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With many rare tumor types, acquiring the correct diagnosis is a challenging but crucial process in pediatric oncology.
Here, we present M&M, a pan-cancer ensemble-based machine learning algorithm tailored towards inclusion of rare tu-
mor types. The RNA-seq based algorithm can classify 52 different tumor types (precision ∼99%, recall ∼80%), plus the
underlying 96 tumor subtypes (precision ∼96%, recall ∼70%). For low-confidence classifications, a comparable precision
is achieved when including the three highest-scoring labels. M&M’s pan-cancer setup allows for easy clinical implemen-
tation, requiring only one classifier for all incoming diagnostic samples, including samples from different tumor stages
and treatment statuses. Simultaneously, its performance is comparable to existing tumor- and tissue-specific classifiers.
The introduction of an extensive pan-cancer classifier in diagnostics has the potential to increase diagnostic accuracy for
many pediatric cancer cases, thereby contributing towards optimal patient survival and quality of life.

Introduction

Childhood cancer is the leading cause of disease-related
deaths among children in high-income countries1. A correct
diagnosis is of the utmost importance to cure as many children
as possible and improve quality of life2. However, diagnosing
tumors is not a trivial task with the plethora of tumors chil-
dren can suffer from. While childhood cancer is rare in itself,
within the collection of tumor entities there are many infre-
quently occurring ones, affecting less than one in 400 children.
Diagnosis of rare tumor types tends to be more difficult due
to their low frequencies and accompanying unfamiliarity to
pathologists and hematologists, hereafter referred to as diag-
nostic specialists. Therefore, these tumors are associated with
increased interobserver variability and above-average misclas-
sification rates3–6. To improve treatment selection and ulti-
mately influence patient outcomes, the classification of espe-

cially rare tumor types needs to be more accurate.
One way to improve the diagnostic procedure is to use ma-
chine learning algorithms in healthcare7. By performing com-
putational classification, diagnostic specialists are provided
with extra information that can either confirm their diagno-
sis or push the diagnostic process in the right direction. A
methylation-profile based central nervous system (CNS) clas-
sifier, developed within the DKFZ in Heidelberg3, was shown
to increase patient survival8. In recent years, several pedi-
atric classifiers were developed, based on DNA-methylation or
RNA-seq data3,9,10. Nevertheless, these classifiers only cover
a subset of the existing tumor (sub)types within pediatric can-
cer. The latest published pediatric tumor classifier, OTTER,
was the first to utilize a pan-cancer approach11. However,
there are no direct links between OTTER’s classes and the
diagnoses included in the WHO classification of pediatric tu-
mors, making it less user-friendly for diagnostic specialists.
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Furthermore, OTTER can again only classify a subset of pe-
diatric tumors. As a result, there is an urgent need for a more
inclusive pan-cancer classifier to propel diagnostic utility.

Within the Netherlands, most children with cancer are di-
agnosed and treated in a single national pediatric oncology
center where whole-exome sequencing and RNA-sequencing
are routinely performed for diagnostic purposes. Of the avail-
able data, RNA-seq gene expression reflects behavior of tumor
cells most directly, deeming this data informative for classi-
fier development. Here, we present the Minority and Major-
ity classifier (M&M), an ensemble-based RNA-seq machine
learning approach to classify (rare) pediatric tumor entities
in a pan-cancer setup. M&M can classify 52 different tu-
mor types, together with their underlying 96 morphologically
and/or biologically distinct tumor subtypes. As the machine
learning algorithm is based on data sequentially collected for
routine diagnostics in a national center, it has a more accurate
representation of the pediatric tumor population than previous
classifiers. For included tumor types, M&M reaches a diag-
nostic precision around 99%. To balance the classification
accuracy across tumors with varying prevalence, we use an
approach of integrating two classifiers with methods specifi-
cally focused on classifying rare tumor (sub)types (Minority
classifier), or more frequent tumor (sub)types (Majority clas-
sifier). As a result, tumor types across the whole frequency
range can be classified with comparable precision. Taken to-
gether, M&M has the potential to positively influence the di-
agnostic accuracy for pediatric tumors, likely resulting in in-
creased overall survival and enhanced quality of life for chil-
dren with cancer.

Results

Reference cohort and independent test cohort
RNA-seq data was collected from fresh-frozen samples within
the Princess Máxima Center (PMC), the national Dutch pedi-
atric oncology research hospital, for 3.5 years to establish a
pan-cancer reference cohort. The cohort entailed primary, re-
current and metastatic tumor samples, samples before and af-
ter treatment, and non-neoplastic tissue samples. All samples
were labeled according to the tumor domain, tumor type and
tumor subtype they belong to (Figure 1, Extended Data Fig.1,
2). These labels were derived from the most recent WHO clas-
sification and provided by diagnostic specialists based on an
integrated histomolecular approach. Computational classifi-
cation was performed on the tumor type and subtype level. A
minimum of three cases per tumor subtype was chosen to in-
clude as many rare pediatric tumor entities as possible. The
resulting reference cohort contains a total of 1256 samples.
As expected, the collection of the diagnostic population of
patients resulted in a highly heterogeneous and imbalanced

cohort, ranging from three to 269 samples per tumor type.
In total, 52 tumor types, 96 underlying tumor subtypes and
five non-neoplastic tissues were included (Supplementary Ta-
ble 1). Pediatric diagnostic samples collected in the year fol-
lowing the reference cohort were used as an independent test
cohort. In total, 471 samples from 442 patients were included,
representing 39 tumor types, 70 tumor subtypes and 4 non-
neoplastic tissues.

Machine learning framework to classify rare tumor types
Within machine learning, there tends to be a bias towards
the classes that contain most patients - the ’majority’ classes.
Consequently, recognition of infrequently occurring tumor
(sub)types within a heterogeneous collection of tumor enti-
ties is particularly difficult. To reduce this majority-class bias,
we created two different classifiers, a Minority classifier tai-
lored towards correct classification of rare tumor (sub)types,
and a Majority classifier with more predictive power for fre-
quently occurring tumors. Each classifier was created using
the same four steps of feature selection, feature reduction,
down-sampling, and classification. These steps took place
in different orders with different methods within the separate
classifiers, to impose the specified classification focus (Fig-
ure 2a; Methods). Classification took place on the tumor sub-
type level, from which the tumor type could be extrapolated.

Extracting discriminatory information for each class is one
of the principal steps within the development of the Minor-
ity classifier (Figure 2a, left panel). The F-statistic of anal-
ysis of variance (ANOVA)12 was chosen to determine which
transcripts differed most between tumor subtypes within the
training set. The most variable transcripts were selected as in-
put features and subjected to further reduction by determining
each feature’s importance within a weighted Random Forest
(RF)13. To minimize class imbalance, the dataset with se-
lected features was down-sampled 100 times to a maximum
of three samples per tumor subtype. Each training subset was
used for model development with weighted RF, generating a
total of 100 models. Each model provided one classification
label per sample, which was summarized to per-label proba-
bility scores.

The Majority classifier development (Figure 2a, right panel)
was initiated with down-sampling. Again, 100 down-sampled
training subsets were generated with now a maximum of 50
samples per tumor subtype. Feature selection and feature re-
duction took place within the subsets. The most variable tran-
scripts across all data points were selected as input features
for dimensionality reduction by principal component analysis
(PCA). A weighted k-nearest neighbors (kNN) algorithm was
used for model generation14. The final classifications with
their accompanying probability scores were determined using
the same approach as for the Minority classifier.

After generating Minority and Majority classifications, tu-
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Fig. 1. Overview reference cohort. a) Unsupervised clustering of reference cohort using UMAP, color-coded for the tumor domain the
sample belongs to. b) Close-up of the UMAP projection of the solid tumor domain samples. Color coding is based on the underlying tumor
type. Associations between abbreviations and tumor type names are available in Supplementary Table 1. c) Pie-chart showing the distribution
of samples per tumor type (inner ring) and tumor subtype (outer ring) from the solid domain. Close-ups and pie-charts of samples from the
hematological and neurological domains are shown in Extended Data Fig.1&2.
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Fig. 2. M&M framework. a) Schematic overview of the M&M framework, showing the separate Minority (left panel) & Majority classifier
(right panel) machine learning workflows concerning feature selection, feature reduction, their down-sampling procedure, and their respective
choice of algorithm. Note: the steps within the Majority classifier are not depicted in order, as cohort sub-setting takes place before feature
selection. Classifier integration takes place after running the separate classifiers. The final probabilities were calculated by taking the average
probability from the individual classifiers. If only one of the classifiers made a certain call, the final probability was divided by ten instead of
averaged to penalize the classification label. b,c) Accuracy of separate Minority (red), Majority (blue), and integrated M&M classifiers
(purple) for the tumor types (b) and subtypes (c) for different sample frequencies, determined in a ten-fold stratified cross-validation within
the reference cohort.

mor subtype labels were converted to their overarching tumor
types for each classifier separately. The Minority and Majority
classifier showed distinct performance characteristics across
the pediatric tumor landscape (Extended Data Fig.3a). Fre-
quently encountered tumor (sub)types displayed a better ac-
curacy within the highest ranked classification labels, reach-
ing saturation from 20 samples onwards (Figure 2b,c). The
Majority classifier outperformed the Minority classifier for the
top-ranked classifications across all tumor frequencies. Never-
theless, important to note is that for classifications with lower
probability scores it is custom to look at more than just the top

classification label. When taking into consideration the three
highest-ranked classification labels instead, the correct label
for rare tumor (sub)type classifications was included more of-
ten in the Minority classifier than the Majority classifier (Fig-
ure 2b,c).

Integrated classification label probability scores were cal-
culated on both the tumor type and subtype level from the
individual classifier probability scores (Figure 2a), as a mea-
sure of the confidence of M&M in the correctness of the clas-
sification. Recalibration of the probability scores could not
be performed due to the inclusion of tumor (sub)types with
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Fig. 3. Performance M&M stratified by domain. Mean accuracy, precision and recall for the tumor type (a) and subtype (b) classifications
for all samples (gray), the neurological (dark blue), solid (orange) and hematological domains (red). Results are shown for the reference
cohort (dark bar, Train) and test cohort (light bar, Test). Error bars show the standard deviation for the performance measures achieved during
ten independent runs of M&M.

low sample numbers (n<5). Ensemble-based classification re-
sulted in more accurate calls for most tumors, preferentially
boosting rare classes (Figure 2b,c, Extended Data Fig.3b). To
balance sensitivity and specificity, high-confidence and low-
confidence classifications were discriminated using a prob-
ability score cutoff determined by ROC-analysis (Extended
Data Fig.4). Tumor subtype classifications were considered
high-confidence if their probability score was higher than
0.72, while for tumor type classifications the probability score
needed to exceed 0.82. In the end, M&M provides the three
highest-scoring classification labels, hereafter referred to as
top 3 classifications, with their associated probability scores
(Supplementary Table 2,3).

A ten-fold stratified cross-validation was used on the ref-
erence cohort to estimate the efficacy of distinguishing dif-
ferent tumor (sub)types within M&M. The Minority and Ma-
jority classifiers were each run ten times, to gauge algorithm
robustness. A single averaged accuracy, precision and recall
were calculated from the different runs, together with their
standard deviations. Recall was defined as the fraction of
samples that were considered high-confidence classifications,
with precision essentially being the accuracy within confident
classifications. Average F1 scores, as the harmonic mean be-
tween precision and sensitivity, were calculated for each tu-
mor (sub)type separately, together with their standard devia-
tion. Furthermore, a single, final classification label per sam-

ple was obtained by averaging classification probabilities per
individual label over the ten runs and selecting the highest
scoring one for each sample.

Cohort-wide performance M&M
M&M’s main aim is to be clinically implemented within a pe-
diatric oncology setting. Therefore, the method’s outcomes
were focused on diagnostically relevant properties: the per-
formance for confidently classified samples and associated re-
call, and the performance for the low-confidence classifica-
tions within the top 3 labels. M&M could correctly classify
the tumor type for 94.5% of the samples within the refer-
ence cohort (Figure 3a), and the underlying tumor subtype for
86.3% (Figure 3b). For high-confidence tumor type classifi-
cations, M&M could reach a precision of 98.9% for ∼80%
of the samples (N = 1003/1256 samples). On the tumor sub-
type level, a precision of approximately 96% was achieved for
∼70% of the samples (N = 911/1256 samples). Slight dif-
ferences in results were observed between the domains, with
solid tumors showing the highest overall precision and recall.
On the subtype level, neurological tumors were classified with
the highest accuracy, precision and recall. Given that preci-
sion scores for all three domains were above 98% for tumor
types and 94% for subtypes, M&M portrayed a remarkable
performance for included classes across the pediatric tumor
landscape.
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Fig. 4. Performance M&M on separate tumor entities, stratified by tumor (sub)type frequency. a,b) Precision of M&M for the
high-confidence tumor type (a) and subtype (b) classifications for different sample frequencies within the reference cohort (dark bar, Train) or
test cohort (light bar, Test). c-f) Average F1 scores for the tumor type (c,e) and subtype (d,f) classifications for different sample frequencies
within the reference cohort (c,d) and test cohort (e,f). F1-scores of individual tumor entities are displayed by jittered black dots.
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Fig. 5. Misclassifications between different tumor entities. Confusion matrix of all tumor type (a) and subtype (b-d) predictions from the
neurological (b), solid (c) and hematological (d) domains, within a 10x cross-validation setup. The gold standard (Reference), provided by
diagnostic specialists, is specified on the x-axis, while M&M’s call (Classification) is located on the y-axis. Within the blocks, it is specified
how often a certain classification is made. Furthermore, it is portrayed how often a tumor type or subtype does not reach the confidence score
threshold (’Low confidence’). Color-coding on the left within b-d is used to show which tumor subtypes belong to the same overarching
tumor group.

An independent test cohort was used to validate the results
obtained for the reference cohort, specifically testing for
potential overfitting on the training data. First, it needed
to be checked whether M&M could identify samples from

patients diagnosed with tumor subtypes not present within the
reference cohort, by providing low-confidence classifications.
Out of the 580 samples that passed quality control measures,
109 samples (19%) from 98 unique patients represented tumor
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Fig. 6. Performance of M&M compared to more class-restricted tumor classifiers. a) Barplot visualizing the average accuracy, precision
and recall of M&M (dark color) compared to the other classifiers (light color) - ALLCatchR (left), the DKFZ central nervous system
methylation classifier (CNSm, middle) and the DKFZ sarcoma classifier (SARCm, right) - on the corresponding tumor samples from the
reference cohort and test cohort, subsampled 100 times to 25% of the available samples to generate different subsets. Error bars represent
standard deviations. A star (*) signifies a significant difference (p-value < 0.05). b-d) Precision-recall (PR) plots for the comparison between
M&M (dark color) and the other classifiers (light color) - ALLCatchR (b), CNSm (c), and SARCm (d) - for the reference cohort (solid line)
and test cohort (dashed line). The shadow indicates the lower and upper precision score at a specific recall rate observed within ten
independent cross-validation runs of M&M on the reference cohort. A close-up of the precision range of 0.85 to 1 for the PR plot is displayed
within each PR curve.

subtypes that were not covered within the reference cohort.
92 of these samples (80%) did not obtain a high-confidence
classification on the tumor subtype level, showing M&M’s

capacity to recognize when samples deviate from all available
tumors within the algorithm. Of the 17 remaining samples, 9
were confidently classified as a different tumor subtype within
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the same parent tumor type (8%), while 4 were classified
based on the tissue signal (4%). All samples without a
matching diagnosis in M&M were removed from further
analyses, resulting in a test cohort of 471 samples. Here,
M&M could achieve a tumor type classification precision of
99.2%, which was even higher than the 98.9% obtained for the
reference cohort (Figure 3a). Tumor subtype classifications
showed a comparable test cohort precision of 96.1% versus
95.8% for the reference cohort (Figure 3b). Again, similar
performances were observed across the different domains,
together demonstrating M&M’s robustness in performance.

For low-confidence classifications, it was of interest how
often M&M could provide relevant tumor (sub)type classifi-
cations within the top-ranking labels. The latter is essential
to guide diagnostic specialists during the diagnostic process
for samples that have a less clear-cut diagnosis. Within the
top 3 labels, the correct tumor type diagnosis was present in
98% of the cases, in both the reference and test cohort (Ex-
tended Data Fig.5a). For tumor subtypes, approximately 95%
of the reference and test cohort samples could be assigned a
correct label within the top 3 classifications (Extended Data
Fig.5b). These numbers were only slightly lower than the pre-
cision scores for high-confidence classifications, showing that
for low-confidence classifications the correct tumor (sub)type
label is generally present within the top 3 labels.

Rare tumor types can be classified with high precision
To enable some generalization of classification results, tumor
types and subtypes were grouped according to their respective
frequency within the reference cohort. Based on these
subsets, it appeared that both rare and frequently occurring
tumor types within the pediatric population were accurately
classified by M&M (Figure 4a), resulting in a minimum pre-
cision of 93.7% for rare tumors (3-5 samples), and 99% for
tumor types with over 100 samples. Recall rates were lower
for rare tumor types (Extended Data Fig.6), however, still
68% of samples were classified confidently. M&M portrayed
a high average F1 score (∼0.93) for tumor type classifications
(Figure 4c,e), indicating that individual tumor types can be
accurately classified and labels are discriminatory between
classes. Rare tumor types portrayed lower average F1 scores.
However, this result appears highly influenced by a few
extreme outliers, while most minority class tumor types still
achieved perfect classification. Combined, these results show
M&M’s strength for rare tumor type classification.

As expected, tumor subtype classifications showed lower
overall precision and F1 scores compared to tumor type clas-
sifications, with low-frequency subtypes showing the lowest
scores (Figure 4b,d,f). Specifically, multiple subtypes with 3-5
samples in the reference cohort appeared ill-defined by M&M

(F1 < 0.25). Nevertheless, these rare subtypes again displayed
low recall rates, resulting in a final precision of approximately
84%.

M&M misclassifications are infrequent, non-repetitive
and independent of sample type
Only a limited number of tumor type misclassifications
occurred within the high-confidence classifications of the
reference cohort (Figure 5a, Supplementary Table 4). Most
misclassifications occurred once and were confined within
their domain of origin. In total, one cross-domain error
happened between two primitive embryonal tumors. Tumor
subtype misclassifications occurred at higher frequencies
within overarching tumor types in all three domains (Fig-
ure 5b-d). Furthermore, 88% of samples from subtypes that
had a ‘not otherwise specified’ (NOS) label were misclassified
as other entities within the same tumor type. This indicates
that the label’s non-specific nature might negatively influence
their classification accuracy. In general, the tumor subtype
mix-ups would not have resulted in a change of treatment
regimen for the patient, and hence most errors would not have
had direct clinical consequences.

M&M was run on samples stemming from primary, recur-
rent and metastatic tumors. Furthermore, some patients re-
ceived systemic chemotherapy before tumor sample acquisi-
tion, while others did not. While analyzing M&M’s perfor-
mance on separate sample types, the precision on tumor type
level was highest for primary tumors and untreated samples
(∼99%) (Extended Data Fig.7). This result was expected, as
these samples most accurately reflect the underlying tumor bi-
ology. Nevertheless, the difference in precision with recur-
rences, metastases and systemically treated samples was max
3%, with approximately equal fractions of samples receiv-
ing high-confidence classifications. To get some insights into
the influence of the sequencing protocol and RNA-seq qual-
ity on M&M’s performance, eight formalin-fixed and paraffin-
embedded (FFPE) tissues with available RNA-seq data were
classified as well. M&M could classify seven out of eight sam-
ples correctly (Extended Data Fig.7), with the incorrect clas-
sification being low-confidence. Therefore, these preliminary
results indicate that M&M may be capable of classifying both
fresh-frozen and FFPE samples.

M&M performs comparable to existing, more class-
restricted pediatric tumor classifiers
When introducing a pan-cancer classifier, it is important to
check whether it can compete with other classification al-
gorithms without causing a performance drop. To this end,
we compared M&M’s results to three well-known and well-
performing pediatric tumor classifiers: ALLCatchR for B-
ALL tumor subtypes, the DKFZ methylation classifier for
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CNS tumor types (CNSm) and the DKFZ methylation clas-
sifier for sarcomas (SARCm)3,9,10. To make the comparison
robust, 100 different data subsets were generated by down-
sampling to 25% of the available samples. Subsequently, an
average accuracy, precision and recall were determined from
the performance within the subsets, together with their asso-
ciated standard deviation. M&M portrayed comparable ac-
curacy and precision scores (Figure 6a, Supplementary Table
5-7). However, M&M obtained more low-confidence classifi-
cations, resulting in a significantly decreased recall rate in half
of the comparisons (p < 0.05). The test cohort performance
measures were comparable to the findings in the reference co-
hort, providing more confidence in observed findings.

To further compare the classifiers’ performance, precision-
recall (PR) curves were generated. For M&M, the ten clas-
sifier runs were combined to generate one minimum, average
and maximum precision at each recall score (Figure 6b,c,d).
M&M appeared to slightly outperform ALLCatchR for the
B-ALL sample classifications within the reference cohort,
while in the test cohort the roles were reversed (Figure 6b).
The seemingly large difference in performance on the test
cohort between ALLCatchR and M&M could be explained
by similarities in expression profiles between tumor subtypes
BCR::ABL1 (like) B-ALL, iAMP21 B-ALL and PAX5-altered
B-ALL15,16. Test samples had comparable probability scores
for the labels within M&M. Nevertheless, the correct label
was present for all but one sample within the three highest
scoring classification labels (Supplementary Table 4), under-
scoring the importance of looking at more than just the top-
scoring classification. For the methylation-based classifiers,
M&M showed comparable PR-curves within the reference co-
hort (Figure 6c,d). Within the test cohorts, M&M had higher
PR-curves at the highest recall rates, indicative of enhanced
classification accuracy. Taken together, M&M can compete
with established domain or disease-specific classifiers on in-
cluded classes, thereby showing its potential as a pan-cancer
classification algorithm.

Discussion

There is a large variety of tumor types a child can suffer from,
making it difficult at times for diagnostic specialists to provide
the correct diagnosis. Unfortunately, an incorrect diagnosis
can be detrimental to the child’s odds of survival and quality
of life, as it may lead to an incorrect or suboptimal treatment
regimen. To improve the diagnostic procedure for pediatric tu-
mors, we developed an ensemble-based pan-cancer classifier,
M&M, able to classify tumors based on RNA-seq expression
profiles. To maximize the diagnostic utility, M&M includes
as many rare tumor (sub)types as possible given the currently
available data.

Both tumor type and subtype classifications, defined by

clinicopathological and histological tumor characteristics,
could be accomplished with a performance comparable to
other classifiers that are focused on a subset of pediatric can-
cers. RNA-seq based classification by M&M showed similar
performance to both methylation-based classifiers it was com-
pared to, despite having been trained on a considerably smaller
dataset. Also, M&M’s comparable accuracy to the Heidelberg
CNS methylation classifier is remarkable as current WHO la-
bels for neurological tumors are in part based on the outcome
of this classifier. M&M’s suitability for tumor subtype clas-
sification is endorsed by its comparable performance to ALL-
CatchR, an algorithm specifically designed for B-ALL sub-
type classifications only. Most importantly, besides the sam-
ples that are captured within these existing classifiers, M&M
covers 29 additional pediatric tumor types and 55 subtypes
within the solid (N = 29) and hematological domain (N = 26),
showing its immediate added benefit for pediatric tumor clas-
sification.

M&M was developed with the goal to strive towards an
even performance, regardless of tumor (sub)type. By using
a novel way of limiting the influence of highly abundant tu-
mor (sub)types, M&M could achieve a generally balanced
accuracy across different sample frequencies. Rare tumor
types with as little as three patient samples could be included
within the reference cohort, resulting in a classification pre-
cision of 99% for all samples and 94% for rare tumor types.
Most tumor types were recognized near-perfectly within the
datasets, while samples of less well-classifying tumor types
were mostly classified as low-confidence. As expected, tumor
subtype classifications showed worse performance than tumor
type classifications. However, the drop in precision for high-
confidence classifications was, with 3%, modest. The addi-
tional tumor subtype misclassifications resulted mainly from
rare tumor subtypes classifying as a more frequent subtype
within the overarching parent tumor type. This phenomenon
suggests more samples may be needed for subtype than for
tumor type discrimination.

To our knowledge, M&M is the most comprehensive pedi-
atric tumor-specific classifier so far, spanning the entire do-
main of pediatric tumors. Furthermore, M&M encompasses
samples from all tumor stages, treatment statuses and from
several non-neoplastic tissues. The algorithm is capable of
working with ribo-depleted fresh-frozen tissue, and some ini-
tial results suggest that RNA-seq from FFPE tissues can also
be analyzed. Within the PMC, this possibility extends the
clinical usability to essentially all obtained patient samples.
M&M’s workflow greatly simplifies the user experience, only
requiring RNA-sequencing data and one classifier. Further-
more, the algorithm classifies a new clinical RNA-seq sam-
ple in less than five minutes, with algorithm updating re-
quiring approximately an hour. Additional verification show-
ing the prospective performance in an extended clinical set-
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ting is needed for standard-of-care use, both in the current
center but also when implementing the algorithm in other
centers. Amongst others, it should be checked more thor-
oughly whether FFPE samples can be classified reliably, and
whether it would be possible to analyze poly(A)-enriched
RNA-samples as opposed to ribosomal RNA-depleted sam-
ples with M&M as well.

Important to note is that M&M is intended to assist spe-
cialists during the diagnostic procedure, not as a stand-alone
replacement for the diagnostic procedure. M&M can now di-
rectly provide insights into the molecular make-up of the tu-
mor to indicate which disease the patient is suffering from,
so that subsequent relevant molecular tests can be performed.
This agnostic setup is especially powerful for tumors that are
hard to confirm via classical histopathology. For example, a
sarcoma with a BCOR genetic alteration can be readily identi-
fied by M&M with high confidence for all samples (Figure 5),
while classical histopathology has difficulty distinguishing it
from other small blue round tumors.

The M&M algorithm showed similar performance statistics
for primary, recurrent and metastatic tumor samples, suggest-
ing that classification accuracy was mostly independent of tu-
mor stage. Especially for metastatic tumors, this is a striking
result, showing that tumor signal within RNA-seq data can
be recognized independent of the surrounding tissue. This
idea is further supported by the notion that M&M can cor-
rectly discriminate between several non-neoplastic and neo-
plastic lesions. As an example, osteosarcoma metastases, of-
ten residing in the lungs, are never classified as non-neoplastic
lung tissue. Consequently, the chance that M&M is merely a
tissue-classifier is deemed minimal. Further sources of sample
heterogeneity, such as tumor treatment status and even FFPE,
did not appear to have a large impact on the classification ac-
curacy, suggesting that differences in sample types might not
necessarily have a large influence on M&M’s performance.

For some tumors, M&M had difficulty separating them
from each other. Inadequate feature selection might result in
seemingly equal transcriptomes within different tumor enti-
ties. Furthermore, classification errors could potentially por-
tray that the RNA-sequencing data simply might not contain
information for the separation of certain entities. Particularly,
this could be the case with tumors whose labeling is partially
driven by clinical information. For example, both spindle cell
sarcoma (SCS) subtypes - infantile fibrosarcoma and NTRK
sarcoma - have alterations in the NTRK-gene. The main dif-
ference is based on the age at diagnosis of the patient (infantile
fibrosarcoma < 1, NTRK sarcoma > 1). Tumor type classifi-
cation as SCS is perfect within samples from these classes,
while the subtype distinction is mainly wrong (Figure 4). Al-
ternatively, M&M could indicate the presence of multiple dis-
tinct molecular subgroups currently captured within one tumor
label, leading to an incoherent signal. This phenomenon likely

plays a role in the NOS misclassifications, where there may be
a variety of currently unknown genetic events underlying the
development of the tumor, each resulting in a distinct expres-
sion profile. M&M has the potential to pinpoint tumor entities
which are currently not necessarily well-defined by their label
and help further shape tumor class definitions.

An area of interest for future developments of M&M is
the inclusion of even more rare tumor (sub)types. Especially
for the neurological tumors, the inclusion of more (sub)types
would enable the gradual replacement of CNSm by M&M,
which would currently not be recommended due to missing
subtypes. As there is a continuous flow of new incoming diag-
nostically used RNA-seq samples, samples of extremely rare
tumor (sub)types will accumulate over time, eventually reach-
ing the threshold for inclusion into M&M. When combining
the samples from the reference cohort and test cohort, an addi-
tional 10 tumor types, 18 tumor subtypes and 3 non-neoplastic
tissues could already be included within the classifier (Supple-
mentary Table 8). Alternatively, the number of extremely rare
tumor samples could potentially be increased in-silico, speed-
ing up their inclusion.

A correct diagnosis within pediatric oncology becomes
more and more important, as it is increasingly recognized
that many (molecular) subtypes may benefit from emerging
subtype-specific therapy. Complementing diagnostics with
RNA-seq based classification has the potential to help with
guiding therapeutic decision making, thereby allowing for an
optimal treatment regimen for patients. Besides using RNA-
seq for its expression data, it additionally contains information
on the presence of fusion-genes, and/or other specific genetic
alterations. This allows for an integrated analysis where it is
possible to both suggest a tumor (sub)type, and confirm this
by identifying the molecular driver (fusion/mutations) within
the same diagnostic assay. In this way, M&M will likely con-
tribute to a better future for pediatric oncology patients, not
only for their survival, but also for an improved quality of life.
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Methods

Obtaining patient material and RNA-seq data
RNA-seq data was obtained from patients with a suspected neoplasm using
the same methods as described by Hehir-Kwa et al. (2022) 17. In summary,
either a tissue or liquid biopsy was taken for diagnostic purposes, or from
tumor material obtained during resection. All tissues to be subjected to RNA-
seq were fresh-frozen, with the exception of 8 samples that had previously
been formalin-fixed and paraffin-embedded. Sequencing libraries were gen-
erated using 300 ng RNA. The ribodepletion protocol KAPA RNA HyperPrep
Kit with RiboErase (Roche) was used, generating target insert sizes of ap-
proximately 300 base pairs. Sequencing was performed on a NovaSeq 6000
system (2x 150 base pairs, lIlumina). The resulting reads were aligned us-
ing Star fusion (version 2.7.0f) to GRCh38 and gencode version 29, and base
qualities were recalibrated with GATK4. Quality control was performed us-
ing Fastqc (version 0.11.5) and Picard (version 2.20.1). Expression counts
were eventually calculated at transcript level by Subread Counts. All types
of RNA transcripts were included. Potential RNA-isoforms were not taken
into consideration. Instead, one ‘meta-transcript’ was generated, combining
counts of all exons within one transcript. In total, raw RNA-seq counts were
gathered for 58804 transcripts. Subsequent normalization to transcripts per
million (TPM) was performed.

Cohort selection
Fresh-frozen tissue and liquid biopsy samples collected from 01-12-2018 un-
til 01-06-2022, for which consent was obtained through the Princess Máxima
Center for Pediatric Oncology biobank, were considered for inclusion into
the reference cohort. Samples of primary, recurrent and metastatic tumors
were all present in different proportions. Both samples from systemically
treated and untreated tumors were included. Most, but not all systemically
treated tumors were recurrent or metastatic tumors. Suspected neoplasms
were sequenced as well, extending the cohort to include some non-neoplastic
tissue samples. The dataset was as unbiased in nature as possible. However,
participation bias could result from differences in the frequency of patients
providing informed consent per tumor entity. Important to note is that
retinoblastoma is absent from the reference cohort, as these patients are
treated within the Amsterdam University Medical Centers (location VUmc)
instead of the PMC.

For inclusion, the sample needed to be of a pediatric patient, with an age
ranging from 0 to 18. Further inclusion criteria were sufficient RNA-seq
quality as determined by a minimum of five million unique reads, less than
85% duplicate reads, and a sufficient tumor purity (>5% for all tumors except
Hodgkin lymphoma (HL) and Burkitt lymphoma (BL); for those no minimum
purity) as manually determined by a diagnostic specialist, and a maximum
of one sample per patient per tumor subtype to guarantee a high-quality
cohort. Samples that were suspected to be involved in sample swaps were
removed. The labels of the samples were based on the most recent WHO
classification ICD-O-derived codes; however, more specific labels than the
current ICD-O-3 standard were used where relevant. Contrarily, certain
labels were collapsed onto a more general class label, governed by the
known absence of differences in expression profile. For example, patients
that either suffered from B-ALL with a BCR::ABL1 fusion, or B-ALL with
an expression profile similar to the samples with the fusion (BCR::ABL1
like B-ALL), were collapsed into the class BCR::ABL1 (like) B-ALL.
Labels were an integrated histomolecular diagnosis provided by diagnostic
specialists, based on histology, immunohistochemistry, methylation array
data and PCR-sequencing analysis. A lower limit of three samples per tumor
subtype was chosen for inclusion in the machine-learning models.

Eventually, 1256 samples were selected within the reference cohort. Tu-
mor stage and systemic treatment status was known for more than 96% of
those samples, with mainly non-neoplastic samples not being assigned a status
(n = 35 / 39). As an independent test cohort, all pediatric diagnostic samples
collected between 01-06-2022 and 01-09-2023 were considered (N = 704).

Samples from patients who were also included in the reference cohort were
excluded to prevent bias (N = 87). Samples with unclear diagnosis, bad biopsy
or RNA quality, or ones that were potentially involved in sample swaps were
removed (N = 27). Furthermore, test samples with extremely low tumor purity
(<5%, with the exception of HL and BL) were considered unrepresentative
and unusable within computational classification, and thereby excluded (N =
10). Of the remaining samples, 109 had a tumor subtype diagnosis that was
not represented within M&M (19%), so these samples were removed as well,
resulting in a final test cohort of 471 samples. In addition to the test cohort,
eight FFPE tissues were analyzed separately.

RNA-seq preprocessing
Ribosomal RNA depletion (ribo-depletion) leaves a different number of resid-
ual rRNA-transcripts within the final RNA-seq count data per sample based
on the protocol efficiency. To increase data consistency, a linear model was
generated to predict what percentage of RNA-molecules was protein-coding.
The 5000 transcripts with the highest mean expression within the reference
cohort were selected as input features for the model. Subsequently, these
features were normalized to be centered around zero, using the mean and
standard deviation. The centered features were used as input features for
a generalized linear model with elastic net regularization 18 to predict non-
protein-coding percentages. R package glmnet 19 (version 4.1.7) was used
for model generation. Hyperparameter tuning of regularization parameter
lambda was performed using a ten-fold cross-validation setup. Only features
with a coefficient higher than 0.01 were selected for use within the final lin-
ear prediction model to prevent overfitting. Subsequently, the non-protein-
coding fraction was predicted and converted to a predicted protein coding
fraction. For each sample, transcript counts were divided by the predicted
fraction of protein-coding molecules, increasing the counts proportionally to
the amount of rRNA-pollution within the dataset. Furthermore, transcripts
that anti-correlated substantially with the protein-coding fraction, as deter-
mined by the linear model coefficients, were removed from the dataset. In
total, 58774 transcripts remained in the cleaned dataset, which were subse-
quently log2-transformed.

Classifier cross-validation setup
Classification was performed on the tumor subtype level, from which the par-
ent tumor type could be inferred. The reference cohort was split up into ten
parts, in which stratification ensured approximate equal distributions of the
tumor subtype samples over the parts. Subsequently, nine parts were used as
training data, while the residual part was set aside and only used in the end
to determine the generated classifier’s performance. To estimate the robust-
ness of the generated classifier, the cross-validation process was repeated ten
times, using different seeds that resulted mainly in different data stratifica-
tion, different training data subsets and different trees within RF. After man-
ual optimization of the workflow, one final classifier was generated to classify
new samples, using all reference cohort samples as training data. Overfitting
within this final classifier was evaluated by classifying samples of the inde-
pendent test cohort.

Minority-class focusing workflow
Within the Minority classifier workflow, a classical equal-variance one-way
ANOVA is used to determine which transcripts differ most between groups,
which can subsequently be selected as input features. The difference between
groups is estimated by the F-statistic, a measure based on calculated group
averages and calculated standard deviations per transcript. TPM counts were
used instead of the log2-transformed counts as input values for ANOVA.
Important to note is that ANOVA could only be performed if there were at
least three samples per group. Unfortunately, for tumor (sub)types with three
samples in total, only two samples remained within the training dataset if
the test cohort contained one of the tumor samples. The issue was resolved
by temporarily adding one synthetic data entry for tumor subtypes with only
two available samples, which were again removed from the dataset after
feature selection. The synthetic data entry was created by taking the average
expression for all transcripts of these samples and using these as input values.
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Downsampling was performed by subsampling the complete training
dataset 100 times, generating 100 different training subsets in total. To
this end, initial sampling with replacement was performed, keeping in
the unique entries. The per-sample sampling probability was determined
to be the inverse of the square root of the total number of tumor subtype
samples ( 1

# samples tumor subtype ) within the dataset, resulting in higher sampling
probabilities for samples of lowly abundant tumor subtypes. A minimum of
one sample per tumor subtype was imposed. Subsequently, downsampling of
larger classes to three samples per tumor subtype was performed, resulting in
training sets containing between one and three samples per tumor subtype.

A weighted RF was utilized both for further feature reduction and the final
model generation, using the randomForest package (version 4.7.1.1) in R 20.
No hyperparameter tuning was performed. Default settings included that the
number of transcripts provided at each split was the square root of the total
number of transcripts in the dataset, and random sampling with replacement
was used to select training samples for each tree. In total, 500 binary decision
trees were generated. The weighted setup of RF linked each tumor subtype to
its prior, which is subsequently used during bootstrapping. The priors were
chosen to be the reciprocal of the total number of samples per tumor subtype
within the training set.

The total number of features was reduced to 300, using a feature impor-
tance score metric calculated within RF itself. The feature importance score
was determined by calculating the mean decrease in accuracy upon removal
of the feature from RF. The setup was run on the 100 training subsets, using
the 1000 most variable transcripts selected via the F-statistic of ANOVA. The
importance of the features in the 100 different training sets was averaged and
ordered, after which the top 300 features were selected as input variables for
the final model development. The same training subsets and weighted RF-
setup were used to generate 100 different Minority models.

Majority-class focusing workflow
The Majority classifier setup is initiated with the same downsampling proce-
dure as performed for the Minority classifier, except now the maximum num-
ber of samples per tumor subtype is increased from three to fifty. Each training
set eventually contained one to fifty samples per tumor subtype. Within each
training subset, feature selection is performed by selecting the 2500 features
that portray the highest variance. All features were centered around zero using
the mean and standard deviation per transcript. PCA was performed to reduce
dimensionality within the dataset further. A manual optimization procedure
showed that the first hundred principal components (PCs) contained most
information (data not shown), so that these features were kept for the final
model generation. Weighted kNN from the R package kknn (version 1.3.1) 21

was used to create a model within each training data subset. Leave-one-out
cross-validation was performed to determine the optimal number of neigh-
bors, ranging from one to a maximum of 25 neighbors. The ‘optimal’ kernel,
a Minkowski distance of 1 and no scaling were used. The weighted variant of
kNN takes the distance from the test point to each of the k nearest neighbors
into account, which is particularly useful in situations of class imbalance. Hy-
perparameter tuning was performed using a ten-fold cross-validation setup.

Majority-voting
M&M makes use of a majority-voting system, where the different votes
come from classifications provided by models that were generated on
different training datasets. Eventual probability scores for a classification
label are calculated as the fraction of models that called a sample the
same label. To come to an ensemble-based classification, integration
of the two individually generated scores is needed. The sum-rule for
classifier probability score combination, considered the most restrictive and
robust 22,23, was used to integrate the Minority and Majority classifier results
into M&M. Equal weights were given to the Minority and Majority classifier
scores. If supporting information for a classification label was absent
from either one of the classifiers, resulting in a single-classifier probability

score of zero, the classification label was not trusted. For these labels,
the probability score was divided by ten instead of by two. The resulting
probability scores cannot be interpreted as the real-life probability of cor-
rectness of a classification, due to the inability to perform model recalibration.

To estimate at which probability score there is an optimal balance between
removing erroneous classifications (high specificity) and keeping in as many
correct classifications as possible (high sensitivity), an ROC-analysis was per-
formed. In this case, ‘positives’ were samples that remained classified, while
‘negatives’ were samples that did not reach the probability score threshold
and were thereby removed. An optimum was defined as the probability score
threshold at which the sensitivity and the specificity are balanced. For the tu-
mor type classifications, this score was around 0.82 (Extended Data Fig.4a),
while for the tumor subtype classifications the score was determined around
0.72 (Extended Data Fig.4b).

Comparison to other classifiers

Only samples from tumor entities that could be classified by both classifiers,
as specified within the classifier documentation, were selected, considering
that each classifier had a specific area of expertise within the pan-cancer
setting. ALLCatchR could be run on all B-ALL samples except the NOS
B-ALL, with RNA-seq data availability being the only requirement. For the
CNS and sarcoma classifiers, on the other hand, DNA methylation data was
required. Of the 262 tumor samples from the neurological domain within
the reference cohort, 224 could be analyzed and matched to an existing
class using the CNS methylation classifier ( 85%). Out of 171 sarcoma
samples within the reference cohort, 89 methylation profiles were available
for analysis by the Sarcoma methylation classifier (∼52%). More data was
available for the test cohort, having 88 CNS methylation samples out of the
98 CNS test samples (∼90%) and 53 sarcoma methylation samples out of the
66 sarcoma test samples (∼80%). After obtaining classification labels for
each of the three other classifiers, label conversion was performed to match
the corresponding tumor (sub)types labels with M&M’s labels.

For the CNS and sarcoma classifiers (CNSm and SARCm), version
12 and version 10 were used respectively. Samples with low probability
scores (<0.3) obtained the classification label ‘Not classified’ within
the methylation-based classifiers, resulting in these being counted as
misclassifications. To minimize their influence on the PR-curves, the
probability scores were manually put at 0, so that all these classifications
were removed simultaneously at the earliest possible score. Furthermore,
M&M’s classification labels with probability scores below 0.3 were also
converted to ‘Not classified’, guaranteeing a fair comparison. As a result,
M&M’s actual performance is often better than currently portrayed.

The resulting dataset was subsampled 100 times to approximately 25% of
the available samples, using random sampling without replacement. Within
each subset, the accuracy, precision and recall were calculated using proba-
bility score thresholds described within the original guiding articles. Specif-
ically, only the high-confidence classifications were selected to calculate the
precision on, while the recall was calculated as the fraction of high-confidence
classifications within the whole subset. For CNSm and SARCm, confidence
score thresholds of 0.84 were used 3,9. ALLCatchR’s results included infor-
mation on which samples were called with high confidence, so that these
could directly be inferred. Subsequently, the obtained performance measures
for the 100 data subsets were compared by counting in how many subsets
each classifier outperformed the other one. Resulting p-values evaluating the
performance were calculated as 1 minus the fraction of subsets in which a
classifier outperformed the other one. The performance was considered sig-
nificantly enhanced when a classifier outperformed the other classifier in at
least 95 out of the 100 subsets, as a proxy for a p-value equal to or below
0.05.
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Data and Software Availability
To facilitate M&M’s use on other datasets, an R-package for its implementa-
tion has been created, under the name of MnM. The package is freely available
on Github (https://github.com/princessmaximacenter/MnM), while future ef-
forts will try to implement it in CRAN. Included are options to retrain the
separate Minority and Majority classifiers, check their performance within a
ten-fold cross-validation setup, and use the newly trained M&M classifier for
new sample classifications. To check classifier performance more extensively,
options are implemented to further visualize the results. A tutorial is provided
on Github to allow for easy implementation of the algorithm and visualiza-
tion tools. The final trained Minority & Majority classifiers generated on the
reference cohort will furthermore freely be available on Zenodo as R-objects,
which can be used for new sample classifications using the MnM package.
Important to note is that missing transcript imputation is currently not imple-
mented, so all transcripts that are used as features need to be available within
the dataset. The original transcript per million data of the reference cohort and
test cohort used for classification purposes are available within ArrayExpress
(accession E-MTAB-14038).

Software and data visualization
The whole setup was performed with R software (version 4.2.3) 24. Data visu-
alization was performed using the R packages ggplot2 (version 3.5.1) 25, umap
(0.2.10.0), ungeviz (version 0.1.0) and ggrepel (version 0.9.5.9999). Figures
were optimized using Adobe Illustrator 2023.
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Extended data
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Extended Data Fig. 1. Overview reference cohort. a) Unsupervised clustering of reference cohort using UMAP, color-coded for the tumor
domain the sample belongs to. b) Close-up of the UMAP projection of the hematological domain samples. Color-coding is based on the
underlying tumor type. Associations between abbreviations and tumor type names are available in Supplementary Table 1. c) Pie-chart
showing the distribution of samples per tumor type (inner ring) and tumor subtype (outer ring) from the hematological domain.
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Extended Data Fig. 2. Overview reference cohort. a): Unsupervised clustering of reference cohort using UMAP, color-coded for the tumor
domain the sample belongs to. b) Close-up of the UMAP projection of the neurological domain samples. Color-coding is based on the
underlying tumor type. Associations between abbreviations and tumor type names are available in Supplementary Table 1. c) Pie-chart
showing the distribution of samples per tumor type (inner ring) and tumor subtype (outer ring) from the neurological domain.
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Extended Data Fig. 3. Accuracy of all classifiers on separate tumor (sub)type classifications. a): Accuracy of the Minority (x-axis) and
Majority Classifier (y-axis) on tumor types (left panel) or tumor subtypes (right panel) relative to one another. b) Accuracy of the separate
Minority (x-axis, lower panels) and Majority classifier (x-axis, upper panels) compared to the accuracy of integrated classifier M&M (y-axis),
on tumor types (left panels) and subtypes (right panels).
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Extended Data Fig. 4. Determination of probability score threshold for separation of high-confidence and low-confidence
classifications.: Receiver operating characteristic (ROC) curve analysis to determine at which threshold the optimal balance between the
sensitivity and specificity was achieved. The red line shows the chosen threshold for the probability score for the tumor type (a) and tumor
subtype (b): 0.82 and 0.72.
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Extended Data Fig. 5. Percentage of correct diagnoses within M&M’s top 3 classification labels. a,b) Shown are the results for the
complete set of tumor type (a) and subtype (b) classifications within the ten-fold cross-validation on the reference cohort (upper panel) and
independent test cohort (lower panel).
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Extended Data Fig. 6. F1 score and recall per pediatric tumor entity, stratified by population frequency. a-b) It shows how often a
tumor type (a) and subtype (b) is correctly classified within the reference cohort, compared to how often the probability score reaches the
threshold (Recall).

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.06.24308366doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.06.24308366
http://creativecommons.org/licenses/by-nc-nd/4.0/


95% 93%

N = 1256 N = 471

99% 99%

80% 77%

96% 94%

N = 1068 N = 413

99% 99%

83% 78%

92% 88%

N = 100
N = 25

96% 100%

77% 60%

89% 95%

N = 53
N = 20

97% 100%

74% 90%

95% 94%

N = 1009 N = 392

99% 99%

83% 79%

94% 92%

N = 210 N = 66

98% 100%

78% 73%

88%

N = 8

100%

62%

All Primary Recurrence Metastasis No treatment Systemic treatment FFPE

Accuracy
Precision

R
ecall

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

a.

b.

86% 86%

N = 1256 N = 471

96% 96%

72% 70%

87% 86%

N = 1068 N = 413

96% 96%

74% 70%

83% 84%

N = 100 N = 25

94% 100%

66% 64%

89% 95%

N = 53
N = 20

97% 100%

76% 90%

88% 87%

N = 1009 N = 392

97% 96%

76% 71%

79% 82%

N = 210 N = 66

92% 96%

61% 70%

88%

N = 8

100%

75%

All Primary Recurrence Metastasis No treatment Systemic treatment FFPE

Accuracy
Precision

R
ecall

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Extended Data Fig. 7. Performance of M&M on different sample types. Accuracy, precision and recall for the complete set of tumor type
(a) and subtype (b) classifications grouped by their tumor and treatment status within the reference cohort (Train) and independent test cohort
(Test).
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Supplementary Table 1. Overview of links between domain, tumor types, subtypes, abbreviations and the accompanying sample size.
Available for download separately.

Supplementary Table 2. Overview of M&M’s output on tumor type level. If there are less than three different labels administered
within all models, the remaining predict and probability groups will be filled out with NA.

predict probability1 predict2 probability2 predict3 probability3
Patient1 Pilocytic astrocytoma 0.980 Ganglioglioma 0.003 Paediatric-type diffuse low-grade glioma 0.001
Patient2 Medulloblastoma 1.000 NA NA NA NA
Patient3 AML 0.515 Not malignant (Hemato) 0.094 JMML 0.003

Supplementary Table 3. Overview of M&M’s output on tumor subtype level. If there are less than three different labels administered
within all models, the remaining predict and probability groups will be filled out with NA.

predict probability1 predict2 probability2 predict3 probability3
Patient1 Pilocytic astrocytoma 0.980 Ganglioglioma 0.003 Diffuse low-grade glioma, MAPK pathway-altered 0.001
Patient2 Medulloblastoma, SHH-activated 1.000 NA NA NA NA
Patient3 GATA1 mutated AML/TMD 0.100 Bone marrow failure 0.087 Not malignant bone marrow 0.007

Supplementary Table 4. Misdiagnoses within M&M algorithm with their top 3 classifications and probability scores.
Available for download separately.

Supplementary Table 5. P-values associated with the comparisons of the performance measures between M&M and ALLCatchR on
B-ALL subtype classifications. A star (*) signifies a significant difference (p-value < 0.05).

Performance measure Dataset M&M better (p-value) ALLCatchR better (p-value)
Accuracy Reference cohort 0.71 0.67
Accuracy Test cohort 0.96 0.09
Precision Reference cohort 0.06 0.94
Precision Test cohort 1.00 0.71

Recall Reference cohort 1.00 0.00∗

Recall Test cohort 1.00 0.01∗

Supplementary Table 6. P-values associated with the comparisons of the performance measures between M&M and the DKFZ CNS
methylation classifier (CNSm) on central nervous system tumor classifications. A star (*) signifies a significant difference (p-value <
0.05).

Performance measure Dataset M&M better (p-value) CNSm better (p-value)
Accuracy Reference cohort 0.39 0.80
Accuracy Test cohort 0.20 0.96
Precision Reference cohort 0.62 0.49
Precision Test cohort 0.20 1.00

Recall Reference cohort 0.38 0.75
Recall Test cohort 0.99 0.04∗
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Supplementary Table 7. P-values associated with the comparisons of the performance measures between M&M and the DKFZ
sarcoma methylation classifier (SARCm) on sarcoma classifications. A star (*) signifies a significant difference (p-value < 0.05).

Performance measure Dataset M&M better (p-value) SARCm better (p-value)
Accuracy Reference cohort 0.70 0.64
Accuracy Test cohort 0.57 0.88
Precision Reference cohort 0.58 1.00
Precision Test cohort 0.82 0.77

Recall Reference cohort 0.89 0.18
Recall Test cohort 0.45 0.78

Supplementary Table 8. Tumor (sub)types that reach the sample size threshold of 3 upon combining the reference cohort and test
cohort data, allowing their future inclusion into M&M.
Available for download separately.
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