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Abstract 

Objective: To compare the incremental prognostic value of pupillary reactivity as captured in 

the GCS-Pupils score (GCS-P) or added as separate variable to the Glasgow Coma Scale 

(GCS) in traumatic brain injury (TBI). 

Methods: We analyzed patients enrolled between 2014 and 2018 in the Collaborative 

European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI, 

n=3521) and the Transforming Research and Clinical Knowledge in Traumatic Brain Injury 

(TRACK-TBI, n=1439) cohorts. We used logistic regression to quantify the prognostic 

performances of GCS-P versus GCS according to Nagelkerke’s R2. Endpoints were mortality 

and unfavorable outcome (Glasgow Outcome Scale-Extended score 1-4) at 6 months after 

injury. We estimated 95% confidence intervals with bootstrap resampling to summarize the 

improvement in prognostic capability.  

Results: GCS as a linear score had a R2 of 24% (95% confidence interval [CI] 17-30) and 

30% (95%CI 17-43) for mortality and 29% (95%CI 25-34) and 38% (95%CI 29-47) for 

unfavorable outcome in CENTER-TBI and TRACK-TBI respectively. In the meta-analysis, 

pupillary reactivity as a separate variable improved the R2 by an absolute value of 6% and 2% 

for mortality and unfavorable outcome (95%CI 4.0-7.7 and 1.2-3.0, respectively), with half 

the improvement captured in the GCS-P score (3%, 95%CI 2.1-3.3 and 1%, 95%CI 1-1.7, 

respectively).  

Conclusions: GCS-P has a stronger association with outcome after TBI than the GCS alone. 

However, for prognostic models, inclusion of GCS and pupillary reactivity as separate scores 

is preferable.  
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Background 

Traumatic brain injury (TBI) is a pressing, multifaceted health concern affecting millions of 

people worldwide annually.1-3 The initial clinical severity of TBI is commonly reported 

according to the Glasgow Coma Scale (GCS), which is often trichotomized into three classes 

of severity: mild (GCS 13-15), moderate (GCS 9-12) and severe (GCS≤8). This tripartite 

division is embedded in clinical practice and research, but neglects patient experiences and 

the relevant heterogeneity within the divisions. Consequently, therapeutic nihilism may result 

in patients with presumed “severe” injuries, while disabling complaints and symptoms may 

be disregarded in patients with presumed “mild” injuries.4,5,6 The NIH-NINDS has 

implemented an international initiative to develop a novel approach to TBI classification, 

culminating in a workshop in Bethesda, USA in January 2024.7  

In preparation of this workshop, the working group on clinical assessment considered 

the relative value of using the full GCS or the GCS-Pupils score (GCS-P) for classifying the 

clinical severity of TBI. The GCS-P was proposed by Brennan and colleagues in 2018.8,9 In 

this novel scale one point is deducted from the GCS score for each unreactive pupil, resulting 

in a score ranging from 1 to 15, which intuitively has merit. Both the GCS and pupillary 

reactivity serve as important features in surgical decision-making, and lower scores are 

associated with poorer outcome. Moreover, the GCS (or its motor component), and pupillary 

reactivity are important components of well validated multifactorial prognostic models, such 

as the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) 

and Corticosteroid Randomization after Significant Head Injury (CRASH) models.10-12  

 With the simplicity of the GCS-P being comparable to the GCS and the information 

yield potentially greater, it shows potential to better characterize TBI. Studies conducted on 

the IMPACT and CRASH datasets have shown that merging of GCS and pupillary reactivity 

into the GCS-P may have comparable information yield compared to using GCS and 
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pupillary reactivity as separate factors, but these were mainly focused on patients with 

moderate to severe TBI, and it is uncertain if this may hold across all severities.8,9 

Uncertainty further exists if a summary score like the GCS-P provides similar prognostic 

information as the inclusion of these features separately in a prognostic model. We aimed to 

analyze the association of GCS and GCS-P with outcome in large contemporaneous datasets 

including TBI of all severities and to explore their prognostic performance relative to each 

other and to a model including GCS and pupillary reactivity as separate prognostic factors.  

Methods 

Study population 

This study used data from 2 large multicenter, prospective, observational cohorts: the 

Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) and 

the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-

TBI) studies.13,14 CENTER-TBI included TBI patients between 2014 and 2017 presenting to 

one of 65 participating centers across Europe. TRACK-TBI enrolled TBI patients presenting 

to the emergency department between 2014 and 2019 from 18 United States (US) level 1 

trauma centers through convenience sampling. CENTER-TBI and TRACK-TBI are 

registered on ClinicalTrials.gov (number NCT02210221 and NCT02119182 respectively).  

All adults (³ 18 years) with a TBI recruited to these two studies were included in the 

current analysis. Exclusion criteria were: (1) missing baseline motor score or pupillary 

reactivity scorings or (2) missing Glasgow Outcome Scale-Extended (GOS-E) scores.  

GCS(-P) & Pupillary reactivity 

For CENTER-TBI, baseline GCS and pupillary reactivity were defined, using IMPACT 

methodology as the most recent not missing value between emergency room (ER) discharge 

(post-stabilisation) and pre-hospital assessment. Untestable eye (swelling) and verbal 
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(intubation) components of the GCS were imputed with the number “1”.15 In TRACK-TBI, 

the baseline GCS and pupillary reactivity were defined as the assessment at ER presentation. 

Missing eye and verbal components were imputed as follows: 

In case only verbal score is untestable: Total GCS = 0.55+1.45*[eye]+1.44*[mot]. 

In case both Eye and verbal score is untestable: Total GCS = 0.6+2.4*[mot]. 

 The GCS was analyzed as an ordinal scale starting at 3 (lowest score) and ending at 

15 (highest score). Pupillary reactivity was expressed using the Pupil Reactivity Score (PRS) 

which is scored based on 3 levels, namely both reacting, one reacting and none reacting, 

resulting in a score of 0, -1 or -2. The GCS and PRS were combined into an integrated GCS-P 

score, according to predefined methodology in the initial GCS-P study, subtracting the PRS 

from the GCS, yielding scores from 1 to 15.8 

Outcomes 

Patient (long-term) functional outcome was expressed using the GOS-E scale at 6 months 

after injury. GOS-E is an extended measure used to quantify functional outcome and consists 

of an 8-point scale ranging from 1 (death) to 8 (upper good recovery).16 The categories 2 

(vegetative state) and 3 (lower severe disability) were merged as these could not be 

differentiated on assessments performed by postal questionnaire. In CENTER-TBI, missing 

outcomes at 6 months after injury were imputed using a multinomial model if assessments at 

one or more other time points were available. In TRACK-TBI, only patients with available 

GOSE scores at 6 months were included. The primary outcomes are unfavorable outcome, 

which was defined as a GOS-E score lower than “lower moderate disability” (<5) and 

mortality, defined as patient death within 6 months after injury.  

Statistical analysis  
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Logistic regression modelling was used to analyze the relationships between GCS, PRS, 

GCS-P and patient outcome (GOS-E and mortality). Nagelkerke’s pseudo R2 was used as 

primary measure to quantify the prognostic capability of the included parameters.17 

Nagelkerke’s R2 is calculated at the log likelihood scale. It is a measure of how much better 

the model fits the data compared to a model with no predictors. Nagelkerke’s R2 can be 

interpreted as a measure of the proportion of variation explained in the dependent variable 

(the six-month outcome) that is explained by the independent variables (predictors) in a 

logistic regression model.18,19 The uncertainty of the R2 estimate was quantified by bootstrap 

resampling (5000 repetitions). We also estimated the increase in R2, the DR2, for GCS-P 

versus GCS models and GCS plus PRS versus GCS-P models within each bootstrap sample. 

The distribution of bootstrapped R2 estimates was used to estimate 95% confidence intervals 

(CI) for R2 and differences between R2 estimates. A pooled estimate across the CENTER-TBI 

and TRACK-TBI studies was estimated with inverse variance weighting. The regression 

analyses yielded estimations of odds ratios (OR) and 95% CI. The OR indicates the odds of 

unfavorable outcome (over favorable outcome) per 1-point increase in the GCS, PRS or 

GCS-P scales.  

A subgroup analysis was performed to assess the prognostic capabilities (mortality 

and unfavorable outcome) of GCS and GCS-P versus a model with both GCS and PRS in 

patients with moderate to severe TBI (GCS 3-12). Moreover, an additional age-stratified 

subgroup analysis was performed on 3 different age groups based on the age distribution in 

the cohorts, namely age <45, age 45-64, age ³65 years. 

Statistical analysis was performed using R version 4.1.2.20  
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Results 

Demographics and baseline characteristics 

The total CENTER-TBI and TRACK-TBI cohorts consisted of 4509 and 2552 patients 

respectively. Of those patients, 3521 from CENTER-TBI and 1439 from TRACK-TBI were 

eligible for primary analysis (Figure 1).  

  The included patients from both studies were similar in sex, median GCS, PRS and 

CT imaging variables such as the presence of epidural hematoma (EDH), acute subdural 

hematoma (ASDH), traumatic subarachnoid hemorrhage (tSAH) and diffuse axonal injury 

(DAI) (Table 1). TRACK-TBI patients were generally younger than CENTER-TBI patients 

(median age: 39 years vs 51 years, respectively). Furthermore, mild TBI was more frequent 

in TRACK-TBI (78%) patients compared to CENTER-TBI (67%). Moreover, cerebral 

contusions (36% and 25%, respectively) and midline shift (16% and 11%, respectively) were 

more prevalent in CENTER-TBI compared to TRACK-TBI respectively.  

Distribution of outcomes 

Mortality and unfavorable outcome were more frequent in CENTER-TBI (12% and 25%) 

versus TRACK-TBI (7% and 14%). However, there were no large differences in the 

distribution of unfavorable outcome and mortality per GCS and PRS and within GCS-P 

scores (Supplemental Table 1 & 2). In CENTER-TBI, a small decrease in mortality at both 

GCS and GCS-P = 7 and 8 was observed while mortality increased again at GCS and GCS-P 

= 9 (Figure 2). Moreover, low GCS-P (1-2) displayed higher percentages of mortality and 

unfavorable outcome compared to low GCS (3-4). Mild and moderate TBI displayed similar 

distributions (Figure 2). In TRACK-TBI, low GCS-P (1-2) displayed lower mortality 

percentages at 6 months compared to CENTER-TBI (Figure 2 and Supplemental Table 3).  
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Associations of GCS(-P) and PRS with outcome 

The explained variance was higher for the regression model containing GCS and PRS (R2 

30% and 35%, Table 2) as separate predictors compared to the model containing GCS-P 

alone (R2 27% and 33%) for mortality in both CENTER-TBI and TRACK-TBI respectively 

(Figure 3).  

A model containing only GCS had the lowest model performance in CENTER-TBI 

and TRACK-TBI (R2 24% and 30%, respectively). GCS had a lower range of predicted risk 

compared to GCS-P and GCS together with PRS (Supplemental Figure 1). Regarding 

unfavorable outcome, explained variance was highest in the model containing GCS and PRS 

as separate predictors compared to GCS-P in both CENTER-TBI and TRACK-TBI (GCS and 

PRS: R2 32% and 40% & GCS-P: R2 31% and 39%, respectively, Table 2). Moreover, a 

model containing only GCS had the lowest model performance in both cohorts (R2 29 % and 

38% for CENTER-TBI and TRACK-TBI respectively). In a meta-analysis across studies, 

pupils as a separate variable improved the R2 by an absolute value of 6% and 2% for 

mortality and unfavorable outcome, with half the improvement captured in the GCS-P score 

(3% and 1%, respectively, Table 2, Figure 3 and 4).  

For both cohorts, in a logistic regression model containing GCS, an incremental 1-

point increase in GCS significantly decreased the odds for mortality within 6 months after 

injury (OR 0.79, 95%CI 0.77-0.81 and OR 0.75, 95%CI 0.72-0.79 for CENTER-TBI and 

TRACK-TBI respectively, Table 3). Similarly, more favorable GCS-P showed comparable 

odds ratios in both CENTER-TBI and TRACK-TBI (OR 0.79, 95%CI 0.77-0.81 and OR 

0.76, 95%CI 0.73-0.79, respectively). In a model with both GCS and PRS, incremental 1-

point decreases in PRS decreased the odds of mortality more strongly (OR 0.4, 95%CI 0.33-
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0.45 and OR 0.43, 95% CI 0.32-0.58 for CENTER-TBI and TRACK-TBI, respectively) than 

the odds for GCS (OR 0.84, 95%CI 0.82-0.86 and 0.80, 95%CI 0.76-0.85).  

When predicting unfavorable outcome (GOS-E 1-4) using comparable models, similar 

associations were found (Table 3). Again, in a model with both GCS and PRS, a poorer PRS 

was more strongly associated with a lower odds of unfavorable outcome in both CENTER-

TBI and TRACK-TBI patients (OR 0.5, 95%CI 0.42-0.59 and OR 0.56, 95%CI 0.42-0.76, 

respectively) than a lower GCS score (OR 0.81, 95%CI 0.-0. and OR 0.77, 95%CI 0.-0., 

respectively).  

Subgroup analysis 

In the subgroup of 1161 patients in CENTER-TBI and 317 patients in TRACK-TBI with 

moderate and severe TBI (GCS 3-12), strong correlations were confirmed for both GCS-P, 

GCS and GCS and PRS with similar differences in explained variability (Supplemental 

Tables 4, Supplemental Figure 2). In the age-stratified subgroups, similar differences in 

explained variability between GCS-P, GCS and GCS and PRS were found, with greater 

explained variance in younger patients in CENTER-TBI and older patients in TRACK-TBI 

(Supplemental Table 4).  

Discussion 

This study confirmed that in all models explored, pupillary reactivity adds important 

prognostic information over the GCS. However, the usage of PRS and GCS alone attributed 

to the greatest increment in DR2 for mortality and unfavorable outcome (5.8% and 2.1%), 

with half of this variance being captured by GCS-P (2.7% and 1.3%). 

 These results are largely in line with those reported in the original paper on GCS-P 

using the IMPACT and CRASH cohorts.8 In these studies, the addition of PRS to GCS as 
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separate predictors in a regression model increased the DR2 by 4% and 3.2% with a DR2 of 

3.4% and 2.2% between GCS and GCS-P for mortality and unfavorable outcome, 

respectively, leading the authors of the original paper to suggest that the GCS-P is a valuable 

summary score over the GCS alone. Both studies show an incremental advantage of the GCS 

and PRS as separate predictors across the broader spectrum of TBI included in the CENTER-

TBI and TRACK-TBI studies. The replication of the seminal results of Brennan and 

colleagues in our study is remarkable in the presence of disparities between cohorts. A major 

difference is the fraction of mild TBI patients (GCS>8): 78% in CENTER-TBI and 67% in 

TRACK-TBI compared to 21% in the combined IMPACT and CRASH cohorts.11 Our 

primary analysis included all TBI patients with available GCS, PRS and GOSE, and thus 

were inclusive also of patients with GCS 15. Furthermore, patients in the original IMPACT 

and CRASH cohorts were considerably younger compared to CENTER-TBI and TRACK-

TBI, with the median age in CENTER-TBI over 20 years higher than the median age in 

IMPACT.11 Pupillary abnormalities were also more common in the IMPACT cohort. 

Subgroup analyses 

We performed a subgroup analysis on patients with moderate and severe TBI (GCS 3-12) to 

improve comparability between our study and that of Brennan and colleagues9,10. Comparable 

to the primary analysis, similar trends were observed in the prognostic information from 

GCS, PRS and GCS-P, but differences in explained variance between groups were more 

pronounced in moderate and severe TBI (Supplemental Table 4). The age-stratified subgroup 

analysis displayed variance between age groups regarding explained variability by the 

logistic regression models, but comparable trends and DR2 for the predictor variables in 

CENTER-TBI and TRACK-TBI  

 Pros and cons of a summary score 
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Simplifications of the GCS inevitably convey less information and therefore loss of clinical 

value. Such considerations hold, for example, for the trichotomy of the GCS into mild, 

moderate and severe categories versus use of the full ordinal GCS sum score, but also to the 

GCS sum score compared to use of the underpinning eye, motor and verbal components, as 

their cumulative prognostic value is higher than that of the sum score alone.21  

The integration of multiple clinical characteristics into a single score attempts to 

provide a single integrated articulation of TBI severity and status, without the loss of 

information. A careful consideration should be made whether any loss of information is 

acceptable in favor of utility and simplicity. A strength of the GCS-P is that it combines two 

of the most relevant clinical predictors for TBI into a summary score, and yet maintains the 

simplicity and ease of use of the GCS. Relative disadvantages include some loss of 

information compared to the use of GCS and PRS as separate predictors. Its utility as an 

overall parameter of injury severity is influenced by its “skewed” discrimination towards the 

high end of the severity spectrum. However, the subtraction of PRS from the GCS across the 

entire GCS range potentially reduces efficacy when non-reactive pupils occur at higher GCS 

scores. Therefore, GCS-P mainly provides additional value in patients with moderate to 

severe TBI which is in line with the index study by Brennan and Teasdale and the current 

study. Any decision about the use of an integrated score must also be balanced against 

potential implementation barriers, which may be substantial when introducing a modification 

of the GCS, which is deeply embedded in clinical practice. 

Finally, different contributions from pupillary unreactivity and motor responses may 

add up to identical GCS-P scores but may have widely different clinical import and outcome.  

For example, a patient with a GCS of 3 and two reactive pupils (GCS-P = 3) may indeed have 

a very severe brain injury but could also have relatively less severe injury with examination 

confounded by alcohol, residual sedative drugs or a post-ictal state. However, a patient who 
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has extensor motor responses and one unreactive pupil (E1 V1 M2 P-1) would be more 

uniformly likely to have a severe brain injury. Indeed, despite a small sample size and 

missing combinations, a comparison of outcomes of categories equaling a GCS-P score of 3 

confirmed the variability in outcome in the first category, and a more dominant poor outcome 

in the second (Supplemental Table 2). 

On balance, we consider the superiority of the GCS-P over the GCS modest, and from 

a prognostic perspective scoring of GCS and pupillary reactivity should be preferred. We 

further emphasize on a more general note that we would not recommend use of summary 

scores as replacements for the separate assessment of neurological status using GCS and PRS 

in individual patients.8 

Study strengths and weaknesses 

The major strength of this study is its usage of prospectively collected data from 2 large 

multicenter observational studies across all severities in different continents with 

standardized data collection, thus ensuring generalizability of findings. 

Limitations of our study include the restriction of data collection to North America 

and Europe, while the majority of TBI worldwide occurs in low- and middle-income 

countries. Further limitations stem from its observational design with pragmatic data 

collection. The broad inclusion criteria improve generalizability but potentially result in 

significant disparities between the CENTER-TBI and TRACK-TBI cohorts.22-24 CENTER-

TBI patients were generally older and suffered more severe TBI compared to TRACK-TBI 

patients. These factors potentially delineate the apparent differences in mortality and 

unfavorable outcome between both cohorts. Care should be taken comparing the model 

performance between the CENTER-TBI and TRACK-TBI models. Discrepancies in case-
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mix, however, do not preclude comparative analysis of GCS versus GCS-P or GCS and PRS 

separately, and may even increase generalizability. 

We cannot exclude the possibility that some imputation bias may have occurred. In 

CENTER-TBI a derived baseline GCS score was used with imputation of missing GCS 

scores according to IMPACT methodology. In TRACK-TBI the GCS scores were always 

calculated using the GCS ED admission scores and only imputed if the motor score was 

available.14  

 

Conclusions 

GCS-P has a stronger association with outcome after TBI than the GCS alone, and provides a 

single integrated score. However, this comes at a loss of some information, and for 

prognostic models, inclusion of GCS and pupillary reactivity as separate scores is preferable 

to the use of a GCS-P summary score.  
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Oslo, Norway 
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Rodgers, MD (Department of Neurosurgery, Goodman Campbell Brain and Spine, Indianapolis, 
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Table 1 | Baseline patient characteristics 

 CENTER-TBI TRACK-TBI 

No of patients 3521 1439 

Age (median [IQR]) 51 [30, 67] 39 [26, 56] 

Male sex (%) 2341 (67) 982 (68) 

GCS scores (median [IQR]) 15 [9, 15] 15 [13, 15] 

TBI severity   

Mild (GCS 13-15) 2360 (67) 1122 (78) 

Moderate (GCS 9-12) 316 (9) 70 (5) 

Severe (GCS < 9) 845 (24) 247 (17) 

Pupils (%)   

Both reacting 3141 (89) 1333 (93) 

One reacting 137 (4) 31 (2) 

Both unreacting 243 (7) 76 (5) 

Epidural hematoma (%) 382 (11) 122 (9) 

Subdural hematoma, acute (%) 1107 (33) 431 (31) 

Cerebral contusion (%) 1219 (36) 341 (25) 

Traumatic subarachnoid 
haemorrhage (%) 

1092 (35) 536 (39) 

Midline shiftb (%) 540 (16) 154 (11) 

Diffuse axonal injury (%) 341 (11) 132 (10) 

6-month unfavorable outcome 
(GOS-E < 5) 

878 (25) 200 (14) 
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6-month mortality  

(GOS-E = 1) 

418 (12) 98 (7) 

Abbreviations: CENTER-TBI, Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain 
Injury; GOS-E, Glasgow Outcome Scale Extended; IQR, interquartile range; No, number; TRACK-TBI, 
Transforming Research and Clinical Knowledge in Traumatic Brain Injury 
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Table 2 | Overall predictive performance of different regression models 

Model Specifications Nagelkerke’s R2 (%) 
for Mortalitya 

Absolute ΔR2 
for 

Mortalitya,b 

Nagelkerke’s R2 (%) 
for Unfavorable 

outcomea 

Absolute ΔR2 for 
Unfavorable 
outcomea,b 

CENTER-TBI     

GCS 24 [17 - 30]  29 [25 - 34]  

GCS-P 27 [20 - 33] 2.7 [2.1 – 3.4] 31 [26 - 35] 1.4 [1 – 1.8] 

GCS + PRS 30 [24 - 37] 6.3 [4.4 – 8.7] 32 [27 - 36] 2.4 [1.4 – 3.7] 

TRACK-TBI     

GCS 30 [17 - 43]  38 [29 – 47]  

GCS-P 33 [20 – 45] 2.5 [1.4 - 3.9] 39 [31 – 48] 1.1 [0.3 – 2.0] 

GCS + PRS 35 [21 – 47] 4.6 [1.8 - 8.9] 40 [31 – 48] 1.5 [0.2 – 3.5] 

Meta analysis     

GCS 25 [19 - 31]  33 [24 - 42]  

GCS-P 28 [22 - 34] 2.7 [2.1 – 3.3] 34 [26 – 42] 1.3 [1 - 1.7] 

GCS + PRS 31 [25 - 37] 5.8 [4 – 7.7] 35 [27 – 42] 2.1 [1.2 – 3] 

Abbreviations: CENTER-TBI, Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain 
Injury; GCS, Glasgow Coma Scale; GCS-P, Glasgow Coma Scale – Pupils; Mo, month; No, number; PRS, Pupil 
Reactivity Score; TRACK-TBI, Transforming Research and Clinical Knowledge in Traumatic Brain Injury 

aEstimates and bracketed 95% CI are bootstrapped unless mentioned otherwise 

bΔR2 values are based on the model containing only GCS 
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Table 3 | Odds ratios & coefficients of independent baseline variables predicting outcome 

Model 
Specifications 

Odds ratio for Mortality 
(95%CI interval) 

Model Coefficient 
for Mortality 

Odds ratio for 
Unfavorable outcome 

(95%CI interval) 

Model Coefficient 
for Unfavorable 

outcome  

CENTER-TBI     

GCS 0.79 (0.77 – 0.81) -0.24 0.78 (0.77 – 0.8) -0.24 

GCS-P 0.79 (0.77 – 0.81) -0.23 0.79 (0.78 – 0.8) -0.24 

GCS + PRSa 0.84 (0.82 – 0.86) 

& 

0.4 (0.33 – 0.45) 

respectively 

-0.18 

& 

-0.92 

respectively 

0.81 (0.79 – 0.83) 

& 

0.5 (0.42 – 0.59) 

respectively 

-0.21 

& 

-0.68 

respectively 

TRACK-TBI     

GCS 0.75 (0.72 – 0.79) -0.28 0.74 (0.71 – 0.77) -0.3 

GCS-P 0.76 (0.73 – 0.79) -0.28 0.75 (0.73 – 0.78) -0.29 

GCS + PRSa 0.8 (0.76 – 0.85) 

& 

0.43 (0.32 – 0.58) 
respectively 

-0.22 

& 

-0.84 

0.77 (0.74 – 0.8) 

& 

0.56 (0.42 – 0.76) 

respectively 

-0.27 

& 

-0.58 

Abbreviations: CENTER-TBI, Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain 
Injury; CI, confidence interval; GCS, Glasgow Coma Scale; GCS-P, Glasgow Coma Scale – Pupils; IQR, 
interquartile range; Mo, month; No, number; PRS, Pupil Reactivity Score 

aOdds ratios are expressed using decreases in PRS score, e.g. lower number of unreactive equally lower odds of 

mortality and unfavorable outcome 
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