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Abstract 35 

Background and Objective. Positive predictive value of PI-RADS for clinically significant 36 

prostate cancer (csPCa, grade group [GG]≥2) varies widely between institutions and 37 

radiologists. The Restriction Spectrum Imaging restriction score (RSIrs) is a metric 38 

derived from diffusion MRI that could be an objectively interpretable biomarker for 39 

csPCa. 40 

Methods. In patients scanned for suspected or known csPCa at 7 centers, we calculated 41 

patient-level csPCa probability based on maximum RSIrs in the prostate, without relying 42 

on subjectively defined lesions. We used area under the ROC curve (AUC) to compare 43 

patient-level csPCa detection for RSIrs, ADC, and PI-RADS. Finally, we combined RSIrs 44 

with clinical risk factors via multivariable regression, training in a single-center cohort 45 

and testing in an independent, multi-center dataset.  46 

Key Findings and Limitations. Among all patients (n=1892), probability of csPCa 47 

increased with higher RSIrs . GG≥4 csPCa was most common in patients with very high 48 

RSIrs. Among biopsy-naïve patients (n=877), AUCs for GG≥2 vs. non-csPCa were 0.73 49 

(0.69-0.76), 0.54 (0.50-0.57), and 0.75 (0.71-0.78) for RSIrs, ADC, and PI-RADS, 50 

respectively. RSIrs significantly outperformed ADC (p<0.01) and was comparable to PI-51 

RADS (p=0.31). The combination of RSIrs and PI-RADS outperformed either alone. 52 

Combining RSIrs with PI-RADS, age, and PSA density in a multivariable model achieved 53 

the best discrimination of csPCa.  54 

Conclusions and Clinical Implications. RSIrs is an accurate and reliable quantitative 55 

biomarker that performs better than conventional ADC and comparably to expert-56 

defined PI-RADS for patient-level detection of csPCa. RSIrs provides objective estimates 57 

of probability of csPCa that do not require radiology expertise.  58 

  59 
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Introduction  60 

Multiparametric magnetic resonance imaging (mpMRI) has reduced unnecessary 61 

biopsies, decreased overdiagnosis of indolent disease, and improved detection of 62 

clinically significant prostate cancer (csPCa, grade group (GG) ≥2)1–3. In clinical practice, 63 

mpMRI is interpreted qualitatively using the Prostate Imaging Reporting & Data System 64 

(PI-RADS v2.1). While negative predictive value (NPV) using PI-RADS is high and fairly 65 

consistent4, positive predictive value (PPV) for csPCa varies widely across institutions 66 

and between radiologists5,6. The heavy dependence on user expertise and the variability 67 

across readers leads to healthcare disparities by limiting access to high-quality MRI. A 68 

quantitative imaging biomarker could help move prostate MRI toward objective 69 

interpretation and yield consistent PPV for csPCa-positive biopsy.  70 

 71 

Diffusion-weighted MRI is the most important mpMRI sequence for csPCa detection in 72 

the PI-RADS system7. However, the conventional quantitative metric for diffusion-73 

weighted MRI, apparent diffusion coefficient (ADC), is based on an unrealistically 74 

simplistic model that assumes uniform free diffusion of water molecules in the prostate. 75 

Restriction Spectrum Imaging (RSI) is a more advanced diffusion-weighted MRI 76 

technique that yields a quantitative biomarker (RSI restriction score, or RSIrs) designed 77 

to highlight csPCa. In prior retrospective single-center studies, we showed that RSIrs 78 

reduced the number of false positives compared to ADC and outperformed ADC for 79 

voxel-level and patient-level detection of csPCa8,9. A prospective study found that 80 

radiation oncologists were much more accurate in outlining csPCa on MRI when using 81 

RSIrs than when using conventional MRI alone10.  82 

 83 

In this study, we evaluate RSIrs as a generalizable tool for patient-level csPCa 84 

detection—with objective interpretation—in data from multiple imaging protocols, 85 

scanners, vendors, and centers. We also evaluate the accuracy of RSIrs in challenging 86 

scenarios: csPCa detection among younger patients11 and within the transition zone 87 

(TZ)12,13. Lastly, we investigate integrating RSIrs with other clinical parameters, such as 88 

age and prostate specific antigen density (PSAD) to yield objective estimates of csPCa 89 

probability that could serve as a standardized reference for assessing prostate MRIs, 90 

independent of radiologist expertise. 91 

 92 

Methods  93 

Study Population 94 

The data for this study come from seven imaging centers participating in the Quantitative 95 

Prostate Imaging Consortium (QPIC): the Center for Translational Imaging and Precision 96 

Medicine at the University of California San Diego (CTIPM), UC San Diego Health (UCSD), 97 

University of California San Francisco (UCSF), Harvard University affiliated 98 

Massachusetts General Hospital (MGH), University of Rochester Medical Center 99 

(URMC), University of Texas Health Sciences Center San Antonio (UTHSCSA), and 100 

University of Cambridge (Cambridge). The study was approved by each center’s 101 

institutional review board (IRB). Data were collected prospectively at UCSD, UTHSCSA, 102 

and Cambridge; data were collected retrospectively at the other centers. Participants at 103 

UTHSCSA and Cambridge provided written informed consent, while a waiver of consent 104 

was approved by the respective IRBs at the other centers for secondary use of routine 105 

clinical data. We included individuals aged ≥18 who underwent an MRI for suspected or 106 
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known csPCa between January of 2016 and March of 2024. Patients were excluded in the 107 

event of prior treatment of prostate cancer (PCa) or if there was no available biopsy result 108 

from within 6 months of a positive MRI scan (PI-RADS ≥3). Patients with metal implants 109 

were also excluded because of the potential to cause significant artifact in MRI. 110 

Diagnosis of csPCa was confirmed on biopsy histopathology per clinical routine at each 111 

center.  112 

 113 

RSI data acquisition, processing, and modeling 114 

Image post-processing for RSI data included correction for background noise, gradient 115 

nonlinearities, and eddy currents14–16. Data acquired at CTIPM were also corrected for 116 

distortion caused by 𝐵0 inhomogeneity17. Automated prostate contours were obtained 117 

using an FDA-cleared commercial product (OnQ Prostate, CorTechs.ai, San Diego, CA). 118 

In the RSI framework, diffusion MRI signal is modeled as a combination of exponential 119 

decays corresponding to four diffusion microcompartments (intracellular, extracellular, 120 

free diffusion, and vascular flow) within each voxel18. The RSIrs biomarker is the 121 

intracellular signal at a given voxel normalized by median T2-weighted signal in the 122 

prostate and multiplied by 1,000 for convenience. RSIrs is highest where intracellular 123 

diffusion restriction (hypercellularity) and nucleus-to-cytoplasm ratio are high, both 124 

features characteristic of csPCa. Maximum RSIrs is the highest RSIrs value within the 125 

prostate8–10,14,18–20. Additional details are provided in Supplementary Table 1. 126 

Patient-level detection of csPCa 127 

For objective and reliable interpretation of MRI results independent of radiologist 128 

expertise, risk of csPCa must be determined without subjective lesion delineation. Thus, 129 

we assessed csPCa classification performance using maximum RSIrs, which only 130 

requires automated segmentation of the prostate. We plotted histograms of maximum 131 

RSIrs by csPCa status and obtained the probability (PPV) of csPCa and high-grade csPCa 132 

for RSIrs strata by dividing the number of GG≥2 and GG≥3 cases, respectively, by the total 133 

number of patients for each bin. Bins spanned 50 RSIrs units, and adjacent bins were 134 

combined for illustration purposes if PPV were similar. Pathologic GG is a major 135 

prognostic factor for patients with csPCa21:  GG2 cancer with low-volume Gleason 136 

pattern 4 generally poses little risk and may be safely monitored22, while GG3-5 cancers 137 

are more critical to detect and treat early because of their higher metastatic potential23. 138 

We showed the GG distribution within each RSIrs stratum among patients who were 139 

biopsy-naïve at time of MRI.  140 

To evaluate patient-level detection of csPCa over a range of possible operating points, 141 

we plotted the receiver operating characteristic (ROC) curves with csPCa as the outcome 142 

of interest. For comparison, we used minimum ADC within the prostate and the highest 143 

PI-RADS category for each patient. PI-RADS reporting was performed per clinical routine 144 

by experienced, board-certified, fellowship-trained radiologists. We calculated the area 145 

under the curve (AUC) with 95% confidence intervals from 10,000-bootstrapping 146 

samples and compared bootstrap AUC differences (α=0.05). We repeated these 147 

analyses stratified by GG (i.e., GG2 vs. non-csPCa, GG3 vs. non-csPCa, etc.). We also 148 

evaluated csPCa detection in challenging subsets: patients with TZ lesions and patients 149 

with age <60 years.   150 
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Multivariable integrated risk 151 

We used multivariable logistic regression models to combine RSIrs with other routinely 152 

available clinical risk factors that physicians may consider in biopsy decisions. We 153 

incorporated age, prostate-specific antigen (PSA) level, and PSA density (PSAD). We also 154 

evaluated combining these objective variables with expert interpretation of MRI (PI-155 

RADS). Black or African American men are much more likely to develop PCa24,25, so we 156 

evaluated self-reported race as an additional predictor. We trained the models using 157 

UCSD Health data collected on two GE Healthcare Discovery MR750 scanners. The 158 

models were tested in remaining patients from all cohorts who were biopsy-naïve at time 159 

of MRI and who received a biopsy after MRI. We tested the multivariable models for 160 

patient-level detection of csPCa (csPCa vs. non-csPCa) and by GG. We evaluated 161 

models with different predictors: (1) age and PSA, which are available before an MRI 162 

scan; (2) age and PSAD, which can be computed once MRI is performed; (3) age, PSAD, 163 

and RSIrs; (4) RSIrs and PI-RADS, to see if better than either alone; (5) age, PSAD, RSIrs, 164 

and PI-RADS; and (6) age, race, PSAD, RSIrs, and PI-RADS.  165 

 166 

Results  167 

Patient-level detection of csPCa 168 

1892 patients met the criteria for inclusion (Table 1). Data were acquired using 7 distinct 169 

acquisition protocols, 2 scanner vendors, 3 scanner models, and 17 MRI scanners 170 

(Supplementary Table 2).  171 

 172 

Probability of csPCa increased with higher RSIrs. High-grade (GG4-5) csPCa was 173 

proportionally more common among those with highest RSIrs (Figure 1). For RSIrs>500, 174 

there was 80% probability of csPCa found on biopsy and 64% probability of GG≥3 PCa, 175 

whereas for RSIrs<200, patients had 12% probability of csPCa and only 6% probability of 176 

GG≥3 PCa. RSIrs and ADC maps are shown for three representative patients in Figure 2. 177 

 178 

ROC curve analysis demonstrated that RSIrs was superior to ADC and comparable to PI-179 

RADS for patient-level detection of csPCa (Figure 3). Among 877 biopsy-naïve patients 180 

who underwent biopsy after MRI, median AUC for GG≥2 vs. non-csPCa was 0.73 (0.69-181 

0.76) for RSIrs, 0.54 (0.50-0.57) for ADC, and 0.75 (0.71-0.78) for PI-RADS. RSIrs 182 

significantly outperformed ADC (p<0.01) and was comparable to PI-RADS (p=0.31).  183 

 184 

When comparing GG≥3 to non-csPCa (i.e., excluding GG2), median AUCs were 0.76 185 

(0.72-0.80) for RSIrs, 0.55 (0.50-0.60) for ADC, and 0.79 (0.76-0.82) for PI-RADS. RSIrs 186 

significantly outperformed ADC (p<0.01) and was comparable to PI-RADS (p=0.14). Both 187 

RSIrs and PI-RADS showed partial specificity for high-grade csPCa, with higher 188 

performance for detection of GG3 and GG4-5 than for GG2 (Figure 3 and Supplementary 189 

Table 3).  190 

 191 

RSIrs performed similarly to expert PI-RADS in patients with lesions in the TZ (p=0.90) and 192 

PZ (p=0.07). RSIrs performed similarly to PI-RADS in patients <60 years (p=0.12) and >60 193 

years (p=0.11). Subset analyses by race were limited by small sample size for most 194 

groups (Supplementary Table 3). 195 

Multivariable integrated risk 196 
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Models to combine predictor variables were trained in 554 patients, including 232 with 197 

no biopsy but presumed free of csPCa (PI-RADS 1-2 and PSAD≤0.15)26 and excluding 198 

patients that did not have a PI-RADS score available. Models were tested in an 199 

independent dataset from multiple institutions with 664 patients, all biopsy naïve before 200 

MRI and with biopsy confirmation of csPCa status. The combination of RSIrs and PI-RADS 201 

outperformed either alone (p<0.01 and p=0.01, respectively), and a model of age, PSAD, 202 

PI-RADS, and RSIrs achieved the best discrimination of csPCa, outperforming RSIrs 203 

alone and PI-RADS alone (p<0.01; Table 2). Addition of race did not significantly improve 204 

performance in any of the multivariable models. 205 

 206 

Discussion  207 

We assessed RSIrs as an objective MRI biomarker for detecting csPCa at the patient 208 

level. In contrast to ADC, which typically becomes clinically useful after a radiologist 209 

identifies a suspicious lesion, RSIrs assessed automatically within the entire prostate 210 

performed comparably to expert PI-RADS for patient-level detection of csPCa in a large, 211 

heterogenous and multi-center dataset. Moreover, RSIrs performs best for the high-212 

grade cancers that are also most important to detect. An automated measurement of 213 

RSIrs can give physicians and patients an objective and reliable estimate of the likelihood 214 

of csPCa or high-grade csPCa. 215 

 216 

Subspecialist radiologists are often at elite centers that provide care for only a small 217 

proportion of patients. A quantitative biomarker could contribute to making accurate 218 

prostate MRI accessible to patients who do not receive their care at these elite centers. 219 

The PPV of RSIrs is inherently reproducible for a given scan, as it is calculated objectively 220 

from the MRI. Use of RSIrs, then, could make prostate MRI more reliable and more readily 221 

interpretable for referring physicians and their patients. By addressing the variable PPV 222 

of PI-RADS and reducing dependence on reader expertise, implementation of objective 223 

biomarkers could increase health equity in the PCa diagnostic pathway.   224 

 225 

RSIrs requires only an RSI MRI acquisition lasting 2-3 minutes and a T2-weighted MRI 226 

acquisition (another 2-3 minutes). Thus, 4-6 minutes of scan time can yield an 227 

automated RSIrs biomarker with performance comparable to expert radiologists’ 228 

evaluations of a full PI-RADS mpMRI scan. RSI acquisitions are compatible with standard 229 

clinical scanners and do not require administration of intravenous contrast. Installing the 230 

RSI acquisition protocols on modern scanners involves simply saving protocol files on 231 

the scanner.  Calculation of RSIrs can be performed by software on a desktop personal 232 

computer.  233 

 234 

Maximum RSIrs is a quantitative biomarker that is readily interpretable. Thus, use of 235 

RSIrs could establish a floor for performance of csPCa detection regardless of available 236 

radiology expertise. Radiologist interpretation of MRI remains important for evaluation of 237 

secondary questions: extraprostatic extension, tumor proximity to the neurovascular 238 

bundles, and seminal vesicle involvement. However, these latter questions are mostly 239 

relevant only after a biopsy-confirmed diagnosis of csPCa is established and therefore 240 

apply to a smaller subset of patients. For the initial question of whether csPCa is likely to 241 

be found on biopsy, RSIrs performs comparably to expert-defined PI-RADS, and the 242 

combination of both is better than either alone.  243 
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We focused this study on patient-level csPCa detection. Another important role of MRI is 244 

tumor localization for targeted biopsy27–32and radiotherapy planning33–35. Radiologist-245 

defined lesion segmentations were not available to perform lesion-level analysis of this 246 

large dataset. The commercial software our centers use to delineate biopsy targets does 247 

not permit export of those segmentations and automatically deletes them to make room 248 

for future studies. In any event, expert-defined lesions are subjectively identified, thus 249 

undermining the primary goal of the study to consider approaches independent of 250 

radiologist expertise. Prior work, though, has shown that RSIrs maps are useful for 251 

localization of csPCa (Figure 2). There is a strong correlation between RSI and csPCa on 252 

whole-mount histopathology, and RSIrs is superior to ADC for voxel-level detection of 253 

csPCa9,36. Further, a prospective study evaluated radiation oncologists’ ability to 254 

delineate csPCa on MRI; these non-radiologists were much more accurate when using 255 

RSIrs maps vs. conventional MRI alone, confirming that RSIrs maps reflect the location 256 

of csPCa and make it more apparent to non-experts10. 257 

 258 

Automated and quantitative MRI approaches may help alleviate the growing shortage of 259 

expert radiologists relative to an anticipated surge in PCa diagnoses37. Other MRI 260 

biomarkers have also shown potential clinical utility in prior studies38,39. To our 261 

knowledge, the present study is the largest and most comprehensive validation of a 262 

quantitative MRI biomarker for patient-level csPCa detection. Ongoing research 263 

evaluates whether incorporating RSIrs into radiomics-based analysis and deep-learning 264 

artificial intelligence tools could further enhance detection performance. 265 

 266 

Our study has some limitations. First, biopsy techniques are prone to sampling error and 267 

therefore represent an imperfect gold standard. Nonetheless, most patients here 268 

underwent both systematic and targeted biopsy, which is the current clinical standard 269 

and captures most csPCa4,28,29,40. Consistent with clinical guidelines, patients with non-270 

suspicious prostate MRI typically did not undergo biopsy, raising the possibility of false 271 

negatives on PI-RADS, though the risk of this is low4.  Also, patients with hip implants 272 

were excluded from this study; the effect of metal artifact on RSIrs is the subject of 273 

ongoing research.  274 

 275 

Conclusions 276 

In heterogeneous data from multiple imaging centers, RSIrs proved to be a quantitative 277 

imaging biomarker that performs comparably to expert-defined PI-RADS for patient-level 278 

detection of csPCa. With only 4-6 minutes of scan time on standard clinical MRI 279 

platforms, RSIrs gives objective estimates of probability of csPCa, thus addressing the 280 

current clinical challenge of unreliable PPV with PI-RADS. 281 

  282 
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Figures 
 

 

 

B) <200 200-249 250-299 300-499 300-499 >500 
No csPCa 344 174 99 64 53 18 
csPCa 48 65 76 71 150 73 
GG2 26 36 46 41 72 15 
GG3 12 20 20 20 42 20 
GG4-5 10 9 10 10 36 38 
Total 392 239 175 135 203 91 

 

Figure 1. (A) Probability of clinically significant prostate cancer (csPCa) 
and high-grade csPCa  for strata of maximum RSIrs values in data from 
n=1235 biopsy-naïve patients. The upper number in each column is the 
probability of csPCa and the lower number is the probability of GG≥3 
cancer. (B) Number of patients in each maximum RSIrs stratum in the 
present dataset. Patients with no biopsy were assumed to not have non-
csPCa if expert PI-RADS interpretation was ≤2 and PSA density < 0.15.  

 
 
  425 



  13 

 

 
 
Figure 2. Axial images of T2-weighted (T2W) MRI, conventional ADC, RSIrs, RSIrs overlaid on the 
anatomical T2W images, and whole-mount histopathology for three representative patients who 
underwent radical prostatectomy within 6 months of MRI. The RSI maps highlight the areas where 
clinically significant prostate cancer (csPCa) was confirmed on whole-mount histopathology. All 
three patients had PI-RADS 4 lesions in the peripheral zone (green arrows). Prostatectomy results 
showed that patient A had Gleason 4+4 prostate cancer (grade group 4), while patients B and C 
had Gleason 4+3 cancer (grade group 3).  
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Figure 3. ROC curves by grade group (GG) for patient-level detection of csPCa using RSIrs, PI-
RADS and ADC. Patients were included if they were biopsy-naïve at time of MRI and underwent 
biopsy after MRI. Yellow circles correspond to PI-RADS thresholds. A) AUCs for discrimination 
of GG ≥2 PCa vs no csPCa (n=877). B) AUCs for GG2 PCa detection vs no csPCa (n=633). C) 
AUCs for GG3 PCa detection vs no csPCa (n=531). D) AUCs for GG4-5 PCa detection vs no 
csPCa (n=509). RSIrs was superior to ADC in detection of GG≥2 PCa, GG2, GG3 and GG4-5 
(p<0.01). AUCs with 95% confidence intervals and p-values are in Supplementary Table 3.  
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 Tables 
  

Patient Characteristics. Total Study Participants (n = 1892) 

Cohorts 

 UC San Diego Health  693 

 UC San Diego CTIPM 679 

 Harvard University’s Massachusetts General Hospital (MGH) 64 

 University of Rochester Medical Center (URMC) 251 

 UC San Francisco (UCSF) 43 

 UT Health Sciences Center San Antonio (UTHSCSA) 147 

 University of Cambridge 15 

Clinical Parameters 

 Age (years), median (IQR) 70 (64-75) 

 PSA (ng/ml), median (SD) 6.36 (4.65-9.20) 

 Prostate volume (ml), median (IQR) 51 (36-74) 

 PSA density (ng/ml2), median (IQR) 0.11 (0.07-0.19) 

 Biopsy 

   Received biopsy prior to MRI scan 657 

   Biopsy-naïve at time of MRI scan (had a biopsy within 6 months after MRI) 1235 (877) 

 Pathology 

   Systematic biopsy only 503 

   Targeted biopsy only  179 

   Systematic and targeted biopsy 710 

   Prostatectomy 323 

   No biopsy within 6 months of MRI scan 500 

 PI-RADS (v2.1) 

   1 636 

   2 53 

   3 263 

   4 453 

   5 443 

   Not available*  44 

Gleason Grade Group 

   Benign 334 

   1 296 

   2 367 

   3 211 

   4 81 

   5 103 

Race & Ethnicity  

 White, Hispanic 94 

 White, Non-Hispanic 1228 

 White, Ethnicity Other / Unknown 65 

 Asian 120 

Black or African American 117 
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American Indian/Alaska Native 6 

Native Hawaiian or Other Pacific Islander 6 

Other / Unknown 256 
 

Table 1. Characteristics of the patients included in this study. *Scans with no PI-RADS 
available were research-only scans. CTIPM = Center for Translational Imaging and Precision 
Medicine. UC = University of California. UT = University of Texas. PSA = prostate-specific 
antigen. PI-RADS = Prostate Imaging Reporting & Data System.  
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 AUCs for csPCa discrimination in multivariable models 

Test Group RSIrs PI-RADS ADC RSIrs, PI-RADS* 

A) GG ≥ 2 cancer 0.72 [0.68-0.76] 0.74 [0.70-0.77] 0.54 [0.50-0.59] 0.77 [0.73-0.81] 

B) GG2 cancer 0.69 [0.64-0.74] 0.69 [0.64-0.73] 0.53 [0.50-0.58] 0.73 [0.68-0.77] 

C) GG3 cancer 0.72 [0.66-0.78] 0.74 [0.69-0.79] 0.54 [0.50-0.60] 0.78 [0.72-0.83] 

D) GG4-5 cancer 0.80 [0.73-0.86] 0.85 [0.80-0.89] 0.58 [0.51-0.65] 0.87 [0.82-0.92] 

 PSA, Age PSAD, 
Age, RSIrs 

PSAD, Age, 
RSIrs, PI-RADS* 

PSAD, Age, Race, 
RSIrs, PI-RADS* 

A) GG ≥ 2 cancer 0.61 [0.56-0.66] 0.74 [0.70-0.77] 0.78 [0.74-0.82] 0.78 [0.74-0.82] 

B) GG2 cancer 0.53 [0.50-0.58] 0.69 [0.64-0.74] 0.73 [0.69-0.78] 0.74 [0.69-0.78] 

C) GG3 cancer 0.65 [0.57-0.72] 0.73 [0.67-0.79] 0.78 [0.72-0.83] 0.78 [0.72-0.83] 

D) GG4-5 cancer 0.77 [0.70-0.83] 0.86 [0.81-0.91] 0.90 [0.85-0.94] 0.90 [0.85-0.94] 
PSAD: prostate specific antigen density 
*: Performance in predictor groups marked with an asterisk is significantly better than that of RSIrs. 

 

Table 2. Results from the multivariable logistic regression models for combinations of RSIrs 
with clinical and imaging parameters for discrimination of clinically significant prostate cancer 
(csPCa, grade group [GG] ≥ 2). Group A) independent testing in all biopsy-naïve patients at time 
of MRI with biopsy confirmed diagnosis who were not used for training (n=664); comparison is 
csPCa vs. no csPCa (benign or grade group 1, GG1). Group B) GG2 vs. non-csPCa: subset of 
independent testing dataset with either GG2 csPCa or no csPCa (n=500). Group C) GG3 vs. 
non-csPCa: subset of independent testing dataset with either GG3 csPCa or no csPCa 
(n=409). Group D) GG4-5 vs. no csPCa: subset of independent testing dataset with GG4 
csPCa, GG5 csPCa, or no csPCa (n=393). 95% confidence intervals were calculated from 
10,000-bootsrapping stratified by csPCa. 
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Supplementary Material  
 

 

 
 
Supplementary Figure 1. A) Histogram of RSIrs values in all patients in the study. B) 
Histogram of RSIrs  values in patients who were biopsy-naïve at time of MRI. 
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RSI model formula RSI compartment Fixed Diffusion Coefficient (s/mm2) 

 

(𝑏) = ∑ 𝐶𝑖𝑒−𝑏𝐷𝑖

4

𝑖=1

 

Restricted Diffusion (𝐶1)  1.1 ∗ 10−4 (𝐷1) 

Hindered Diffusion (𝐶2) 1.8 ∗ 10−3 (𝐷2) 

Free Diffusion (𝐶3) 3.6 ∗ 10−3 (𝐷3) 

Vascular Flow (𝐶4) 0.1220 (𝐷4) 
 

Supplementary Table 1. The RSI model computes the sum of DWI signal from the four 
compartments as expressed by the formula above. S(b) represents the measured 
diffusion-weighted imaging (DWI) signal intensity at a specific b-value. The signal is 
modeled as a linear combination of exponential decays, each corresponding to one of four 
diffusion compartments. 𝐶𝑖  denotes the signal contribution of a particular compartment 
to the overall signal; these contributions are determined through model-fitting. The 
diffusion coefficients, 𝐷𝑖, are set to empirically determined values for each of the four 
tissue compartments (𝐶𝑖).  
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UCSD CTIPM DWI T2-weighted  
Pulse sequence Diffusion-weighted EPI Fast Spin Echo (FSE) 
TR (ms) 4500 7000 
TE (ms) 69 100 
FOV (mm) 240 x 120 240 x 240 
Matrix  
[resampled dimensions] 

96 x 48 [128 x 128] 320 x 320 [512 x 512] 

Slices 16 32 
Slice Thickness (mm) 6 3 
b-values (s/mm2) 
[number of samples] 

0[1], 500[6],  
1000[6], 2000[12] N/A 

Field Strength (T)  3 3 
 

UCSD Health DWI T2-weighted  
Pulse sequence Diffusion-weighted EPI Fast Spin Echo (FSE) 
TR (ms) 4000 5300 
TE (ms) 69 100 
FOV (mm) 240 x 120 200 x 200 
Matrix  
[resampled dimensions] 96 x 48 [256 x 256] 320 x 320 [512 x 512] 

Slices 16 32 
Slice Thickness (mm) 6 3 
b-values (s/mm2) 
[number of samples] 

0[1], 500[8],  
1000[8], 2000[16] 

N/A 

Field Strength (T)  3 3 
 

URMC DWI T2-weighted  
Pulse sequence Diffusion-weighted EPI Fast Spin Echo (FSE) 
TR (ms) 3800 4800 
TE (ms) 85 104 
FOV (mm) 52 x 52 180x180 
Matrix  
[resampled dimensions] 100 x 52 [104 x 200] 384 x 365 [384 x 384] 

Slices 22 32 
Slice Thickness (mm) 4 3 
b-values (s/mm2) 
[number of samples] 

0[1], 500[6],  
1000[6], 2000[6] N/A 

Field Strength (T)  3 3 
 

MGH DWI T2-weighted  
Pulse sequence Diffusion-weighted EPI Fast Spin Echo (FSE) 
TR (ms) 4500 3937 
TE (ms) 59 169 
FOV (mm) 240 x 120 160 x 160 
Matrix  
[resampled dimensions] 96 x 48 [128x128] 

360 x 224  
[1024 x 1024] 

Slices 16 40 
Slice Thickness (mm) 6 3 
b-values (s/mm2) 
[number of samples] 

0[1], 500[6],  
1000[6], 2000[12] N/A 

Field Strength (T)  3 3 
 

Cambridge DWI T2-weighted 
Pulse sequence Diffusion-weighted EPI Fast Spin Echo (FSE) 
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TR (ms) 4500 3130 
TE (ms) 68 98 
FOV (mm) 220 x 110 180 x 180 
Matrix  
[resampled dimensions] 96 x 48 [256 x 256] 448 x 256 [512 x 512] 

Slices 8 30 
Slice Thickness (mm) 4 3 
b-values (s/mm2) 
[number of samples] 

0[1], 500[2],  
1000[2], 2000[4] N/A 

Field Strength (T)  3 3 
 

UTHSCSA DWI T2-weighted  
Pulse sequence Diffusion-weighted EPI Fast Spin Echo (FSE) 
TR (ms) 6300 4710 
TE (ms) 105 100 
FOV (mm) 52 x 100 180 x 180 
Matrix  
[resampled dimensions] 

52 x 100 x [104 x 200] 240 x 320 x [320 x 320] 

Slices 22 30 
Slice Thickness (mm) 4 3 
b-values (s/mm2) 
[number of samples] 

0[1], 500[6],  
1000[18], 2000[42] N/A 

Field Strength (T)  3 3 
 

UCSF DWI T2-weighted 
Pulse sequence Diffusion-weighted EPI Fast Spin Echo (FSE) 
TR (ms) 4500 2964 
TE (ms) 73 150 
FOV (mm) 200 x 200 220 x 220 
Matrix  
[resampled dimensions] 

256 x 256 [256 x 256] 512 x 512 [320 x 320] 

Slices 35 36 
Slice Thickness (mm) 3 3 
b-values (s/mm2) 
[number of samples] 

0[5], 100[6], 800[12],  
1400[12], 2500[18] N/A 

Field Strength (T) 3 3 
 

Institution Scanner models Number of Stations 

UCSD CTIPM 
GE Healthcare Discovery MR750,  

GE Healthcare Signa Premier 4 

UCSD Health GE Healthcare Discovery MR750,  
GE Healthcare Signa Premier 

4 

URMC SIEMENS Skyra 2 
MGH GE Healthcare Signa Premier 1 
UCSF GE Healthcare Signa Premier 2 

Cambridge GE Healthcare Discovery MR750 1 
UTHSCSA SIEMENS Skyra 3 

Total 3 scanner models 17 stations 
 

Supplementary Table 2. MRI acquisition parameters for each cohort. Parameters such 
as echo time (TE), repetition time (TR), matrix acquisition or slice thickness differ between 
RSI protocols. FOV: field-of-view. FSE: fast spin echo. EPI: echo-planar imaging. DWI: 
diffusion-weighted imaging. UCSD: University of California San Diego. CTIPM: Center for 
Translational Imaging and Precision Medicine. MGH: Harvard University’s Massachusetts 
General Hospital. URMC: University of Rochester Medical Center. UTHSCSA: University 
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of Texas Health Sciences Center San Antonio. UCSF: University of California San 
Francisco. Cambridge: University of Cambridge. 
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Patient Cohort n % with 
csPCa 

AUC RSIrs AUC PI-RADS AUC ADC 

GG ≥ 2 877 55 0.73 [0.69,0.76]  0.75 [0.71,0.78]  0.54 [0.50,0.57] 

GG ≥ 3 642 38 0.76 [0.72,0.80] 0.79 [0.76,0.82] 0.55 [0.50,0.60] 

GG 2 only 633 37 0.69 [0.65,0.73] 0.70 [0.66,0.74] 0.52 [0.48,0.57] 

GG 3 only 531 25 0.73 [0.68,0.77] 0.75 [0.71,0.80] 0.53 [0.48,0.59] 

GG 4-5 only 509 22 0.80 [0.74,0.85] 0.83 [0.79,0.87] 0.57 [0.51,0.63] 

TZ csPCa 329 43 0.72 [0.66,0.78] 0.72 [0.66,0.77] 0.57 [0.51,0.63] 

PZ csPCa 602 55 0.72 [0.68,0.76] 0.76 [0.73,0.80] 0.52 [0.48,0.57] 

< 60 years old 103 45 0.79 [0.69,0.87] 0.70 [0.60,0.79] 0.57 [0.45,0.68] 

≥ 60 years old 772 56 0.72 [0.68,0.75] 0.75 [0.72,0.78] 0.53 [0.49,0.57] 

Race White 672 53 0.74 [0.70,0.77] 0.76 [0.72,0.79] 0.54 [0.49,0.58] 

Race Asian 47 64 0.74 [0.59,0.87] 0.78 [0.64,0.89] 0.62 [0.44,0.79] 

Race Black 51 45 0.68 [0.53,0.82] 0.60 [0.46,0.74] 0.54 [0.38,0.70] 

Race Other / Unknown 107 64 0.70 [0.59,0.80] 0.72 [0.62,0.80] 0.57 [0.45,0.68] 
 

 p-value RSIrs vs. PI-RADS p-value RSIrs vs. ADC 
GG ≥ 2 0.31 <0.01 
GG ≥ 3 0.14 <0.01 

GG 2 only 0.75 <0.01 
GG 3 only 0.31 <0.01 

GG 4-5 only 0.20 <0.01 
TZ csPCa 0.90 <0.01 
PZ csPCa 0.07 <0.01 

< 60 years old 0.12 <0.01 
≥ 60 years old 0.11 <0.01 

Race White 0.32 <0.01 
Race Asian 0.61 0.28 
Race Black 0.41 0.12 

Race Other / Unknown 0.82 0.05 
 

Supplementary Table 3. AUC values for RSIrs, PI-RADS and ADC in different subsets.  95% 
confidence intervals were calculated from 10,000-bootsrapping stratified by grade group. All 
cohorts are against non-csPCa (benign and grade group 1). GG: Grade Group. 
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