effective reproduction number from aggregated data. To address this need 19

an expectation-maximisation algorithm has been proposed for use within the established 20

EpiEstim framework [4, 10]. The algorithm maximises the probability of the daily 21

incidence given the aggregated data by treating the effective reproduction number as a 22

latent variable. In doing so, a maximum likelihood approximation for the daily 23

incidence is obtained, which is then used with EpiEstim’s standard methods to calculate 24

the effective reproduction number. 25

The cost of disease surveillance in countries that have more limited health systems 26

capacity is often overlooked during the development of novel surveillance techniques. In 27

these regions, the money available to be spent on surveillance is small and the data on 28

case counts may be subject to inconsistent reporting and drop out. This irregular data 29

can limit the application of modern mathematical models, even in the best case scenario 30

when dropout occurs for only a short period of time. For example, [11] state that 31

fourteen days of uninterrupted measurements are required to get accurate estimates 32

from EpiNow2. This requirement imposes a critical constraint on the health systems for 33

accurate measurement of the effective reproduction number, a requirement that some 34

regions are not equipped to handle. As such, obtaining realistic measurements of the 35

effective reproduction number in the presence of data dropout is an integral requirement 36

of modern epidemic analysis. 37

The number of epidemic analysis tools that are developed with the explicit inclusion 38

of data dropout is limited. As such, people often resort to a-priori data imputation 39

techniques, filling in any missing data to allow the application of existing inference 40

techniques. This may be problematic as the inference techniques treat the imputed data 41

as if it was obtained from the same observation model as the true data. This 42

assumption reduces the true uncertainty that is present in the data and produces biases 43

dependent upon the imputation technique [12–14], possibly resulting in misleading and 44

overly certain estimates. 45

In this work we develop a novel mathematical model for the inference of both the 46

effective reproduction number and daily incidence from data streams with data dropout 47

and aggregated measurements of cases. Importantly, our model retains the ability to 48

make effective inferences when working with incomplete data. Furthermore, due to the 49

generality of the infection process our model is applicable to inferring the effective 50

reproduction number in other notifiable infectious diseases and not just COVID-19. Our 51

novel mathematical model is an invaluable tool for infectious disease surveillance, 52

especially when surveillance is sporadic or has become too costly. 53

Methods 54

We develop a Bayesian method to estimate the effective reproduction number and daily 55

incidence from N observed aggregate case counts over known time intervals. To do so, 56

we define an expression for, 57

p(It,Rt|C) / p(C|It,Rt)p(It,Rt), (1)

where It = [I1, I2, ..., It�1, It] and Rt = [R1, R2, ..., Rt�1, Rt] are the vectors of random 58

variables containing the daily incidence and effective reproduction number up to and 59
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including day t respectively, and C = [C1, C2, ..., CN ] is the vector containing the 60

measured case counts. 61

We state that the i-th measurement of cases can be described by, 62

Ci ⇠ NegBin

 
µ =

X

t2wi

It,� = �

!
, (2)

where NegBin denotes the negative binomial distribution parameterised by mean µ and 63

shape �1, It is the incidence on day t and wi is the known window of days over which 64

the Ci cases were measured. By assuming that each observation of cases is conditionally 65

independent, 66

p(C|It,Rt) =
NY

i=1

NegBin

 
k = Ci

�����
X

t2wi

It,�

!
. (3)

In contrast to other work, where the daily incidence is treated as a known quantity, we 67

allow each It to be a random variable that is to be inferred from our observed data. For 68

our purposes we assume that observations of It follow a simple and widely used 69

mathematical model for disease transmission. 70

To define, p(Rt, It) = p(It|Rt)p(Rt), we use an infectious disease model such that, 71

It|Rt, It�1 ⇠ Pois

 
µ = Rt

(
mX

s=1

gsIt�s

)!
. (4)

Here gs is the density of the generation interval on day s and m is the last day of 72

infectivity. Therefore a suitable prior for daily infections given the effective 73

reproduction number is, 74

p(It|Rt) = p(It0|Rt0)
TY

t=1

Pois

 
k = It

�����Rt

(
mX

s=1

gsIt�s

)!
, (5)

where T = max(wN ) is the largest day of interest and p(It0|Rt0) is the prior 75

information required for estimating daily incidence before the time window of interest. 76

To define a prior on daily reproduction number we assume that Rt follows a random 77

walk model. Therefore, 78

p(Rt|Rt�1,�R) = N (x = Rt |µ = Rt�i,� = �R ) (6)

where �2
R is the variance of the random walk. This gives, 79

p(Rt) = p(Rt0)

Z

�R

p(�R)
TY

t=1

N (x = Rt |µ = Rt�i,� = �R ) dV, (7)

where p(Rt0) is probability distribution for the effective reproduction number before 80

our time window of interest. Finally, we assume that, 81

�R ⇠ Inv-Gamma(↵,�),

and 82

� ⇠ Gumbel-2(0.5,�),

where we have used a Type-2 Gumbel distribution as an approximation of the penalised 83

complexity prior for the shape parameter in the negative binomial distribution [15,16] 84

1NegBin(x|µ,�) =
�x+�+1

x

� ⇣ µ
µ+�

⌘x ⇣
�

µ+�

⌘�
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and ↵, �, and � are known constants encoding our prior knowledge (for the choice of � 85

see Appendix C). By combining Equation 3, Equation 5 and Equation 7 into 86

Equation 1, we arrive at the distribution, 87

p(It,Rt|C) / p(It0,Rt0)⇥
TY

t=1

Pois

 
k = It

�����µ = Rt

(
mX

s=1

gsIt�s

)!
NY

i=1

NegBin

 
k = Ci

�����
X

t2wi

It,�

!
⇥

Z

⌦(�R)
Inv-Gamma(�R|↵,�)

TY

t=1

N (x = Rt |Rt�i,�R )Gumbel-2(�|0.5,�)d�R.

(8)

It is important to note that we do not make any requirements on the time windows over 88

which measurements are made, allowing the model to also estimate any It and Rt that 89

do not belong to a time window, as well as naturally handling overlapping windows. 90

Initial conditions 91

Within our posterior, Equation 8 there are values required for both incidence and 92

effective reproduction numbers before the window of inference. This occurs for R1 and 93

for I1 to Im. Therefore we must provide reasonable estimates for any Rt and It required 94

outside of our window of inference, however we cannot continue with the recursive 95

relationships that were used previously. 96

We argue that the prior for the initial effective reproduction number should be 97

distributed around one, 98

R0 ⇠ N (1,�R),

and that the prior for the daily incidence is constant, 99

It0 ⇠ Poisson(i0),

where i0 a known constant estimate on the starting cases. This leads us to the 100

conclusion that the most appropriate choice is, 101

p(It0,Rt0) = N (R0|r0,�R)
mY

i=1

Poisson(I1�i|i0).

We note that in the case where daily data can be obtained prior to the aggregated 102

windows, we can use that daily information to more accurately inform our initial 103

conditions. 104

Numerical implementation 105

We use Stan to generate samples from the posterior distribution [17], however there is a 106

requirement that the sampled random variables are continuous. Therefore, we assume 107

that It is a continuous random variables and that, 108

Poisson(x|µ) = N (x |µ,pµ ) .

We expect that this Normal approximation for the Poisson distribution will be accurate 109

for all regimes of interest as typically the value for µ is large. All code used to generate 110

results is available at https://github.com/EamonConway/reduced_data_model. 111
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(b) Inferred daily incidence.

Fig 1. Application of the proposed inference method to seven day aggregated simulated
data where ↵ = � = 10�3 and � = log 2. The ribbons correspond to the 50% and 95%
quantiles. The dashed lines are indicate the aggregation windows.

Results 112

To validate our novel mathematical model we first perform inference on a simulated 113

data set with known daily values for the effective reproduction number and incidence. 114

We then present results for real data observed in Victoria, Australia during the 115

COVID-19 pandemic [18]. 116

Simulated data 117

For our simulated data set, we assume that 118

gs =

Z s

s�1
LogNormal(x = s0 |logµ = log(2.0),� = 1)ds0, (9)

and 119

Rt =

(
1.5, t  40

0.8, t > 40.
(10)

Simulated data for the daily incidence is then generated by the recursive relationship, 120

It ⇠ Pois

 
Rt

(
X

s

gsIt�s

)!
, (11)

where I0 = 100 and It = 0 for t 2 (1,�1]. 121

The first example that we consider consists of aggregating our known simulated daily 122

data into seven day windows. In Figure 1 we demonstrate the joint estimation of both 123

the effective reproduction number and the daily incidence. Figure 1a shows great 124

agreement between the estimates for the effective reproduction number and the known 125

Rt, but with an obvious smoothing over the shock at t = 40. The smoothing over the 126

shock in the effective reproduction number is due to the size of the aggregation window, 127

as the aggregated data does not provide enough information for the inference algorithm 128

to accurately capture the exact moment that the effective reproduction number is 129

changed. We can see that in Figure 1b the algorithm has obtained an accurate estimate 130

for the daily incidence except for around the shock. The smoothing of the shock has 131

resulted in the peak incidence being outside of the 95% quantiles. To demonstrate the 132

effect of the aggregation window on inferring shocks in effective reproduction number, 133

we present results in Appendix A.1 for differing window sizes. It is obvious that as the 134
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(b) Inferred daily incidence.

Fig 2. Application of the proposed inference method to simulated data with 50%
random dropout, where ↵ = � = 10�3 and � = log 2. The ribbons correspond to the
50% and 95% quantiles. The dashed lines indicate the measurement times and the grey
area is missing data.

aggregation window is decreased, we more accurately capture the true behaviour of the 135

simulated data. 136

To test the validity of our inference method in the presence of missing data, we 137

remove 50% of our simulated observations at random, resulting in quite a severe level of 138

dropout. In Figure 2 we see that even with this minimal data we can obtain reasonable 139

estimates for the effective reproduction number and epidemic trajectory. We observe 140

that that there is less smoothing in the effective reproduction number, Figure 2a, in 141

comparison to the aggregated data set. In direct contrast to the aggregated data, the 142

dropout data set is able to more accurately determine the location of the shock in the 143

effective reproduction number as there are consistent observations in the regions of the 144

shock. We also note that the quantiles for the inferred daily incidence, Figure 2b, 145

tightly follow the known simulated incidence. 146

To further support the validity of our inference method we provide many more 147

worked examples with simulated data in Appendix A, including examples with both 148

aggregation and dropout together. Importantly, in all examples we recover reasonable 149

estimates for the effective reproduction number and the daily incidence. This highlights 150

the robustness of our inference method and assures us that the technique is valid for 151

application on real-world data. 152

Real Data 153

Having validated our novel inference algorithm on simulated data, we now test its use 154

on known case data from the COVID-19 pandemic in Melbourne, Victoria for 105 days 155

from 1st September 2021 [18]. For this work we use the generation interval reported 156

in [11], which is a refitting of the work in [19] using the incubation period reported 157

in [20]. 158

There is no definitive measurement of the true effective reproduction number when 159

working with real world data. Therefore, we determine a daily effective reproduction 160

number from the posterior, 161

p(Rt|D) /
Z

⌦(�[�)

TY

t=1

NegBin

 
k = Dt

�����Rt

(
X

s

gsDt�s

)
,�

!
Inv-Gamma(�|↵,�)⇥

TY

t=1

N (x = Rt |Rt�i,� )Gumbel-2(�|0.5,�)dV, (12)
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Fig 3. Comparison of the reduced data model using seven day aggregated real data
from the COVID-19 pandemic in Victoria, Melbourne and the daily model. Here,
↵ = � = 10�3 and � = log 2. The ribbons correspond to the 50% and 95% quantiles and
the dashed lines are the day of reporting.

where D is the vector of observed daily incidence and Dt is the daily observation of 162

incidence at time t. Equation 12 is the direct analogue of Equation 8 when the daily 163

incidence is not treated as a random variable and there is no aggregation or dropout. 164

We note that this equation is similar, albeit with different assumptions for the priors 165

and the time varying nature of the effective reproduction number, to the posterior used 166

in EpiNow2 [2]. For ease of reference we will denote Equation 8 as the reduced data 167

model and Equation 12 as the daily data model. 168

We investigate the applicability of our inference algorithm by aggregating the known 169

real-world daily case data into seven day windows. This is reflective of the current 170

reporting status in Australia and other countries, where COVID-19 figures are 171

aggregated weekly. Figure 3 depicts the inferred effective reproduction number and 172

daily incidence from the aggregated data. We observe that the reduced data model 173

adequately captures all of the general trends in the effective reproduction number when 174

compared to the daily model (Figure 3a). Furthermore, our joint estimation technique 175

has allowed for the recovery of the daily incidence as well, this is shown in Figure 3b, 176

where we can see good agreement between our estimates and the known daily 177

observations of incidence. 178

Surveillance techniques used to infer the effective reproduction number should be 179

insensitive to unforeseen changes in their data stream. This is especially important at 180

the start of a pandemic where new data streams are established, a complicated process 181

which may result in data dropout. To demonstrate how the reduced data model 182

performs in the presence of arbitrary data dropout, we construct a low fidelity data set 183

by randomly sampling 51 data points from the observed real data. Presented in 184

Figure 4 are the results of applying our novel technique to the dropout data set. By a 185

direct comparison to the daily data model, Figure 4a, we can see that we have 186

adequately captured the effective reproduction number and successfully obtained 187

estimates for the missing daily incidence. It is obvious from the quantiles that there is 188

more uncertainty in regions which are missing larger amounts of data. To exemplify this 189

behaviour, we highlight the time period in November where there is a large amount of 190

missing data in our low fidelity data set. This time period corresponds to increased 191

quantiles in both effective reproduction number and daily incidence. However, even 192

with this level of dropout the reduced data model is able to provide reasonable 193

estimates for what happened during and immediately after the period of dropout. 194

We highlight that the reduced data model is also robust to the dropout of data on 195
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(b) Inferred daily incidence.

Fig 4. Inferring the effective reproduction number and daily incidence from 51
randomly chosen days of real data from the COVID-19 pandemic in Melbourne,
Victoria. Here, ↵ = � = 10�3 and � = log 2. The ribbons correspond to the 50% and
95% quantiles. The dashed lines are the day of reporting and the grey areas are regions
of missing data.
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Fig 5. Inferring the effective reproduction number and daily incidence from randomly
aggregated windows of real data from the COVID-19 pandemic in Melbourne, Victoria.
Here, ↵ = � = 10�3 and � = log 2. The ribbons correspond to the 50% and 95%
quantiles. The dashed lines are the day of reporting.

the aggregated level for real data. We provide results for windows of varying sizes with 196

50% random dropout within Appendix B. The reduced data model performs better with 197

more data and smaller windows of aggregation, but is still flexible enough to overcome 198

data dropout even with aggregation windows. 199

As priorities evolve within the health sector it is feasible that the window of 200

aggregation will vary. A notable example being the transition to weekly reporting for 201

incidence of COVID-19 in the majority of countries. This change in the regularity of 202

reporting reduces the burden on the health system, but provides new challenges to any 203

inference techniques developed to understand transmission. To test the reduced data 204

model, we aggregate our data into randomly varying windows. The choice of random 205

windows was made as we expect that this is a worst case scenario and captures all 206

arbitrary reasons for data aggregation. In Figure 5 we see that the application of the 207

reduced data model to randomly aggregated data still captures the majority of trends in 208

the effective reproduction number and daily incidence. We conclude that our model is 209

robust to arbitrary changes in window size. 210
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Discussion 211

The COVID-19 pandemic drew considerable attention to the importance of infectious 212

disease surveillance, however, in some regions such surveillance can be hindered by lack 213

of funding and and weak health systems. Notably, surveillance of infectious diseases 214

transmission within lower and middle income countries often suffer from irregular 215

reporting and data dropout whereas high income countries will change their reporting 216

windows depending upon governmental priorities. Therefore, there is a need to develop 217

tools that are able to efficiently and flexibly handle changes to disease surveillance data 218

streams, including aggregation and unforeseen dropout. In this work we provide a novel 219

inference method that can efficiently handle data aggregation and dropout within a 220

single framework. While the results here have focused on cases of COVID-19 reported 221

in Victoria, Australia, the technique is trivially applicable to any other region and a 222

wide variety of notifiable infectious diseases. 223

The results presented in this work demonstrate that we can accurately infer both the 224

effective reproduction number and daily incidence even with 50% of observations 225

missing. Data dropout is problematic in all regions, as managing data streams from 226

multiple sources is not trivial and is subject to failure at a moments notice, but is 227

especially problematic in low and middle income regions. In developing the reduced 228

data model we remove the requirement of consistent measurements, instead placing a 229

prior of a widely used infection model over our daily incidence. The benefit of this 230

approach is that it allows us to apply the reduced data model without having to resort 231

to a-priori imputation or other approximations for any missing or aggregated data. 232

Across all examples that we consider, with both simulated and real data, the reduced 233

data model has been able to accurately infer both the effective reproduction number 234

and the daily incidence, resulting in comparable measurements to a more standard daily 235

data model. The reduced data model is a robust technique that can be used to help 236

understand spread of infectious disease even in regions with limitations to the 237

surveillance data stream. 238

Unfortunately, it is not always the case that disease notification systems are able to 239

work with a consistent data window. For example, areas where communication 240

protocols are prone to failure (i.e., lack of internet access), may not be able to report 241

results on day of diagnosis. Due to the communication failure case numbers may either 242

not come through at all or be reported in one aggregated dataset, missing the 243

information of when each diagnosis occurred. These arbitrary changes to the reporting 244

window does not effect the application of the reduced data model described in this work. 245

In such circumstances, regions could augment their data source with the known window 246

of communication failure (a simple measurement to track and report with case data) 247

and still be able to accurately determine the effective reproduction number. In Figure 5 248

and Appendix A.4 we provide notable examples where the reduced data model 249

estimates both the daily incidence and effective reproduction number with great 250

accuracy on data sets with random aggregation windows. This great flexibility exhibited 251

by the reduced data model may prove invaluable to health systems as unforeseen 252

challenges will not stall surveillance. 253

Another common example of where data aggregation may be beneficial is that of 254

weekend effects, where case reporting is delayed over the weekend due to lower staff 255

counts, resulting in inflated counts at the start of the week. It may be suitable to use 256

aggregated data over the weekend to smooth out the inflated case counts. The 257

performance of the reduced data model with random aggregation windows highlights 258

the applicability of our technique for any arbitrary reason of data aggregation. 259

A further benefit to the reduced data model is that inference times across all 260

examples provided are extremely quick, taking seconds on a laptop. As such we have 261

not explored the application of other techniques such as particle filtering [21, 22], which 262
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is beneficial for sequential measured data. We argue that these approaches are not 263

required as they would introduce extra problems such as particle degeneracy. In 264

comparison, the Hamiltonian Monte Carlo method used within Stan encodes all 265

information in the posterior and does not suffer from information loss during sampling. 266

Furthermore, the speed at which inferences can be made make this tool suitable for use 267

within any country, not requiring the use of large computational clusters. 268

A limitation of this tool is that it is in an early stage of development in comparison 269

to the daily techniques described previously in the literature [2–6]. These tools have had 270

significant development throughout the COVID-19 pandemic to ensure that they were 271

inferring appropriate statistics on the effective reproduction number. However, there 272

was minimal focus on working with reduced data sources such as what we are facing 273

now. Whilst our approach does not yet incorporate delays and right truncation, as 274

raised in [23], our work does address the shortcomings present in other tools when 275

dealing with imperfect data such as incomplete observations and aggregation. In future 276

work, we can focus on incorporating suggestions highlighted in [23]. 277

A notable exclusion from our algorithm is that we do not explicitly account for 278

uncertainty in the generation interval. This uncertainty is an important consideration as 279

the effective reproduction number is sensitive to the choice of generation interval [23,24]. 280

We note that it is rather trivial to extend the posterior and make the generation interval 281

a random variable as well, however for the work investigated here we decided against 282

incorporating this added complexity at this stage. As such we recommend that 283

researchers be aware of this shortcoming and test their results with varying generation 284

intervals as done by [11]. 285

To leverage the extremely efficient Hamiltonian Monte Carlo sampling algorithm 286

within Stan [17], we use a normal approximation for the Poisson distribution for the 287

daily incidence random variables. This approximation is only valid when daily incidence 288

numbers are away from zero. This has not been a problem in all cases considered in this 289

work, however, if this work was to be applied to a near elimination scenario, this 290

assumption may break down. In near elimination settings we argue that the use of this 291

method is impractical, as the case numbers are so small that there would be minimal 292

benefit to aggregated reporting and the full line list of infection should be tracked 293

instead. For such settings, it may be more suitable to consider a case specific 294

reproduction number as has been previously investigated with malaria transmission [25]. 295

If elimination settings are to be considered within this framework, in the limit of small 296

incidence it is possible to marginalise out the inferred daily incidence and to use Stan on 297

the marginalised posterior for effective reproduction number. 298

Finally we highlight an interesting observation made during our analysis. It appears 299

that there is a trade off in measuring over-dispersion and the effective reproduction 300

number. We have set ↵ = � = 1⇥ 10�3 for all results within the main text, ensuring 301

that the prior on �R is uninformative. However, we have noticed that the Bayesian 302

missing information criterion is not satisfied when the data set becomes extremely spare, 303

namely, a data set that consists of 50% dropout and weekly aggregation. During 304

investigation of this extremely sparse data set, it appears that there is a complicated 305

interaction between measuring the over-dispersion parameter and daily fluctuations of 306

the effective reproduction number. If the variance of the random walk is not constrained 307

then the over-dispersion parameter is not identifiable. As such, when dealing with an 308

extremely sparse data set, we hypothesise that the prior on �R must become more 309

informative or the ability to infer the over-dispersion parameter is decreased. The 310

importance of the over-dispersion parameter is arguable and the use of a Poisson 311

distribution instead of a Negative Binomial should remove this limitation. With our use 312

of a penalised complexity prior, we also investigated � = � log(A) where 313

A 2 {0.3, 0.4, 0.5, 0.6, 0.7} and find that the posterior estimates are insensitive to the 314
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prior distribution specified on �, see Figure C.1. 315

Conclusion 316

There is a clear need for robust and efficient inference methods for infectious disease 317

surveillance that can handle missing and aggregated data. In this work, we effectively 318

address this need by developing a novel mathematical model that can simply and 319

efficiently infer both the daily incidence and effective reproduction number. We have 320

conclusively demonstrated the applicability of our approach both on real and simulated 321

data sets. Our method is robust to random windows of aggregation, overlap and data 322

dropout, making it applicable to regions with limited health care capacity as well as 323

those with large amounts of resources but have decided to reduce the reporting window. 324
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