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Summary 
Background 12 
Metapopulation models provide platforms for understanding infectious disease dynamics and 
predicting clinical outcomes across interconnected populations, particularly for large epidemics and 14 
pandemics like COVID-19. 
Methods 16 
We developed a novel metapopulation model for simulating respiratory virus transmission in the 
North America region, specifically for the 96 states, provinces, and territories of Canada, Mexico and 18 
the United States. The model is informed by COVID-19 case data, which are assimilated using the 
Ensemble Adjustment Kalman filter (EAKF), a Bayesian inference algorithm, and commuting and 20 
mobility data, which are used to build and adjust the network and movement across locations on a 
daily basis.  22 
Findings 
This model-inference system provides estimates of transmission dynamics, infection rates, and 24 
ascertainment rates for each of the 96 locations from January 2020 to March 2021. The results 
highlight differences in disease dynamics and ascertainment among the three countries. 26 
Interpretation 
The metapopulation structure enables rapid simulation at large scale, and the data assimilation method 28 
makes the system responsive to changes in system dynamics. This model can serve as a versatile 
platform for modeling other infectious diseases across the North American region. 30 
Funding 
US Centers for Disease Control and Prevention Contract 75D30122C14289; US NIH Grant 32 
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Introduction 
Mathematical models have been used to simulate infectious diseases outcomes, infer transmission 36 
dynamics, and predict future disease burden. These tools can inform public health strategies by testing 
control methods and identifying effective interventions1. During the SARS-CoV-2 pandemic, 38 
unprecedented data availability enabled application of mathematical models in many locations and at 
different geographical scales worldwide2–5. Metapopulation modeling approaches provide an efficient 40 
framework for simulating and evaluating the spatiotemporal progression of infectious disease over 
large geographic areas. In this model form, populations are aggregated within typically fixed 42 
geographic units (e.g. provinces, cities), which allows resolution of spatial disease patterns without the 
computational expense and micro-behavioral assumptions required for agent-based models. At large 44 
geographical scales, agent-based models require high-performance computing (HPC) clusters. For 
example, Bhattacharya et al. developed a platform to enable the real-time execution of an agent-based 46 
COVID-19 model for the United States on more than ten thousand CPU cores6.  
 48 
Many metapopulation models have been developed to describe the dynamics of infectious diseases at 
different geographic scales7,8; however, a key challenge in model development lies in accurately 50 
determining the movement patterns of individuals among subpopulations. Some metapopulation 
models use fixed or arbitrary sized geographical areas (cells) as subpopulations, which can then be 52 
aggregated to match the resolution of available case, census and movement data9,10. One example of a 
multi-national system is the GLEAM (Global Epidemic And Mobility) platform10–12, which estimates 54 
the flux of individuals among arbitrary subpopulations centered around major transportation hubs 
(usually airports) and uses commuting and air travel data13. 56 
 
In 2020, the US reported the highest number of COVID-19 cases and deaths globally, with the first 58 
case identified in Washington state on January 20th and three pandemic waves manifesting during the 
year14. Canada reported its first case in Toronto on January 25th and experienced a decline in cases 60 
during the summer followed by a resurgence in the fall. Mexico had a similar epidemiological history, 
but the first wave developed later during the summer15. The literature currently lacks a comprehensive 62 
COVID-19 model for the North American region at continental scale. Here, we present a 
metapopulation susceptible-exposed-infectious-recovered (SEIR) for COVID-19 for the majority of 64 
the North American region (i.e. Canada, United States and Mexico) from the beginning of the 
pandemic to widespread availability and distribution COVID-19 vaccines. The model is coupled with 66 
a data assimilation algorithm and is informed by daily COVID-19 cases and a commuting network 
that is adjusted by daily mobility trends. Unlike the GLEAM platform, in this model the flux of 68 
individuals among subpopulations of the metapopulation model is calculated using the daily work 
commuting patterns coupled with random movements among the geographical locations, as in 70 
previous work4.  
 72 
The model developed here provides temporal estimates of transmission and ascertainment rates for 
COVID-19 for the North American Region, filling a gap in the existing literature regarding models 74 
for this region. The flux patterns and the continental-level metapopulation structure used in this study 
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helps investigation of disease dynamics of COVID-19 at a larger scale, for the majority of the North 76 
American region, and can reveal dynamics that are discernible only at such a broad scale. Lastly, the 
work commuting matrix structure developed for this study can be paired to different compartmental 78 
models and disease surveillance data to study the dynamics of other infectious diseases such as 
influenza. 80 
 

Methods 82 

We developed a metapopulation susceptible-exposed-infectious-recovered (SEIR) model for the 
North American region. Specifically, the model represents the 96 first-level administrative divisions 84 
of Canada (10 provinces and 3 territories), United States (50 states and 1 federal district) and Mexico 
(31 states and 1 autonomous city) represented in Figure 1, with a total population of 483 million, 86 
based on census data16–18. Mixing is simulated as two types of movement: daily commuting and 
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random movement (i.e. all the daily movement across divisions due to reasons other than work 88 
commuting). 

Figure 1 Commuting to work matrix in most of the North American region. The map shows the 10 90 
provinces and 3 territories of Canada, the 50 states and 1 federal district of United States and the 31 states 
and 1 autonomous city of Mexico that have been used in the model. The arrows represent the flux of 92 
individuals commuting daily to work to another location. Arrow size represents the number of commuters, 
and color represents the country of origin: red for Canada, blue for United States, green for Mexico.  94 

Daily commuting matrix 
Daily commuting among locations were retrieved and derived from four national datasets: i) Canadian 96 
2016 census (Statistics Canada) Commuting Flow from Geography of Residence to Geography of 
Work19; ii) Canada Frontier Counts (Statistics Canada): Number of vehicles travelling between Canada 98 
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and the United States20; iii) 2011-2015 5-Year American Community Survey (ACS) Commuting Flows 
(United States Census Bureau)21; and iv) Mexican Intercensal Survey 2015 (National Institute of 100 
Statistics and Geography, INEGI)18. Information from these datasets were processed and combined 
according to the methods described in Supplementary Note 1 to obtain the commuting work matrix 102 
represented in Figure 1. The matrix contains the number of people that commute daily to work in 
another location (states for Mexico and US, provinces or territories for Canada). To account for 104 
control measures and closures enacted during the estimation period, the commuting work matrix was 
scaled based on daily mobility activity, derived from the “change in workplace visitors” trends from 106 
Google Community Mobility Reports22 (see Supplementary Figure 1). To account for movement 
between locations for purposes other than work commuting, the model includes daily random 108 
movement among locations; this movement was set to be proportional to the average number of 
working commuters among each location pair (see Table 1).  110 
 
Transmission model 112 
The metapopulation model resolves daytime and nighttime mixing differences, depicting diurnal 
changes in contact among subpopulations. Transmission occurs as a discrete Markov process during 114 
both day and nighttime, following the structure of previous studies in the US4. The transmission 
dynamics are described by the equations in Supplementary Note 2 (eqs. S4-S13). In these equations, 116 
𝑆!" , 𝐸!" , 𝐼!"# , 𝐼!"$ , and 𝑁!" represent the susceptible, exposed, reported infectious, unreported infectious, 
and total population in the subpopulation commuting from location 𝑗 to location 𝑖 (𝑖 ← 𝑗). 118 
Additionally, we assume that no individuals enter or leave the model, and that there is no loss of 
immunity following primary infection, given the relatively short simulation time period. For the same 120 
reason, we can compute the 𝑅!" (Removed population) as 𝑅!" = ∑ 𝐼!"#%

& + ∑ 𝐼!"$%
& 	 which is the 

cumulative sum of daily new reported and unreported cases, or the sum of the individuals that exited 122 
the two infectious compartments.  
 124 
The parameters of the model are: 𝛽, the transmission rate of reported infections; 𝜇, the relative 
transmissibility of unreported infections; 𝑍, the average latency period (from infection to 126 
contagiousness); 𝐷, as the average duration of contagiousness; 𝛼, the fraction of documented 
infections (ascertainment rate); and 𝜃, a multiplicative factor adjusting random movement. A distinct 128 
transmission rate, 𝜇𝛽, is defined for undocumented infections: we assume that these individuals show 
little to no symptoms during infection and are less contagious than documented infections5. Each 130 
equation is integrated using a Poisson process to capture the stochastic nature of transmission 
dynamics. In total, the model consists of 3,268 metapopulations. To reduce the dimension of the 132 
system being estimated and to improve identifiability, we fixed the values of the parameters related to 
disease progression (𝑍, 𝐷, and 𝜇) and the multiplicative factor for random movement (𝜃) based on 134 
previously published findings4,14. Local transmission rates 𝛽%' and ascertainment rates 𝛼%'  are estimated 
for each of the 96 locations, 𝑙 at time 𝑡. The hyperparameter 𝑅%' , the time-varying reproductive 136 
number, was derived using  the next-generation matrix approach4,23: 

(1) 𝑅!" = 𝛽!"𝐷[𝛼!" + (1 − 𝛼!")𝜇] 138 
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𝑅%'  Time-varying reproductive number for location 𝑙 at time 𝑡 
𝐷 Duration of contagiousness 140 
𝛽%' Transmission rate of location 𝑙 at time 𝑡 
𝛼%'  ascertainment rate of location 𝑙 at time 𝑡 142 
𝜇 relative transmissibility of unreported infections 

(a) (b)  144 

Figure 2. Metapopulation structure and compartmental model: (a) Daily work commuting - during the 
daytime, some individuals commute from their home to their workplace in another location and mix with 146 
the populations present there. During the nighttime, those commuters return home and mix with other 
residents who live in the same location. Random movement - individuals may travel among locations for 148 
reasons other than work. These random visitors circulate among subpopulations following a Markov 
process, causing a population exchange in all locations (b) 𝐼#$% 	reported infected and 𝐼#$&  unreported infected 150 
from location from location j to location i (i ←j); 𝑡' daytime duration; 𝑡( nighttime duration; 𝛽 
transmission rate; 𝛼 ascertainment rate; 𝜇 relative transmissibility of unreported cases; 𝑍 latency period; 152 
𝐷 duration of contagiousness. 

 154 
COVID-19 cases and data assimilation 
The model is informed by daily COVID-19 confirmed case data retrieved from COVID-19 Open 156 
Data — Google Health24 starting from January 20th 2020 to March 31st 2021 for the 96 first-level 
administrative divisions of Canada, United States and Mexico. This time frame was chosen to capture 158 
the first three COVID-19 waves14, before the emergence of the Delta and subsequent variants and 
more widespread uptake of COVID-19 vaccines. A 7-day moving average was applied to the daily 160 
cases data to smooth out daily fluctuations in reporting. The smoothing also mitigates the impact of 
reporting delays or inconsistencies in case data, providing a more reliable indicator of overall disease 162 
dynamics. 
 164 
The estimation of state variables and parameters is carried out by data assimilation implemented using 
the Ensemble Adjustment Kalman Filter (EAKF) algorithm25, as in previous studies26,27. Kalman filters 166 
use Bayes’ rule to update state variables and parameters. Normality is assumed for the prior 
distribution and the likelihood so that the posterior distribution can be characterized by the mean and 168 
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the covariance. In this model, an ensemble of 300 simulations is integrated to generate a prior 
distribution of parameters and state variables, including estimation of the observed state variable. At 170 
each observation time point, the model is halted, and the ensemble and observation are used to 
calculate the Kalman gain, which is used to update the observed state variable. The unobserved state 172 
variables and parameters are then updated in proportion to the same Kalman gain. Finally, the 
posterior estimates are used as priors and model integration through time continues to the next 174 
observation. The formulas used to calculate the Kalman gain for the observed and unobserved 
variables and parameters are presented in the Supplementary Note 3 (eqs, S14-S15). To properly 176 
balance the influence of the observational data in the assimilation process, it is crucial to estimate its 
error, which is typically unknown. Here, we estimated the Observational Error Variance of the 178 
observational data as shown in eq. (2), similarly to prior works5,28,29: 

(2) 𝑂𝐸𝑉!" = max	(5, (*!
")#

',,
) 180 

𝑂𝐸𝑉%' Observational Error Variance of location 𝑙 at time 𝑡 
𝑂%' average cases in location 𝑙 in the week before time 𝑡 182 
 
Repeated filter adjustments tend to decrease model ensemble variance reducing the impact of new 184 
observations in subsequent estimates. This may lead to divergence, in which the filter ceases adjusting 
the model state25. To avoid divergence, at each timestep we applied a multiplicative factor (1.01) to 186 
inflate the prior ensemble of the observed variable (daily reported infected 𝐼#) and the estimated 
parameters (ascertainment rate 𝛼 and transmission rate 𝛽). Additionally, we reinitialized the values of 188 
the estimated parameters for a fraction (2%) of the ensemble members every 7 days. This 
reinitialization enables the system to periodically readjust estimations whenever the ensemble variance 190 
begins to shrink, thus preventing divergence. 
 192 
Further details on the SEIR-EAKF assimilation process are available in the Supplementary Note 3. 
 194 
Model initialization 
Each ensemble member was initialized with a set of parameter and state variable estimates to resemble 196 
the epidemiological conditions at the beginning of the SARS-CoV-2 pandemic in 2020. The parameter 
values related to disease progression (𝑍, 𝐷	and 𝜇) were drawn from distributions with ranges reported 198 
in Table 1, in accordance with Li et al5. These parameters are assumed to remain fixed over time and 
to have consistent values across all locations, representing inherent biological characteristics of the 200 
disease. The random movement factor 𝜃 is also constant over time, with a random value drawn from 
a uniform distribution between 0 and 0.2 assigned to each location (see Table 1). This value represents 202 
the relative volume of random movement compared to commuting, where 𝜃 = 0.15 indicates that 
the number of random visitors is 15% of the average number of commuters between two locations. 204 
Exposed (𝐸), reported infectious (𝐼#) and unreported infectious (𝐼$) individuals were initialized with 
random draws from a uniform distribution that ranged from 1 to 9 in each subpopulation. 206 
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The three countries exhibited substantive differences in healthcare and testing capacity during the 208 
pandemic. Mexico had particularly low testing rates30,31, suggesting that only severe cases were assayed 
due to limited availability of test kits. During 2020, the United States experienced the highest number 210 
of cases, as well as relatively high nation-wide ascertainment rates, as shown in prior inference 
studies4,14. For Canada, the estimate of national testing rates or the ascertainment rate is lacking; 212 
however, Ontario, the most populous province in Canada, accounting for ~37% of the population, 
initially faced challenges in ramping up its testing capacity, but its centralized resource strategy was 214 
able to increase test capacity during 202032. Given these differences among the three countries, we 
assigned country-specific initial ranges for the ascertainment rate 𝛼. For the US we used SARS-CoV-216 
2 seroprevalence estimates and cumulative reported cases to estimate the value of the ascertainment 
rate. Specifically we used infection-induced seroprevalence from blood samples collected in US during 218 
July 2020 (3.5%)33 to derive an initial estimate of 𝛼 in the US, this formula is shown in eq. (3): 

(3) 𝛼-., = 	𝑚𝑒𝑑𝑖𝑎𝑛(
∑01232$

44.%&	×	787$
) 220 

𝛼()*  Initial ascertainment rate for the US 
∑ 𝑐𝑎𝑠𝑒𝑠! Cumulative reported cases of state j up to July 2020 222 
𝐼𝐼𝑆()  Infection-induced seroprevalence in the United States during July 2020 (3.5%)33  
𝑝𝑜𝑝" Population of state j 224 
 
Based on this formula, we set the initial prior distribution mean to 0.25 for 𝛼 in US.  226 
 
Infection-induced seroprevalence was not available for Canada and Mexico during the time frame of 228 
interest. Instead, considering the very low testing rate for Mexico30,31 we set the initial prior distribution 
mean to 0.08, corresponding to a ~70% decrease from the US. Canada faced early issues establishing 230 
testing facilities32, so we set the initial prior distribution mean to 0.12 for 𝛼, between the values of US 
and Mexico (~50% decrease compared to the US).  232 
 
The initial values of 𝛽 were drawn for each location from the normal distribution with mean 𝜇 = 1.93 234 
and standard deviation 𝜎 = 0.75 similarly to Li et al.5(see Table 1). 
 236 
The SEIR-EAKF model-inference system can potentially estimate parameters and state variables 
values that violate physicality. This could happen, for example, if a state variable or estimated 238 
parameter is adjusted by the filter to a value below zero. To avoid this issue, we applied constraints to 
both the state variables and parameters, subsequently re-assigning values that fell outside specified 240 
bounds. Specifically, ensemble members associated with any state variable that exhibited values less 
than or equal to zero were assigned values from the previous day. The Susceptible population 	𝑆!" is 242 
not directly adjusted by the EAKF. Instead, it is computed using the total population count and the 
EAKF-adjusted state variables as	𝑆!" = 𝑁−𝐸!"−𝑅!" . This guarantees population mass balance and is 244 
feasible under the assumption of non-reinfection among individuals. Additionally, it prevents the 
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variable 	𝑆!" from exceeding the total population, which aligns with the assumption of a constant 246 
population. 
 248 
The lower bound of 𝛼 was set to 0.025 corresponding to 5 reported cases every 200 infections. For 
Canada and US, this bound increased linearly by 0.5% at each day, or: 𝛼!"#$%& =	𝛼!$%& ∗ 1.005. This 250 
increase was imposed to reflect the efforts of the two countries to increase the detection capabilities 
of local and national health systems32,34–36. Conversely, Mexico implemented a sentinel surveillance 252 
system37 in which only the hospitalized cases and 10% of the mild cases were tested38. Focusing testing 
efforts on symptomatic individuals is a cost-effective strategy, but it also greatly increases the 254 
proportion of unreported cases, resulting in lower ascertainment rates. For this reason, the lower 𝛼 
bound of Mexico did not increase over time in our model. The upper bound for 𝛼 was fixed for all 256 
locations at 0.6 (i.e. 60 cases per 100 infections). We allowed the transmission rate 𝛽 to span a broad 
range of values, with the lower bound set to 0.2 and the upper bound set to 4. The descriptions, prior 258 
ranges and bounds for all the model parameters are shown in Table 1.  
 260 

* Mexico lower bound is fixed to 0.025 over time; Canada and US lower bound increases by 0.5% daily:  𝛼!"#
$%& = 	𝛼!

$%& ∗ 1.005 

Table 1: parameters description, initial prior distribution, ranges, and parameter type 262 
 
System identifiability 264 
To assess the identifiability of the model, we first tested our framework using synthetically generated 
datasets. Specifically, we generated a suite of synthetic outbreaks using the model (eqs. S4-S13) in free 266 
simulation, each with arbitrarily assigned values of the epidemiological parameters and initial 
conditions for state variables. We then ran the full model-inference system 100 times assimilating the 268 
daily new reported cases time series generated by each of these free simulations to test the system’s 
ability to accurately estimate state variable and parameter values. As in practice with actual data, we 270 
fixed the parameters related to disease progression (𝑍, 𝐷, and 𝜇) and the multiplicative factor for 
random movement (𝜃), while the ascertainment rate 𝛼 and transmission rate 𝛽 were estimated for 272 
each location. The initial prior distribution and range of the parameters were as reported in Table 1. 
 274 

 Description Initial prior 
range distribution 

bounds Parameter type 

𝒁 Latency period 𝑈(2, 5)	𝑑𝑎𝑦𝑠 

Fixed Fixed 
𝑫 Duration of contagiousness 𝑈(2, 5)	𝑑𝑎𝑦𝑠 

𝝁 Relative transmissibility of unreported infections 𝑈(0.2, 0.45) 

𝜽 Random movement factor 𝑈(0.0, 0.2) 

𝜷 Transmission rate 𝑁(1.93,0.75) [0.2, 4] 

Estimated 
𝜶 

Ascertainment rate - Canada 𝑈(0.08,0.17	) 

[0.025, 0.6]* Ascertainment rate – United States 𝑈(0.13, 0.37) 

Ascertainment rate - Mexico 𝑈(0.04,0.12) 
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Results 
Daily commuting matrix 276 
The daily commuting matrix depicted in Figure 1 was obtained by combining and processing the 
national datasets reported in the Method section (full description in Supplementary Note 1); it is 278 
summarized in Table 2. Out of a combined population of 483 million, the Canadian population 
accounts for the 7.3% (35.1 million), the US for the 67.2% (324.3 million) and Mexico for the 25.6% 280 
(123.3 million). Around 8.9 million people, or 1.84% of the represented North American population, 
commutes daily to another state/province/territory or country to work. Inter-country commuting 282 
accounts for just the 1.12% (99,369) of the 8.9 million commuters. Finally, the percentage of internal 
commuters for each country is similar to the population percentage relative to the total population of 284 
the three countries.   
 286 

Residence Workplace Commuters 
% over Total 
Commuters 

Canada Canada 527,300 5.93 
Canada USA 1,962 0.02 
USA Canada 4,605 0.05 
USA USA 5,334,072 60.02 
USA Mexico 12,892 0.15 
Mexico USA 79,910 0.90 
Mexico Mexico 2,925,820 32.92 
  Total 

Commuters 
% over total 
Population 

  8,890,144 1.84 
 
Table 2: Number of commuters by country of residence and workplace. Individuals with residence and 288 
workplace in the same country are commuting between states/provinces/territories within that country. The 
last column shows the percentage over the total commuters. The last row shows the total number of cross-290 
border (state, province, territory, or country) commuters and its percentage over the total population of the 
model. 292 
 
System Identifiability 294 
To verify the convergence of the estimated parameters (ascertainment rate 𝛼 and transmission rate 𝛽) 
to the synthetic truth values created in free simulation, we plotted the model-generated data points 296 
over the boxplot distributions of the 3000 estimated parameter values (300 ensemble members x 100 
ensemble simulations) at the end of each outbreak among the locations (see Supplementary Figure 298 
2). Most of the true values fall in the interquartile of the distribution of the estimated values (68% for 
𝛼 and 84% for 𝛽) while all the true values falls in the 95% CI of the distribution. This demonstrates 300 
the ability of the system to estimate local time-varying 𝛼 and 𝛽 values. 
 302 
Simulation with Case Data 
The model-inference system was run with the real case data of Canada, United States and Mexico 304 
starting from January 20th 2020 to March 31st 2021. During this time frame, the three countries 
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experienced asynchronous outbreaks as depicted in Supplementary Figure 1. To explore disease 306 
dynamics over time and location, we selected three timepoints when cases were declining in most of 
the locations of the North American region, roughly corresponding to the end of the three pandemic 308 
waves experienced in United States during 202014. The first wave began in January 2020 and lasted 
through the spring; we selected June 6, 2020 as the first timepoint. Figure 3 shows the estimated 310 
values of the parameters (ascertainment rate 𝛼 and transmission rate 𝛽) and hyperparameters (basic 
reproductive number 𝑅%) in all 96 locations of the study region at this time point. In addition, the 312 
lower panels of Figure 3-5 show the time progression of model fitting (modeled daily new reported 
cases and observed daily cases), select state variables (𝑆, cumulative 𝐼# ,cumulative	𝐼$) and parameter 314 
and hyperparameter estimates (𝛼,	𝛽,	𝑅%) for a total of nine selected locations. These locations were 
selected among the 96 to represent the epidemiological progression in different geographical areas of 316 
the North American region, focusing on some of the most populous and epidemiologically relevant 
locations of the three countries. In Figure 3 the three selected locations indicated in the maps are 318 
British Columbia (Canada), New York (United States) and Distrito Federal (Mexico City, Mexico). 
The sub-national parameter values for each of the three countries were aggregated to the national level 320 
using a population-weighted average.  On June 6, 2020, the population-weighted average 
ascertainment rate 𝛼 of the mean estimates in US states (0.26) was 1.5 times higher than in Canada 322 
(0.17) and 2.7 times higher than in Mexico (0.10). The population-weighted average transmission rate 
𝛽 of the mean estimates for Mexican states was 1.03, which is 1.4 times higher than in Canada (0.72) 324 
and the US (0.72). The population-weighted average of the time-varying reproductive number 𝑅% of 
the mean estimates was 0.99 for Canadian provinces and territories, 1.11 for the United States, and 326 
1.22 for Mexican states. These values are also reported in Table 3. 
 328 

Location Jun. 6th 2020 Sep. 7th 2020 Mar. 15th 2021 
 Ascertainment rate 𝜶 
Canada 0.17 0.18 0.26 
United States 0.26 0.31 0.36 

Mexico 0.10 0.11 0.13 
 Transmission rate 𝜷 
Canada 0.72 0.95 0.84 

United States 0.72 0.64 0.85 

Mexico 1.03 0.86 0.85 
 Time-varying basic reproduction number 𝑹𝒕 
Canada 0.99 1.32 1.31 

United States 1.11 1.04 1.49 

Mexico 1.22 1.04 1.07 

Table 3: Population-weighted average of the mean estimates values of the parameters (ascertainment rate 
𝛼 and transmission rate 𝛽) and hyperparameters (time-varying basic reproductive number 𝑅!) for the three 330 
countries at three selected timepoints. The intensity of cell colors in the table corresponds to their values: 
higher values are represented by more intense colors. 332 
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Figure 3. Estimated state variables and parameters on June 6, 2020: the three maps on the top panel show 334 
the value of the of the parameters (ascertainment rate 𝛼 and transmission rate 𝛽) and the hyperparameter 
(basic reproductive number 𝑅!) for all 96 locations on June 6, 2020. The bottom panels show the model 336 
fitting (i.e. the estimated observed variable over the 7-day smoothed daily new reported cases), three state 
variables illustrating disease progression (the susceptible population, cumulative reported infectious and 338 
cumulative unreported infectious), and the parameters 𝛼, 𝛽 and 𝑅! 	for 3 selected locations: British 
Columbia (Canada), New York (US) and Distrito Federal (Mexico City, Mexico). The color shaded areas 340 
represent the 95% credible interval from the 300-member ensemble. The dotted vertical lines indicate the 
timepoint of reference for the maps. 342 
 
During summer 2020, some locations, particularly in the US, experienced a second wave consisting of 344 
a resurgence of cases, with a decline at the beginning of fall. Figure 4 shows the values of the state 
variables and parameters on September 7, 2020. The maps show the parameter estimates across all 346 
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locations, while the temporal dynamics of state variable and parameter estimates are shown for three 
of the nine selected locations: Ontario (Canada), Florida (US) and Estado de México (Mexico). On 348 
September 7, 2020, the population-weighted average ascertainment rate 𝛼 of the mean estimates in 
the United States was 0.31, which is 1.74 times higher than in Canada (0.17) and 2.8 times higher than 350 
in Mexico (0.11). The population-weighted average transmission rate 𝛽 of the mean estimates in 
Canadian provinces and territories was 0.95, which is 1.5 times higher than in the US (0.64) and 1.1 352 
times higher than in Mexican (0.86). The population-weighted average of the time-varying 
reproductive number 𝑅% of the mean estimates was 1.32 for Canadian provinces and territories, 1.26 354 
times higher than in the United States (1.04) and Mexican states (1.04). These values are also reported 
in Table 3. 356 
 

Figure 4. Estimated state variables and parameters on September 7, 2020: the three maps on the top 358 
panel show the value of the of the parameters (ascertainment rate 𝛼 and transmission rate 𝛽) and the 
hyperparameter (basic reproductive number 𝑅!) for all 96 locations on September 7, 2020. The bottom 360 
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panels show the model fitting (i.e. the estimated observed variable over the 7-day smoothed daily new 
reported cases), three state variables illustrating disease progression (the susceptible population, 362 
cumulative reported infectious and cumulative unreported infectious), and the parameters 𝛼, 𝛽 and 𝑅!	 for 
3 selected locations: Ontario (Canada), Florida (US) and Estado de México (Mexico). The color shaded 364 
areas represent the 95% credible interval from the 300-member ensemble. The dotted vertical lines indicate 
the timepoint of reference for the maps. 366 
 
Most locations experienced a more severe outbreak during the autumn-winter wave of 2020/2021, 368 
before the widespread availability of the COVID-19 vaccines. We plot the estimated parameters and 
hyperparameters on March 15, 2021 in Figure 5. The state variable and parameter estimate time series 370 
are also shown for three of the nine selected locations: Quebec (Canada), California (United States), 
and Jalisco (Mexico). On March 15, 2021, the population-weighted average ascertainment rate 𝛼 of 372 
the mean estimates in the United States was 0.36, 1.4 times higher than Canada (0.26) and 2.7 times 
more than Mexico (0.13). The population-weighted average transmission rate 𝛽 of the mean estimates 374 
was 0.83 in Canada and 0.85 in US and Mexico. The population-weighted average of the time-varying 
reproductive number 𝑅% was 1.49 for the United States, 1.14 times higher than Canadian provinces 376 
and territories (1.31) and 1.39 times higher than Mexican states (1.04). These values are also reported 
in Table 3. All the estimated mean values of the parameters (ascertainment rate 𝛼 and transmission 378 
rate 𝛽) and hyperparameters (basic reproductive number 𝑅%) for all the location on these three 
timepoints are reported in Supplementary Table 3. 380 
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 382 

Figure 5. Estimated state variables and parameters on March 15, 2021: the three maps on the top 
panel show the value of the of the parameters (ascertainment rate 𝛼 and transmission rate 𝛽) and the 384 
hyperparameter (basic reproductive number 𝑅!) for all 96 locations on March 15, 2021. The bottom panels 
show the model fitting (i.e. the estimated observed variable over the 7-day smoothed daily new reported 386 
cases), three state variables illustrating disease progression (the susceptible population, cumulative 
reported infectious and cumulative unreported infectious), and the parameters 𝛼, 𝛽 and 𝑅! for 3 selected 388 
locations: Quebec (Canada), California (United States), and Jalisco (Mexico). The color shaded areas 
represent the 95% credible interval from the 300-member ensemble. The dotted vertical lines indicate the 390 
timepoint of reference for the maps. 
 392 
 

Discussion 394 
In this study we developed a SEIR metapopulation model structure and combined it with a data 
assimilation algorithm (EAKF) to reproduce COVID-19 outbreak dynamics and estimate important 396 
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epidemiological parameters across most of the North American region during the first three pandemic 
waves14. The model has demonstrated identifiability in estimating system state variables, as well as the 398 
ascertainment rates, α, and transmission rates, 𝛽, for the 96 first-level administrative divisions of 
Canada, United States, and Mexico. The metapopulation structure provided computational efficiency 400 
in comparison to agent based models that require HPC (high-performance computing) and cluster 
computing approaches to run at large scale6. The transmission module of the model structure relies 402 
on the daily work commuting patterns across states, provinces, and territories for disease spreading, 
with the capability to adjust the daily commuting matrix using Google Mobility Report trends data22 404 
to account for travel restrictions implemented during the pandemic.  
 406 
As depicted for selected locations in Figure 3-5 and reported for all the locations in Supplementary 
Table 3, the SEIR-EAKF system estimated large disparities in the ascertainment rates α among the 408 
three countries4,14,30–32. Moreover, it estimated a gradual increase in the ascertainment rates 𝛼 
throughout the three major COVID-19 outbreaks during 2020 and at the beginning of 2021 in each 410 
country. Specifically, the US showed substantially higher 𝛼 values in almost all states across the three 
waves: at the last time point (March 15, 2021) the majority of states had reached an ascertainment rate 412 
of ~40%. Canada and Mexico showed smaller ascertainment rates than the US at the end of the 
estimation: most of the Canadian provinces and territories had an ascertainment rate of ~26%, while 414 
Mexican states had less than 20%. Note that in Canada and the United States, the increase in 𝛼 is 
partially influenced by the increasing lower imposed during inference, whereas Mexico has a fixed 𝛼 416 
lower bound over time.  
 418 
Transmission rates 𝛽 remained generally low during the estimation period for the majority of 
locations. In the United States, the estimated 𝛽 values in the majority of locations appeared to exhibit 420 
minimal variation throughout the estimation period, while in Mexico transmission rates generally 
decreased gradually over time. A notable exception was Distrito Federal (Mexico City), the very 422 
densely populated capital of Mexico. The relatively high 𝛽 value at the end of the estimation in March 
2021 (1.6) was not unexpected in this location. High population density allows for more contact 424 
opportunities, increasing the rate of transmission and the basic reproduction number as show in 
previous analysis4. A few additional exceptions to the national trends are discussed in the 426 
Supplementary Note 4. 
 428 
The hyperparameter 𝑅% (time-varying basic reproductive number) is proportional to 𝛽 and 𝛼, as 
reported in eq. (1). The majority of the mean estimated 𝑅% values were above the epidemic threshold 430 
of 𝑅% = 1	 at all the three selected time points and all locations had mean 𝑅% > 1 at least once among 
the three selected time point. Moreover, the lower estimated mean values for 𝑅% never dropped below 432 
0.75, or below 0.86 at the last time point. These values suggest a sustained epidemic in the North 
American region.  434 
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Overall, the three countries demonstrated distinct and quite isolated epidemiological histories. This is 436 
supported by the results presented in Figures 3-5 and Supplementary Table 3 where the trends 
estimated for the parameter and hyperparameter values can be clustered by country, highlighting the 438 
national and interconnected epidemiological developments they have undergone. This phenomenon 
arises from the commuting network structure depicted in Figure 1, where few arrows traverse national 440 
borders, illustrating three major networks (the countries) with limited interconnection. 
 442 
The model developed for this work uses a new commuting matrix, based on national census data and 
surveys, to model worker flows in the American region (Canada, US, and Mexico). It assumes most 444 
movements are daily work commutes and accounts for additional movements with a random factor 
proportional to the commuting flux. Moreover, the system couples the compartmental model (SEIR) 446 
with the Ensemble Adjustment Kalman Filter (EAKF), adjusting the system state variables and 
parameters daily on the basis of the case data. This approach differs from other models used to 448 
estimate infectious diseases on a multi-national and/or continental scale, such as the GLEAM 
platfom10–12. Those platforms estimate the movement of individuals among various arbitrary 450 
subpopulations located around major transportation hubs and leverages commuting and air travel 
data. In contrast, our approach utilizes state, province, and territory boundaries to define locations 452 
and is not informed by air travel data. Instead of adjusting the estimation, the GLEAM platform uses 
case data and other datasets to conduct a calibration run aimed at identifying the optimal set of 454 
parameters that best fit the real data in its estimations39. 
 456 
The role of asymptomatic individuals has been shown to be central for the spread of viruses like 
SARS-CoV-2 and influenza, with most transmissions occurring with exposure times exceeding an 458 
hour40. Therefore, it is reasonable to center a model system around work-related commuting; 
infectious and asymptomatic individuals share the same space with coworkers for several hours, 460 
increasing their probability of infection; subsequently, each worker returns home to their resident 
locations, further increasing the probability of spreading disease to their families. Conversely, the 462 
GLEAM platform focuses on global disease spread, showing that the global spatiotemporal patterns 
of disease spreading are mainly determined by the airline network41. Additionally, the inclusion of air 464 
travel data enables GLEAM to capture global phenomena such as the external introduction or 
reintroduction of the virus during the estimation process. In contrast, the SEIR-EAKF model 466 
developed in this work is more sensitive to local changes in trends, as it leverages case data to adjust 
estimations. The importance of modeling each introduction event is particularly relevant at the 468 
beginning of an epidemic. This significance decreases once the epidemic in a region is primarily driven 
by internal transmission dynamics. Our model accommodates the external introduction of new 470 
infections through stochastic integration instead of relying on international flight data. However, the 
inclusion of global air travel data can improve system estimation, particularly in the initial weeks 472 
following the introduction of virus and for epidemics less prevalent than COVID-19. These 
differences make the two modeling approaches particularly effective at capturing different aspects and 474 
phases of epidemics. Therefore, combining these and other approaches into a single model or multi-
model ensemble could improve the capacity to estimate and predict disease parameters.  476 
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The development of multinational dynamical models entails more time and effort compared to 478 
localized models because it requires the reconciliation of heterogeneous data sources. For example, 
the three countries in this study conducted independent census surveys that needed to be carefully 480 
interpreted and meticulously merged to ensure the resulting multinational contact network was 
homogeneous. The great advantage of using realistic contact networks that encompass multiple 482 
countries is the ability to infer simultaneously across broader regions (e.g. North America), rather than 
comparing results from separate local inference systems, thus highlighting the geographic spread of 484 
the disease across borders. Furthermore, the inference system implemented in this study can serve as 
a platform for modeling other respiratory infectious diseases, such as influenza, by pairing the North 486 
American commuting network developed here with other mathematical models. 
 488 
Robust models for estimating disease parameters not only help to understand disease dynamics and 
assess responses at different locations, but they also can be adapted for use during epidemics to 490 
generate forecasts that can help health authorities in developing and implementing more informed 
policies. Using spatially resolved dynamical models applied at scale, it is possible to compare how 492 
various factors such as public health policies, population density, and mobility patterns affect disease 
spread and control in different locations. This comparative inference helps identify the most effective 494 
strategies and conditions for controlling epidemics, providing valuable insights for tailoring public 
health interventions to specific regions or populations. Additionally, this model can be implemented 496 
to support monitoring systems and counterfactual simulation, enhancing public health preparedness 
and response by enabling data-driven and location-specific strategies that can directly improve 498 
epidemic control of the region. 
 500 
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