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ABSTRACT 

Background 

Osteoarthritis (OA) has a lifetime risk of over 40%, imposing a huge societal burden. Clinical 

variability suggests that it could be more than one disease. Synovial fluid To detect Endotypes by 

Unbiased Proteomics in OA (STEpUP OA) was established to test the hypothesis that there are 

detectable distinct molecular endotypes in knee OA. 

 

Methods  

OA knee synovial fluid (SF) samples (N=1361) were from pre-existing OA cohorts with cross-sectional 

clinical (radiographic and pain) data. Samples were divided into Discovery (N = 708) and Replication 

(N=653) datasets. Proteomic analysis was performed using SomaScan V4.1 assay (6596 proteins). 

Unsupervised clustering was performed using k-means, assessed using the f(k) metric, with and 

without adjustments for potential confounders. Regression analyses were used to assess protein 

associations with radiographic (Kellgren and Lawrence) and knee pain (WOMAC pain), with and 

without stratification by body mass index (BMI) or biological sex. Adjustments were made for cohort 

(random intercept) or intracellular protein, using an intracellular protein score (IPS). Analyses were 

carried out in R according to a pre-published plan.  

 

Results  

No distinct SF molecular endotypes were identified in OA but two indistinct clusters were defined in 

non-IPS regressed data which were stable across subgroup analyses. Clustering was lost after IPS 

regression adjustment. Strong, replicable protein associations were observed with radiographic 

disease severity, which were retained after adjustment for cohort or IPS. Pathway analysis identified 

a strong “epithelial to mesenchymal transition (EMT)” pathway, and weaker associations with 

“angiogenesis”, “complement” and “coagulation”. The latter were variably lost after adjustment for 

BMI or biological sex. Associations with patient reported pain were weaker. 

 

Conclusion 



These data support knee OA as a biologically continuous disease in which disease severity is 

associated with a strong, robust, tissue remodelling signature. Subtle differences were found in 

pathways after stratification by BMI or sex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



BACKGROUND 

Osteoarthritis (OA) of the knee is common, affecting up to a third of adults aged 60 years or older[1]. 

Characterised by failure of the synovial joint, OA is a major contributor to healthcare costs and is a 

leading cause of disability, manifesting as a spectrum of symptoms including chronic pain and 

limitations in function. Age and obesity are important risk factors, both of which have contributed to 

increasing disease burden across global populations[2-4]. There are currently no approved treatments 

for knee OA that effectively target structural disease and those that target symptomatic disease 

have modest efficacy and are associated with adverse events
[5, 6]

. There remains, therefore, a major 

unmet clinical need.    

Limited understanding of disease pathogenesis coupled with a failure to translate findings from basic 

research to clinical settings has hampered clinical translation in OA[7, 8]. Another significant challenge 

is the broad clinical spectrum of disease that has led many to question whether OA is one disease, or 

whether it is driven by multiple different pathways that converge on a common joint pathology
[9, 10]

. 

Multiple clinical phenotypes have been suggested in the literature[11-13], but these have not been 

validated as clinically useful stratification tools either when testing treatment responses or as 

predictors of disease progression[14-16]. Endotypes, defined by distinct molecular signatures, may 

have higher value, and could in part explain observable characteristics of a phenotype
[17]

.  

Recent advances in understanding complex disease have been greatly enhanced by the application 

of multi-omic approaches to disease relevant tissues
[11, 18]

. The strengths of these approaches are the 

focus on human disease cohorts at scale (hundreds to tens of thousands of participating individuals), 

the unbiased and systematic nature of molecular identification, the ability to map molecules to a 

shared pathway, and the ability to replicate results across independent cohorts. Technological 

advances in genomics, transcriptomics and proteomics have enabled such studies to be carried out 

with low tissue volumes and at an affordable cost.  

To date, the majority of studies that have attempted to identify molecular subgroups in OA have 

used systemic samples derived from blood (serum or plasma)[19-21]. The synovial fluid (SF), in 

contrast, offers a promising alternative discovery tissue, as it has proximity to the diseased tissues of 

the joint and is enriched with locally derived biomolecules. Thus, it is likely to represent more 

accurately the severity of disease in that given joint. We have also previously shown that proteins 

regulated in knee OA or after knee injury, compared with healthy controls, are readily detected in 

the SF but correlate poorly in paired blood[22-25]. Furthermore, we have previously confirmed the 

utility of high scale protein measurements in SF using the SomaScan® platform (SomaLogic, Inc, 



Boulder, Colorado), an aptamer-based assay[26, 27]. The SomaScan® platform V4.1 measures over 

6596 distinct human proteins.  

The Synovial fluid To detect Endotypes by Unbiased Proteomics in OA (STEpUP OA) Consortium was 

established to test the primary hypothesis that there are detectable distinct molecular endotypes in 

knee OA. We set out to perform an unsupervised analysis of a single SF sample from 1361 individuals 

with established OA where cross-sectional clinical data were also available. The standardised 

protocol, which describes the cohorts in detail, and includes how we adjusted for pre-defined 

technical and other confounding factors is available elsewhere
[27]

. Here we present the primary 

analysis of STEpUP OA, in which we determine whether protein molecular endotypes exist in the SF 

of participants with established knee OA, and further explore the relationship between proteomic 

signatures and structural and symptomatic disease. 

 

METHODS 

Study Design principles  

STEpUP OA is an international Consortium, set up to search for molecular endotypes in knee OA 

utilising existing demographic factors including age, biological sex (verified through assessing the 

correlation between clinician-reported sex and four established sex biomarkers (PSA, FSH, LH and 

beta HCG)), body mass index (BMI) and clinical data (harmonised patient reported knee pain 

measures and radiographic scores) as well as matched knee SF samples (Supplementary Table 1). 

STEpUP OA utilised data and samples from 17 cohorts, including N = 1780 SF samples from 1676 

individuals with established knee OA (by x-ray or knee joint symptoms), at risk of knee OA (following 

acute knee injury), or from control samples (disease-free or inflammatory arthritis participants). All 

participants gave written informed consent with local (institution specific) ethical approvals in place. 

Following the QC procedure, 1361 samples were identified from unique participants with established 

OA
[27]

. Individual cohorts were assigned, a priori, into Discovery (N = 708) and Replication (N = 653) 

datasets (Supplementary Table 1). Most samples were spun after joint aspiration but appropriate 

correction was applied when unspun samples were included in analyses. Full details of the cohorts 

and their associated metadata, how SF was collected and processed prior to SomaScan analysis, as 

well as how we corrected for predefined technical and other confounders can be found in Deng et 

al. 2023[27]. The primary Discovery statistical analysis was pre-specified and cross-sectional (Data 

Analysis Plan, see link below). 



Sample numbers and SOMAmers®[28] in the presented experiments varied according to data 

availability and analysis performed. 

 

Analysis platform  

All SF samples were analysed on the Discovery Plex V4.1 (SomaLogic, Inc, Boulder, Colorado); a high-

throughput, aptamer-based proteomics assay designed for the simultaneous assessment of 7596 

synthetic DNA slow off-rate modified aptamers (SOMAmers®) (7289 unique human targets)[29]. All SF 

samples were randomized and analysed as a single batch at SomaLogic’s laboratory in Boulder, Co, 

USA.  

 

Statistical Analysis 

Quality Control of Proteomic Data 

All proteomic data received from SomaLogic underwent pre-processing and quality control 

procedures as previously reported
[27]

. Briefly, raw data was standardised using a modified version of 

SomaLogic’s normalization pipeline and batch-effect correction, followed by removal of samples and 

aptamers of insufficient quality to produce our initial downstream dataset for future analyses. All 

statistical analyses were pre-specified and outlined in our data analysis plans (see below). 

 

Unsupervised clustering for endotype detection 

Dimension reduction on batch-corrected, log-transformed proteomic data was performed using 

unscaled Principal Component Analysis (PCA), with the top principal components explaining 80% 

variation. Unsupervised clustering was performed on the reduced feature space using k-means 

clustering with 10 sets of random starting values. We tested for the presence of significant clusters 

using the f(K) statistic[30]; with the f(K) statistic visualised across cluster numbers. Data were 

determined to be significantly clustered if, for any number of clusters K, f(K)<0.85 (a priori specified). 

Elbow plots were constructed to test the robustness of our findings.  If the data were significantly 

clustered, we picked the optimal cluster number by majority vote across different clustering metrics 

(as implemented in the R package NbClust
[31]

, version: 3.0.1) for downstream analyses. 

 

Data visualisation and presentation  



Clustering structure was visualised using Principal Component (PC) plots and Uniform Manifold 

Approximation and Projection for Dimension Reduction (UMAP)
[32] 

plots.  

 

Protein–clinical feature association testing 

Associations between protein expression and clinical outcomes were modelled by fitting regression 

models for each SOMAmer separately, with clinical features set as the dependent variable and log-

expression for each protein set as the independent variable. Linear, logistic or proportional odds 

ordinal regression models were fitted for continuous, binary or ordered categorical variable 

outcomes respectively. Residual diagnostics confirmed adequacy of model assumptions. Before 

fitting the models, protein expression values were transformed using natural logarithms and were 

standardized on a per protein basis (within Discovery, Replication and Combined datasets) by 

subtracting mean log protein abundance and then dividing by its standard deviation, to make the 

slopes comparable between models. The resulting beta estimates (from linear regression models) or 

log odds ratios (from logistic and ordinal models) can be interpreted respectively as either mean 

outcome change or log odds ratio per standard deviation change in the log protein abundance. 

Replication was defined as proteins that were significant at Benjamini-Hochberg adjusted p-value ≤ 

0.05 in both Discovery and Replication datasets and with effects in the same direction. 

All primary regression models were adjusted for age and biological sex (with the exception of 

biological sex-stratified analyses that were adjusted for age only, and regression models exploring 

associations with BMI, which were adjusted for biological sex and radiographic disease status). All 

analyses were batch corrected for spin-status (using the R function ComBat
[33, 34]

) and run in 

duplicate using either proteomic data that had undergone further regression adjustment for 

intracellular protein score (IPS)[27] (‘IPS regressed’ analyses) or without (‘non-IPS regressed’). 

Association testing between IPS, that had been transformed using natural logarithms, and 

demographic, clinical and technical features was performed using regression modelling, with all 

analyses either non-adjusted or adjusted for cohort (as a random intercept). Volcano plots were 

generated to display associated proteins from the regression analyses, with the most strongly 

positively and negatively associating proteins labelled by their given SomaLogic protein target name. 

The most significantly associated proteins, ordered by their adjusted p-value, were labelled. A small 

number of proteins (non-IPS & COMBAT corrected for spin-status filtered list: N = 383, IPS & 

COMBAT corrected for spin-status filtered list: N = 375), had more than one detection SOMAmer on 

the platform. Where this was the case, only one SOMAmer was labelled on the volcano plot (i.e. the 

most significant based on ranked adjusted p-value). We also conducted interaction testing for 



associations between protein abundance and clinical features of disease. A protein abundance-by-

biological sex interaction term was included to test explicitly whether biological sex modified the 

association between protein abundance and WOMAC knee pain. Similarly, a protein abundance-by-

obesity status (a dichotomous variable, BMI ≥ 30) interaction term was included to examine if 

associations with advanced radiographic status were modulated by protein abundance differences 

above and below this clinically relevant BMI threshold. Pre-specified clinical outcomes used in 

association testing are listed in (Supplementary Table 1). 

 

Pathway enrichment analysis 

We tested for enrichment of associated proteins within pathways using gene sets taken from The 

Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb); specifically, 

Hallmark, Gene Ontology (GO), Reactome, and Kyoto Encyclopaedia of Genes and Genomes (KEGG). 

All proteins were mapped to the corresponding gene set based on ‘EntrezGeneSymbol’, ‘Target’ or 

‘EntrezGeneID’ variables provided by SomaLogic. Protein set enrichment testing was performed 

using the fgsea
[35] package in R (version: 1.28.0) to identify pathways whose genes were enriched for 

association with a given outcome. All proteins featured in the respective regression models were 

ranked by a ‘rank metric’ calculated as; rank metric = -log(p-values) * sign(beta estimate or log odds 

ratio per standard deviation). The sign function returns +1 if the estimate is positive, -1 if it is 

negative, and 0 if it is zero thereby capturing the direction of effect (whether the feature is 

upregulated or downregulated). Enrichment scores were calculated as the maximum value of the 

running sum and normalized relative to pathway size, resulting in Normalized Enrichment Scores 

(NES). Direction and magnitude of pathway enrichment for a given outcome (i.e. differential 

regulation of the pathway) was determined using the NES score; with positive values representing 

positively associated pathways whilst negative values represented negatively associated pathways. 

The ggplot2
[36] R package (version: 3.5.0) was used to draw bubble plots and visualise results. 

Protein-protein interaction (PPI) networks were constructed using the Search Tool for the Retrieval 

of Interacting Genes/Proteins database (STRING version 11.5, https://string-db.org/). The filter 

condition was set as follows: network type selected; “full-STRING network”; confidence ≥ 0.2-0.4. 

 

Statistical Significance  

Pearson correlation and relevant p-values are given for both correlation testing and regression 

modelling. All analyses were carried out in R (version 4.3.2), unless otherwise stated (R Core Team. 



(2016). R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from 

https://www.R-project.org/). Statistical significance was defined using Benjamini-Hochberg
[37]

 

corrected p-values adjusted for multiple testing, at a false discovery rate (FDR) of 5% (padj ≤ 0.05).  

 

Data Analysis Plan: https://www.kennedy.ox.ac.uk/oacentre/stepup-oa 

RESULTS 

Endotype Detection in OA SF 

To search for molecular endotypes in OA using SF protein profiles, the f(K) cluster metric was 

employed. We had previously reported that a large contributor of variance in the initial processed 

data (principal component 1, accounting for 48% of variance), was due to intracellular proteins
[27]

. 

Appreciating that the intracellular protein signature could obscure subtle clustering patterns within 

the data, we performed cluster analyses with and without regression adjustment for intracellular 

protein
[27]

,
 
using an intracellular protein score (IPS) that correlated highly with principal component 1 

(r = 0.94)[27]. Cluster analysis revealed 2 clusters that were evident within Discovery, Replication and 

Combined datasets for the non-IPS regressed analysis (Figure 1A, left panel). In contrast, no clusters 

were detected in the IPS-regressed dataset (Figure 1A, right panel). Visualisation of the proteomic 

data structure in two-dimensional space showed that the two clusters were indistinct and could be 

defined by dichotomising the continuous IPS, a feature that was lost after IPS regression (Figure 1B). 

Association testing of IPS with pre-defined clinical and technical features (N = 1134, spun OA 

samples only) demonstrated that IPS was significantly, but modestly, greater in females, greater in 

advanced radiographic disease (KL grade ≥3), and was greater in SF samples with visual blood 

staining scores ≥2 (Table 1). We therefore repeated the cluster analysis, using IPS and non-IPS 

regressed datasets, but stratified by biological sex (Figure 1C), radiographic disease severity (Figure 

1D) and presence of blood staining (Figure 1E). As with our non-stratified analyses, clusters (again 

indistinct) were only identified in non-IPS regressed data. Collectively these data suggest that there 

are two potential endotypes in the non-IPS corrected data, but they are on a continuum, defined by 

the IPS, and are not distinct. Furthermore, the cluster structure is independent of stage of disease, 

biological sex and visible blood staining. 

 

Synovial Fluid protein associations with radiographic OA 

We next examined which SF proteins were associated with radiographic disease severity. Over 1000 

proteins were significantly associated with radiographic disease severity in each of the Discovery (N 



= 1021, 96.0% upregulated) and Replication datasets (N = 2524, 98.6% upregulated), with 688 

(24.1%) proteins replicating across both datasets. Figure 2A shows the Combined dataset where 

3815 proteins were associated with radiographic disease severity. Top associated proteins that 

replicated (across Discovery and Replication cohorts) and that remained significant in the Combined 

dataset after cohort adjustment, are labelled in orange. Protein abundance profiles for a selection of 

the labelled proteins were also significantly associated with ordinal KL grade, either significantly 

decreasing with worsening radiographic disease severity (LYVE1, IGFPB-6, FGFP1, sFRP-3) or 

increasing (TSG-6, sTREM-1, Activin A, VEGF121) (Figure 2B). Two additional proteins, associated 

with OA, MMP-13
[38]

 and COL2
[39]

, followed this latter pattern. Using the Hallmark gene set 

repository, nine differentially expressed pathways were significantly enriched across at least one of 

the three datasets (Figure 2C). Of these, “Epithelial Mesenchymal Transition (EMT)”, “Complement” 

and “Angiogenesis” were significantly associated with advanced radiographic OA across all datasets. 

Protein-protein interactions within each of the enriched pathways are shown in Figures 2D-F. “EMT” 

contained a number of molecules previously associated with matrix remodelling in OA[40] including, 

but not limited to, TIMP1, TIMP3, MMP-2, TGFβ1, VEGFA and Fibronectin 1 (FN1). The correlation 

between protein associations within Discovery and Replication datasets was r = 0.49 (p<2.2 x 10
-16

) 

(Figure 2G).
 

We also performed similar analyses after correction for cohort (as a random intercept) or after IPS 

regression. Correlation of corresponding protein effects before and after cohort adjustment was 

high (r=0.88, p<2.2 x 10-16)(Supplementary Figure 1A), irrespective of differences in radiographic 

disease severity across cohorts (Supplementary Figure 1B). Pathway analysis showed a robust “EMT” 

signature across all datasets, although “complement” and “angiogenesis” pathways were no longer 

significantly enriched (Supplementary Figure 1C). For IPS regressed data, the volcano plot of proteins 

associated with radiographic disease severity is shown in Supplementary Figure 2A. Correlation of 

corresponding protein effects was also high (r=0.82, p<2.2 x 10
-16

)(Supplementary Figure 2B) and 

pathway associations for “EMT”, “complement” and “angiogenesis” remained robust, but also 

included “coagulation” (Supplementary Figure 2C). Data associated with these analyses can be found 

in Supplementary Data files 1 & 2.  

 

Synovial Fluid protein associations with advanced radiographic OA after stratification by BMI or 

biological sex 

As “Metabolic OA”, driven largely by BMI, has been suggested as a potential OA phenotype[41], we 

used STEpUP OA data to examine the proteins associated with radiographic disease severity after 



stratification by participant BMI (≥30 indicating obesity, N = 587 and <30, N = 649). We first looked 

at proteins in the SF that were associated with BMI, irrespective of disease status. Reassuringly, a 

number of proteins known to be associated with BMI, including the appetite suppressing hormone, 

leptin (LEP) insulin (INS), growth hormone receptor (GHR) and C-reactive protein (CRP) were 

identified (N = 248, 66.9% upregulated) (Supplementary Figure 3A; Supplementary Data file 3). 

Leptin’s SF levels correlated closely with BMI (r=0.58, p<2.2 x 10-16)(Supplementary Figure 3B) and 

associations of obesity-associated proteins appeared robust across datasets, and after cohort 

adjustment (Supplementary Figures 3C-E). When stratified by obesity status, over 1800 proteins 

were significantly associated with advanced radiographic OA in each of the obese and non-obese 

groups (Figure 3A, B), with a correlation between the corresponding protein effects in the obese and 

non-obese groups of r = 0.72 (p <2.2 x 10-16)(Figure 3C). No significant interaction terms with obesity 

status were identified by formal interaction testing (at padj <0.05). Interestingly, Hallmark pathway 

analysis showed a strong consistent “EMT” pathway signature in both groups, but only samples from 

obese participants retained significant associations with “coagulation” and “complement” (Figure 

3D) (Supplementary Data file 4). 

To explore the influence of other participant factors on radiographic disease-protein associations, 

we also stratified samples by biological sex (Figure 4A, B). Protein associations with radiographic 

disease severity, after stratification by biological sex, also had a strong cross-strata correlation 

(r=0.69, p <2.2 x 10-16, Figure 4C), with 1437 significantly associated proteins common to the two 

groups. No significant interaction terms with biological sex were identified by formal interaction 

testing (at padj <0.05). Hallmark pathway analysis also showed a strong “EMT” pathway signature in 

both sexes, but only males showed significant associations with “angiogenesis” and “coagulation” 

(Figure 4D) (Supplementary Data file 5). 

 

Synovial Fluid protein associations with WOMAC pain in OA 

Finally, we explored the association of SF proteins with patient reported pain. We identified 797 SF 

proteins that were significantly associated with WOMAC knee pain in the Combined non-IPS 

regressed dataset. However, none of these proteins replicated across Discovery and Replication 

datasets and the cross-dataset correlation was weak (r=0.36, p <2.2 x 10
-16

)(Figure 5A, B). Noelin-2 

(NOE2) and ecto-ADP-ribosyltransferase 3 (NAR3) were the only significantly associated proteins in 

the Combined dataset after cohort adjustment (Supplementary Figure 4A and labelled green in 

Figure 5A). The relationships between NOE2 and NAR3 protein abundance with WOMAC pain 

subscores are shown in Figure 5C (Pearson correlation). The pathway analysis did not identify 



consistent associations across Discovery, Replication and Combined datasets (Figure 5D) and no 

significant pathways were identified within the Discovery dataset alone (at padj <0.05). Lack of 

replication may have been influenced by unevenly distributed knee pain subscores across Discovery 

and Replication cohorts (Supplementary Figure 4B). The number of proteins associated with pain 

was also reduced in the Combined dataset after adjustment for radiographic disease severity 

(Supplementary Figure 4C). NOE2 and NAR3 remained significantly associated with WOMAC pain 

after adjustment, and their levels were not independently associated with radiographic grade (by 

ordinal regression) (Supplementary Figure 4D). The correlation between pain-associated protein 

effects from non-IPS and IPS regressed analyses using the Combined datasets was r=0.97 (p <2.2 x 

10-16) (Supplementary Figure 4E, Supplementary Data files 6 & 7). Further analyses on patient 

reported pain e.g. following stratification were not performed. 

 

Discussion 

In this manuscript we describe the primary results of STEpUP OA, the largest unbiased, replicated, 

cross-sectional synovial fluid proteomics analysis in knee OA ever performed. We uncover the 

balance of biological pathways in disease and how they change with structural and symptomatic 

disease severity. This dataset provides an unprecedented data resource from which to interrogate 

OA biology, address specific molecular questions and consider the influence of important patient-

related factors, such as BMI and biological sex.  

The data presented here do not reveal evidence for distinct molecular endotypes in knee OA SF, 

even when considering early radiographic disease separately. Rather, two continuous endotypes 

were identified by cluster analysis, which were defined by the IPS gradient. We still do not fully 

understand the importance or origin of intracellular protein in spun SF. Importantly, correcting for 

this signal using the IPS did not substantially change proteins or pathways associated with clinical 

features, suggesting that it is a minor influence on clinically relevant OA biology. It is therefore 

possible that the IPS-driven clustering is due to technical confounding during sample collection and 

processing. Taken together, the results support OA being a single heterogenous disease rather than 

multiple conditions each driven by a distinct pathway. This may appear at odds with studies 

suggesting discernible molecular clusters in tissues from participants with OA. Indeed, patient 

clusters have been described in the transcriptome of OA cartilage and synovium
[42-45]

, in SF using 

mass spectrometry[46, 47], and in plasma[17, 19, 21]. However, these studies are smaller than STEpUP OA, 

and only a few included replication. Some of the studies examined prospective outcomes associated 

with clusters, rather than the cross-sectional analysis that we present here.  



Synovial fluid is an ultrafiltrate of the plasma but also reflects joint-specific processes such as active 

secretion from cells
[48]

, including in extracellular vesicles, release from damaged or short-lived cells, 

and shedding from cell surfaces. Pathway analysis of knee OA SF proteins associated with 

radiographic disease severity indicates a robust activation of “EMT”, indicative of tissue remodelling, 

presumably part of the joint tissue injury response
[49]

. The “EMT” signature was consistent across all 

groups, irrespective of stratification and correction by cohort or IPS, or factors such as BMI and sex, 

suggesting that this is the common pathway in OA pathogenesis. Activation of complement, 

coagulation and angiogenesis was also evident, although was variable across subgroups. Whether 

these protein signatures identify groups of patients who display distinct treatment responses 

remains to be seen.  

Replication across Discovery and Replication cohorts was robust for associations with structural 

disease but less so for pain. Patient reported outcome measures, such as knee pain, are known to be 

influenced by external factors beyond molecular drivers made by the joint e.g. psychological factors 

[50]
, making cross-sectional analyses of this sort challenging. Such extra-articular factors are complex 

and were not consistently collected within STEpUP OA cohorts. Protein associations with pain may 

also have been limited by the fact that WOMAC pain scores were only available on a subset within 

STEpUP OA (N = 805) and most of these were within a relatively narrow range of pain severity. 

Despite this being the largest analysis of its kind in OA, we recognise a number of limitations: protein 

detection using the SomaScan platform, rather than mass spectrometry, is biased towards detection 

of full-length proteins, thus potentially missing fragments of proteins that could be biologically 

informative; our samples were generated from a diverse set of, largely, pre-existing cohorts and 

adjustment for cohort did reduce the number of significantly associated proteins; finally, by only 

focusing on proteins found in the synovial fluid, it is possible that key disease molecules or pathways 

were unintentionally excluded.  

The cross-sectional analysis presented in this manuscript provides strong proof of concept that knee 

OA synovial fluid provides an informative window into disease-relevant biology. Future studies in 

STEpUP OA are now planned to ask whether SF signatures predict prospective clinical outcomes and 

whether they are driven in part by genetic variants associated with OA risk. Ultimately, we hope that 

SF analyses of this sort will assist in experimental medicine studies to test treatment responsiveness, 

helping to de-risk subsequent clinical trials of new interventions. The publication of this manuscript 

also marks the opportunity to welcome external parties to apply for access to STEpUP OA data for 

research purposes in accordance with our Consortium Agreement. 
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Figure 1: Endotype discovery by cluster analysis in Discovery, Replication and Combined datasets.                    

(A) f(K) metric for non-IPS and IPS regressed analyses. Significant clustering was observed (f(k) < 

0.85) within all three datasets for non-IPS regressed analyses only (left panel). (B) Visualisation of 

data structure and IPS on UMAP by dataset, stratified by non-IPS (top panel) and IPS regressed 

(bottom panel) analyses. f(K) metric plots for Combined dataset stratified by (C) biological sex, (D) 

radiographic disease severity (KL grades: 0-2 as ‘non advanced OA’ and ≥ 3 as ‘advanced OA’) or (E) 

blood staining (visual blood staining: 1 as ‘no blood staining’ and ≥ 2 as ‘with blood staining’) for 

non-IPS and IPS regressed analyses. Abbreviations: osteoarthritis (OA), intracellular protein score 

(IPS), Uniform Manifold Approximation and Projection (UMAP).  
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Feature Description 
Samples 

(n) Mean (SD) or n (%) Reference 

Group 

Strength and Direction of Association  

of IPS                                  (regression 

coefficient) 
Adjusted p-values 

Cohort included as a random 

intercept 

Cohort included as a random 

intercept 

Yes No Yes No 

Age 
Participant age at the time of sampling 

(year) 
1,133 64.46 (11.00) __ 2.01E-05 1.47E-04 7.01E-01 2.64E-01 



Table 1:  Baseline characteristics of participants, their SF samples and association of these factors with IPS. Association testing was carried out between 

IPS and core demographic, clinical and technical features in spun OA samples where relevant data were available. Linear regression models were 

constructed with log scaled IPS (i.e. IPS that were transformed using natural logarithms) as the outcome with each feature listed in the table used as a 

univariate exposure. Adjusted models where cohort was included as random intercept are also shown. Asterisks (bold) denote statistical significance at 

Benjamini-Hochberg cutoff (adjusted p-value ≤0.05). Abbreviations: osteoarthritis (OA), synovial fluid (SF), intracellular protein score (IPS), blood staining 

(BS), Kellgren Lawrence (KL), standard deviation (SD).

Sex Biological sex  1,134 
Female: n = 596 

Male: n = 538 
Female -5.47E-03 -6.29E-03 2.42E-02* 1.22E-02* 

BMI 
Participant body mass index at the time 

of sampling  
1,045 30.68 (5.92) __ 4.11E-05 7.87E-05 8.09E-01 7.59E-01 

Smoking 

History 

Current or past smoker at the time of the 

baseline sampling  
926 

Never Smoked: 510 

Ever Smoked: 416 

Never 

Smoked 
1.38E-03 7.26E-04 7.01E-01 7.59E-01 

WOMAC Pain 

Score 

Scale of 0-100, where 100 is the worst 

possible knee pain  
748 44.91 (21.08) __ 2.63E-05 3.81E-05 7.01E-01 7.59E-01 

Advanced 

Radiographic 

Status 

Binary indicator for the presence of 

advanced stage radiographic knee OA (KL 

grades 3-4) 

1,096 

Non-Advanced: 

264 

Advanced: 832 

Non-

Advanced OA 

(KL grades 0-

2) 

1.07E-02 1.09E-02 4.36E-04* 2.18E-04* 

Visual Blood 

Staining Grade 

Grading of SF blood staining (BS) prior to 

centrifugation (if known). Scale of 1-4, 

with larger numbers corresponding to 

greater degrees of blood staining 

515 

Grade 1: 394  

Grade 2: 77     

Grade 3: 26  Grade 

4: 18 

BS = 1 

BS = 2, 1.50E-02 

BS = 3, 3.48E-02 

BS = 4, 5.54E-02 

BS = 2, 1.59E-02 

BS = 3, 3.60E-02 

BS = 4, 5.68E-02 

8.53E-13* 6.51E-13* 
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 47 

Figure 2: Association between protein abundance and advanced radiographic knee OA status in 48 

non-IPS regressed data.  49 

Protein abundance was measured in 1,322 samples (Discovery and Replication, spun (N=1,096) and 50 

unspun (N=226)), corrected for spin-status by ComBat and then adjusted for age and biological sex. 51 

C 

 

E   D   
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(A) Volcano plot showing log odds ratios against
 

adjusted p-values (Benjamini-Hochberg corrected) 52 

for proteins associated with advanced radiographic knee OA in the Combined dataset. Proteins in 53 

red are positively associated, those in blue negatively associated, with advanced radiographic status 54 

(KL grades: 3-4) at an adjusted p-value ≤ 0.05. Top associating proteins by adjusted p-value are 55 

labelled (top 30 positively and negatively associating proteins by adjusted p-value). Proteins that 56 

replicated (significant at padj ≤0.05 and with effects in the same direction in Discovery & Replication 57 

datasets), and that remained significant after the Combined dataset was adjusted for cohort 58 

(random intercept) are shown in orange. Proteins that either did not replicate but remained 59 

significant after adjustment for cohort, or did replicate but were not significant after cohort 60 

adjustment are shown in green. A single protein, GM-CSF neither replicated nor was significant after 61 

further adjustment for cohort (labelled white). (B) Select examples of protein expression values 62 

(transformed by natural logarithms) by ordinal KL grade (N=766) from the Combined dataset. 63 

Statistically significant associations with ordinal KL grade were tested by ordinal regression analysis 64 

(log odds ratio (OR) and unadjusted p-values are presented for each protein for models adjusted for 65 

age and biological sex). Two additional OA-related proteins (MMP-13 & COL2) are included. Number 66 

of samples in each group are shown.                 (C) Bubble plot of significantly enriched pathways 67 

(adjusted p-value <0.05) using the Hallmark Gene set for advanced RKOA status for Discovery, 68 

Replication and Combined non-IPS, non-cohort adjusted datasets. Protein-protein interaction 69 

networks, using STRING, for (D) Epithelial Mesenchymal Transition, (E) Complement and (F) 70 

Angiogenesis pathways. (G) Scatter plot of log odds ratio from logistic regression models of the 71 

associations between protein abundance and advanced radiographic disease status using either 72 

Discovery or Replication datasets is shown with significantly associated proteins in different datasets 73 

shown in different colours (see key). Pearson correlation coefficient and p-value (unadjusted) are 74 

presented for the correlation between log odds ratio generated in Discovery and Replication 75 

analyses. Abbreviations: intracellular protein score (IPS), Kellgren-Lawrence (KL). Lymphatic vessel 76 

endothelial hyaluronan receptor 1 (LYVE1), Insulin-like growth factor-binding protein 6 (IGFBP-6), 77 

Fibroblast Growth Factor Binding Protein 1 (FGFP1), secreted frizzled-related protein 3 (sFRP-3), 78 

tumour necrosis factor-inducible gene 6 (TSG-6), soluble triggering receptor expressed on myeloid 79 

cells-1 (sTREM-1), activin A and vascular endothelial growth factor A-(isoform 121)(VEGF-121), 80 

Matrix metalloproteinase-13 (MMP-13) and Collagen Type II (COL2), ON (osteonectin/SPARC). Full 81 

list of proteins available in Supplementary Data file 1. 82 
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 128 

Figure 3: Association between protein abundance and advanced radiographic disease status 129 

stratified by obese and non-obese OA participants using non-IPS regressed Combined data. 130 

Protein abundance was measured in 1,236 patient samples where BMI was available (Combined 131 

dataset (N = 1,236, spun (N=1,045) and unspun (N = 191), corrected for spin-status and then 132 

adjusted for age and biological sex. The groups were then stratified by BMI into obese, BMI ≥30 (N = 133 

587, 504 spun samples) and non-obese, BMI <30 (N = 649, 541 spun samples) participants. Volcano 134 

plots show log odds ratio against
 

adjusted p-values (Benjamini-Hochberg corrected) for proteins 135 

associated with radiographic disease severity in (A) obese and (B) non-obese groups using 136 

Combined, non-IPS regressed and age adjusted data. Proteins in red are positively associated, those 137 

in blue negatively associated, with advanced radiographic disease at an adjusted p-value ≤ 0.05. Top 138 

20 associated proteins by adjusted p-value are labelled. In orange are proteins that replicated 139 

(significant at padj ≤0.05 and with effects in the same direction) across obese and non-obese groups. 140 

(C) Pearson correlation of the log odds ratios comparing associations between protein expression 141 

and advanced radiographic disease status in obese and non-obese groups. (D) Bubble plot of 142 

C 
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significantly enriched pathways (adjusted p-value <0.05) using the Hallmark Gene set for proteins 143 

associated with advanced radiographic disease status by obesity status. Abbreviations: intracellular 144 

protein score (IPS). Full list of proteins is available in Supplementary data file 4.  145 
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 194 

Figure 4: Association between protein abundance and radiographic OA severity after stratifying for 195 

biological sex using non-IPS regressed Combined data.  196 

Protein abundance was measured in 1,322 samples (Combined dataset, spun (N=1,096) and unspun 197 

(N = 226)), corrected for spin-status and then adjusted for age. Volcano plots showing odds ratios 198 

against
 

adjusted p-values (Benjamini-Hochberg corrected) for proteins associated with advanced 199 

radiographic disease severity in the Combined dataset stratified by (A) males (N = 623) and (B) 200 

females (N = 699). Proteins in red are positively associated, those in blue negatively associated, with 201 

increased radiographic disease severity at an adjusted p-value ≤ 0.05. Top 20 associated proteins in 202 

each direction, by p-value, are labelled. Orange labelled proteins represent those that were 203 

significantly associated in both males and females, whereas white labelled proteins were only 204 

associated in the sex-specific set. (C) A scatter plot of log odds ratio from logistic regression models 205 

of the association between protein abundance and advanced radiographic disease status in males 206 

and females is shown with significantly associated proteins in different groups in different colours 207 

(see key). Pearson correlation coefficient and p-value (unadjusted) are presented for the correlation 208 

between log odds ratio generated in male and female sex-specific analyses. (D) Bubble plot of 209 

significantly enriched pathways (adjusted p-value <0.05) using the Hallmark Gene set for proteins 210 

A B 

C D 
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associated with advanced radiographic disease status by biological sex. Abbreviations: intracellular 211 

protein score (IPS). Full list of proteins is available in Supplementary data file 5. 212 
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 231 

Figure 5: Association between protein abundance and WOMAC pain in non-IPS regressed data.  232 

Protein abundance was measured in 805 samples where WOMAC pain was available (Discovery and 233 

Replication, spun (N=748) and unspun (N = 57)), corrected for spin-status and then adjusted for age 234 

and biological sex. (A) Volcano plot showing beta estimates against
 

adjusted p-values (Benjamini-235 

Hochberg corrected) for proteins associated with WOMAC pain subscore in the Combined dataset. 236 

Proteins in red are positively associated, those in blue negatively associated, with increasing 237 

WOMAC pain subscore at an adjusted p-value ≤ 0.05. Top associated proteins, for each direction, 238 

ordered by adjusted p-value are labelled. In green are two proteins that were significant in 239 

Replication and Combined datasets, including after cohort adjustment (random intercept), see 240 

Supplementary Figure 4). (B) A scatter plot of beta estimates from linear regression models of the 241 

association between protein abundance and WOMAC knee pain in non-IPS analyses is shown for 242 

Discovery and Replication datasets with significantly associated proteins in different groups shown in 243 

different colours (see key). Pearson correlation coefficient and p-value (unadjusted) are presented 244 

for the correlation between beta estimates generated in non-IPS regressed analyses using Discovery 245 

and Replication datasets.                (C) Scatter plots of WOMAC pain subscore against NOE2 or NAR3 246 

protein abundance (transformed by natural logarithms) in OA participants using Combined, spin-247 

status corrected, non-IPS regressed data. Beta estimates and p-values (unadjusted) are presented 248 

for linear models adjusted for age and biological sex. (D) Bubble plot of significantly enriched 249 

pathways (adjusted p-value <0.05) using the Hallmark Gene set for proteins associated with WOMAC 250 

A B 

C

D



31 

 

knee pain by Replication and Combined datatsets not adjusted for IPS or cohort. No pathways were 251 

significantly enriched at padj <0.05 in the Discovery dataset. Abbreviations: osteoarthritis (OA), 252 

standard deviation (SD), intracellular protein score (IPS), Western Ontario and McMaster 253 

Universities Osteoarthritis Index (WOMAC, 0 = no pain, 100 = worst possible pain). Full list of 254 

proteins available in Supplementary data file 6. 255 
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