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Abstract 21 

Objective 22 

Fair and safe Large Language Models (LLMs) hold the potential for clinical task-shifting 23 

which, if done reliably, can benefit over-burdened healthcare systems, particularly for 24 

resource-limited settings and traditionally overlooked populations. However, this powerful 25 

technology remains largely understudied in real-world contexts, particularly in the global 26 

South. This study aims to assess if openly available LLMs can be used equitably and reliably 27 

for processing medical notes in real-world settings in South Asia. 28 

Methods 29 

We used publicly available medical LLMs to parse clinical notes from a large electronic 30 

health records (EHR) database in Pakistan.  ChatGPT, GatorTron, BioMegatron, BioBert and 31 

ClinicalBERT were tested for bias when applied to these data, after fine-tuning them to a) 32 

publicly available clinical datasets I2B2 and N2C2 for medical concept extraction (MCE) and 33 

emrQA for medical question answering (MQA), and b) the local EHR dataset. For MCE 34 

models were applied to clinical notes with 3-label and 9-label formats and for MQA were 35 

applied to medical questions. Internal and external validation performance was measured for 36 

a) and b) using F1, precision, recall, and accuracy for MCE and BLEU and ROUGE-L for 37 

MQA. 38 

Results 39 

LLMs not fine-tuned to the local EHR dataset performed poorly, suggesting bias, when 40 

externally validated on it. Fine-tuning the LLMs to the local EHR data improved model 41 

performance. Specifically, the 3- label precision, recall, F1 score, and accuracy for the 42 

dataset improved by 21-31%, 11-21%, 16-27%, and 6-10% amongst GatorTron, 43 

BioMegatron, BioBert and ClinicalBERT. As an exception, ChatGPT performed better on the 44 

local EHR dataset by 10% for precision and 13% for each of recall, F1 score, and accuracy. 45 

9-label performance trends were similar. 46 
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Conclusions 47 

Publicly available LLMs, predominantly trained in global north settings, were found to be 48 

biased when used in a real-world clinical setting. Fine-tuning them to local data and clinical 49 

contexts can help improve their reliable and equitable use in resource-limited settings. Close 50 

collaboration between clinical and technical experts can ensure responsible and unbiased 51 

powerful tech accessible to resource-limited, overburdened settings used in ways that are 52 

safe, fair, and beneficial for all. 53 

Introduction 54 

Medical Large Language Models (LLMs) propose to leverage the power of multi-billion-55 

parameter neural networks to unlock, summarise, and present medical information quickly 56 

and easily, to boost clinical decision-making. Ultimately, by extracting insights from massive 57 

volumes of clinical notes with unprecedented speed and accuracy, LLMs can potentially feed 58 

a variety of task-shifting applications including, and not limited to, frontline worker decision-59 

support, clinical trial selection for life-saving treatments, culturally appropriate medical 60 

training, medical data discovery and evidence generation.[1-4] If done reliably and speedily, 61 

such use of LLMs can benefit over-burdened healthcare systems everywhere, but 62 

particularly in resource-limited settings such as South Asia, home to a quarter of the world’s 63 

population, and where rural and urban health facilities are largely over-subscribed and under 64 

pressure. 65 

However, the technology is still in its infancy and lacks clinical uptake.[5-10] Little is known 66 

about how LLMs perform in real-world settings, and if they are fair, safe, ethical, and trusted 67 

in bespoke settings.[11] Despite the recent surge in language-based models such as 68 

ChatGPT-4,[12] the validation of their clinical applications and robust regulatory debate over 69 

their use is still lacking, hindering their uptake within resource-limited healthcare settings. 70 

Electronic health records (EHRs), including clinical notes, represent enormous repositories 71 

of information to aid patient care. However, the efficient use of these data sources is 72 

impeded by a lack of syntactic, structural, and semantic interoperability and standardization. 73 
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LLMs stand ready as invaluable tools to overcome these challenges, promising enhanced 74 

interpretation and knowledge retrieval within the intricate landscape of healthcare data. 75 

Often, key subjective information including family history, drug adverse events and social, 76 

behavioural, and environmental determinants of health - all of which are commonly required 77 

in time-critical decision-making - is well-documented only within the full-text patient notes of 78 

EHRs.[13] Used in combination with structured data, this information can provide key 79 

contextual, socio-demographic and cultural nuances to improve health care, especially for 80 

traditionally marginalised communities with limited health access and representation in 81 

health data. 82 

LLMs hold promise to improve healthcare and reduce health disparities through their ability 83 

to process these data-rich sources and provide critical information to clinicians. The use of 84 

these models could hold particular benefits for traditionally overlooked groups, including 85 

women, children, and socio-economically or otherwise deprived populations; however, these 86 

impacts are only possible if the underlying models prevent the exacerbation of biases. 87 

Although AI bias can be multi-faceted, two main sources are a) unrepresentative training and 88 

testing data, and b) algorithmic bias. Most AI tools have been developed in global North 89 

settings using data from high-income demographics.[14] Ensuing models may therefore be 90 

under-representative of low-income geographies and populations, resulting in algorithmic 91 

assumptions about gender, race, and geography, socio-economic status, etc. Concealed 92 

biases within LLMs could have severe repercussions on patient outcomes, and render them 93 

unsuitable for use with diverse, global populations.[15-17] 94 

In this paper, we studied the strengths and limitations of LLMs in a real-world, global South 95 

clinical setting. We tested, and independently validated, publicly available LLMs on a large 96 

local EHR database from South Asia. To assess bias, we compared model performance with 97 

and without fine-tuning the model to the local dataset. We assessed both internal and 98 

external validation by testing the performance of models fine-tuned on the local EHR dataset 99 

on open datasets, and vice versa (Figure 1). Models were used to parse clinical notes. This 100 
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approach is disease-agnostic and generalisable to other downstream uses of LLMs such as 101 

summarisation, inference and more. Key contributions of this study include a demonstration 102 

of the challenges and opportunities in the use of LLMs in real-world, resource-limited 103 

settings. This work opens up avenues to further study the potential of LLMs to empower 104 

clinical decision-making and enable task-shifting which is beneficial for all. 105 

Methods 106 

Data source 107 

The Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) 108 

(www.shaukatkhanum.org.pk) is a secondary and tertiary care hospital network spanning 70 109 

cities in Pakistan. Its electronic health records database contains free-text notes and 110 

structured data for 8.2 million actively registered patients (51% women).[18] It is linked with 111 

the Punjab Cancer Registry and contains anonymised, de-identified patient-level data on 112 

socio-demographics, laboratory results, clinical history, diagnoses, outcomes, 113 

prescriptions/dispensations, hospital in-patient procedures, and mortality from December 114 

1994 to the present (1st June 2022).  The SKMCH&RC dataset contains two types of free-115 

text notes: DS notes and SOAP notes. 116 

Inpatient Discharge Summary (DS) Notes. DS notes represent a comprehensive summary 117 

of a patient's hospitalization, including diagnostic information, procedures performed, 118 

medications administered, and post-discharge instructions. Patient demographics, admission 119 

and discharge dates, primary consultants, and detailed information about the patient's 120 

condition are documented under "Diagnosis During This Admission," "Background Medical 121 

Problem(s)," and "Management During Admission" headings. These data can provide 122 

subjective information not necessarily captured in structured codes. 123 

 Subjective, Objective, Assessment, and Plan Notes (SOAP). SOAP notes offer a 124 

structured approach to documenting patient information in 4 sections. 125 
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1) Subjective: Patient symptoms, history, and any information provided by the patient or 126 

caregiver. 127 

2) Objective: Objective observations, laboratory results, and imaging data. 128 

3) Assessment: Diagnosis, problem list, and a summary of the patient's health status. 129 

4) Plan: Detailed plans for treatment, medications, follow-up, and any other relevant 130 

actions. 131 

SOAP notes provide a nuanced understanding of patient cases, ranging from diagnostic 132 

workups to treatment plans. Key entities in the dataset include patient demographics, 133 

medical history, diagnostic findings, treatment plans, and follow-up instructions. 134 

Labelling Clinical Notes 135 

A team of six clinical experts including resident doctors labelled the DS and SOAP notes 136 

both for concept extraction and question answering tasks.  Using a consensus approach, a 137 

label/answer with the highest level of agreement between the team was considered the 138 

“true” label. The labelled dataset was double-checked by the resident supervisory doctor. A 139 

token was considered to be the smallest unit of text that a given model can read such as a 140 

word, sub-word, or character. For concept extraction, each token was labelled using the 141 

Inside-Outside-Beginning (BIO) format. For each expression, the first token was labelled with 142 

"B" followed by tokens within the expression labelled with "I" and tokens outside the 143 

expression labelled with "O". 144 

Medical LLMs 145 

In addition to OpenAI’s ChatGPT as a trained general-purpose language model, 4 publicly 146 

available medical large language models (Table 1) designed for parsing medical notes were 147 

used, namely GatorTron(base), BioMegatron, ClinicalBERT, and BioBERT.[19-22] These 148 

open-source models are available pre-trained on extensive medical datasets, allowing them 149 

to acquire a nuanced understanding of both medical terminology and English text structures. 150 

Pre-training equips the models with a comprehensive grasp of medical concepts and 151 

proficiency in medical context and vocabulary. Additional fine-tuning layers allow these 152 
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models to be used for tasks such as clinical concept extraction, medical relation extraction, 153 

natural language inference, semantic textual similarity, medical event prediction, and 154 

question answering. 155 

 156 

Table 1: Pre-trained clinical LLMs used in the study. 157 

Model Size Training Data 

GatorTron 

base 

354M 

parameters 

Clinical narratives from the University of Florida Health 
Integrated Data Repository, 
MIMIC III 
Combining PubMed abstracts and full-text commercial-
collection 
Wikipedia articles dump 

BioMegatron 
334M 

parameters 

Wikipedia 
CC-Stories 
Real news 
Open Web text 
PubMed abstract set 
Commercial Use Collection of the PubMed Central® full-
text corpus 

ClinicalBERT 
135M 

parameters 
MIMIC III 

BioBERT 
107M 

parameters 
PubMed abstracts 
PubMed Central full-text articles 

ChatGPT 
137B 

parameters 

Specific data sources are not publicly disclosed. 
A variety of sources, including publicly available web 
pages, books, and code repositories 

 158 

Fine-tuning LLMs 159 

Each LLM is available pre-trained on large volumes of data (Table 1). In this study, we fine-160 

tuned each pre-trained LLM for the task of parsing DS and SOAP notes through named 161 

entity recognition (NER), which involves identifying specific entities in medical records. Aside 162 

from ChatGPT which was trained by OpenAI, each LLM was separately fine-tuned on a) 163 

publicly available datasets i2b2 2010 (3 labels: treatment, test, problem), and n2c2 (9 labels: 164 

Duration, Frequency, Strength, Form, Route, Dosage, Reason, ADE, Drug), and emrQA (for 165 

question answering task), and b) the SKMCH&RC dataset for each corresponding task. 166 
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Publicly available datasets were pre-segmented into training and testing sets. The 167 

SKMCH&RC dataset was randomly split into training (80%) and test (20%) sets. 168 

Model Performance: Internal and external validation 169 

LLMs fine-tuned on i2b2 2010, n2c2, and emrQA training sets were internally validated on 170 

their respective test sets. They were then externally validated on the SKMCH&RC test set. 171 

Similarly, LLMs fine-tuned on the SKMCH&RC train set were internally validated on the 172 

SKMCH&RC test set and externally validated on the i2b2 2010, n2c2, and emrQA test sets. 173 

ChatGPT was tested on the SKMCH&RC dataset without fine-tuning. 174 

Evaluation of Bias 175 

Model performance was measured using F1 Score, precision, recall, and accuracy for the 176 

medical concept extraction and BLEU and ROUGE-L for question answering task. Confusion 177 

matrices were produced to assess label-specific misclassification. 178 

All the presented open-source LLMs are accessible through the Hugging Face website at no 179 

cost, except for ChatGPT, which requires a paid subscription. To conduct fine-tuning and 180 

evaluate model performance, we utilized a Google Colaboratory account with a paid 181 

subscription, equipped with an A100 GPU. 182 

Results 183 

A total of 200 free-text notes, including 50 DS and 150 SOAP notes were randomly extracted 184 

from the SKMCH&RC dataset for a two-year period from 01-Jan-2020 to 21-Nov-2021. One 185 

note per patient was extracted; the notes represented a patient population including 46% 186 

men and 54% women; 89% were adults (defined as aged 19-87 years). 187 

This included 284,445 expert-labelled tokens in BIO format, including 140,841 tokens 188 

representing the 3 classes and 143,604 tokens representing the 9 classes. In comparison, 189 

the public datasets contained a total number of 2,485,556 BIO tokens, including 1,314,036 190 
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tokens representing the 3 classes and 1,171,520 tokens representing the 9 classes. Table 2 191 

displays fine-tuning and internal/external testing dataset statistics.  192 

Table 2: Datasets used for fin-tuning and internal and external validation. 193 

 Publicly accessible Real-world EHR database 

Name I2b2-2010, n2c2-2018, SKMCH&RC SKMCH&RC 

N labels 3 Labels 9 Labels 3 Labels 9 Labels 

sample sizes 170 Train files, 204 Train Files,  
200 files  200 files 

256 Test files 204 Test Files 

train/validation 

splits 

90/10 80/20 

Train (60%), 

validation (10%), 

and test (30%) 

Train (60%), validation 

(10%), and test (30%) 

Train: 152,  Train: 163 Train: 120 Train: 120 

Validation: 18 Validation:41 Validation: 20 Validation: 20 

Test: 256 Test:204 Test: 60 Test: 60 

Notes 

Structure 
Original text from 

i2b2_2010 files 

Original text from 

n2c2_2018 files 

150 SOAP notes 

and 50 Discharge 

Summaries 

150 SOAP notes and 

50 Discharge 

Summaries 

Labels 

Number of 

resulting BIO 

labels 

['treatment', 'test', 

'problem'] 

N of BIO labels = 7 

['Duration', 

'Frequency', 

'Strength', 'Form', 

'Route', 'Dosage', 

'Reason', 'ADE', 

'Drug'] 

N of BIO labels = 

19 

['treatment', 'test', 

'problem'] 

N of BIO labels = 7 

['Duration', 

'Frequency', 

'Strength', 'Form', 

'Route', 'Dosage', 

'Reason', 'ADE', 

'Drug'] 

N of BIO labels = 19 

 194 

Model Performance 195 

Model performance for internal and external validation is summarised in Table 3.  196 
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Table 3: Concept extraction model performance for internal and external validation of LLMs fine-tuned on publicly available and SKMCH&RC datasets. In 197 

this table, each row indicates whether fine-tuning and testing were conducted on public or SKMCH&RC datasets. By referencing the number of labels in each 198 

column, the dataset used can be inferred. For instance, the combination of "public" and "3-label" implies the utilization of the public dataset with a 3-label 199 

or I2B2 dataset. 200 

Model Name 
 

GatorTron 
Base  

BioMegatron  
 

Clinical_BERT 
 

Bio_BERT 
 

ChatGPT  
 

GatorTron_Base  
 

BioMegatron  
 ClinicalBERT BioBERT  

 
ChatGPT  
 

Label Format 3-Label 9-Label 

Precision  
Finetuned on Public 

Tested on Public 

0.8303 
[0.8256, 

0.8368] 

0.8575 
[0.8509, 

0.8619] 

0.8612 
[0.8567, 

0.8651] 

0.8641 
[0.8584, 

0.8704] 
0.8114 

0.9555 
[0.9516, 0.9599] 

0.946 
[0.9411, 

0.9499] 

0.9316 
[0.9254, 

0.9376] 

0.9476 
[0.9436, 

0.9523] 
0.9124 

Recall  
Finetuned on Public 

Tested on Public 

0.8448 
[0.8305, 

0.8579] 

0.8736 
[0.8617, 

0.8826] 

0.8791 
[0.8679, 0.888] 

0.869 
[0.8578, 

0.8788] 
0.76 

0.9625 
[0.9591, 0.9668] 

0.956 
[0.9502, 

0.9605] 

0.9462 
[0.9419, 

0.9512] 

0.9678 
[0.9653, 

0.9714] 
0.6978 

F1  
Finetuned on Public 

Tested on Public 

0.8375 
[0.8288, 

0.8447] 

0.8655 
[0.8569, 

0.872] 

0.8701 
[0.8623, 

0.8746] 

0.8665 
[0.8581, 

0.8746] 
0.7667 

0.959 
[0.9556, 0.9628] 

0.951 
[0.9546, 

0.9546] 

0.9388 
[0.9339, 

0.9441] 

0.9576 
[0.9548, 

0.9615] 
0.7496 

Accuracy  
Finetuned on Public 

Tested on Public 

0.9584 
[0.9564, 

0.9607] 

0.9507 
[0.9477, 

0.9531] 

0.948 
[0.9449, 

0.9498] 

0.9463 
[0.9429, 

0.9492] 
0.76 

0.9934 
[0.993, 0.9938] 

0.9899 
[0.9892, 

0.9904] 

0.9934 
[0.9859, 

0.9875] 

0.9903 
[0.9895, 

0.9908] 
0.6978 

Precision  
Finetuned on Public 

Tested on 
SKMCH&RC 

0.5278 
[0.5142, 

0.5495] 

0.6575 
[0.6323, 

0.6746] 

0.6307 
[0.6051, 0.646] 

0.6442 
[0.6214, 

0.6594] 
0.9214 

0.7468 
[0.728, 0.7667] 

0.7368 
[0.7187, 

0.7542] 

0.7468 
[0.728, 

0.7667] 

0.74 
[0.7206, 

0.7616] 
0.9156 

Recall  
Finetuned on Public 

Tested on 
SKMCH&RC 

0.644 
[0.6195, 

0.6726] 

0.7736 
[0.7538, 

0.7906] 

0.7522 
[0.7321, 

0.7664] 

0.7603 
[0.7413, 

0.7745] 
0.9118 

0.8214 
[0.81, 0.832] 

0.8278 
[0.8181, 

0.8365] 

0.8214 
[0.81, 0.832] 

0.7941 
[0.7822, 

0.8093] 
0.8716 
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F1  
Finetuned on Public 

Tested on 
SKMCH&RC 

0.5801 
[0.5629, 

0.6019] 

0.7108 
[0.6923, 

0.728] 

0.6861 
[0.6642, 

0.6999] 

0.6974 
[0.6808, 

0.7103] 
0.9097 

0.7823 
[0.7729, 0.7961] 

0.7797 
[0.7691, 

0.7913] 

0.7823 
[0.7729, 

0.7961] 

0.766 
[0.7545, 

0.7847] 
0.8853 

Accuracy  
Finetuned on Public 

Tested on 
SKMCH&RC 

0.8906 
[0.8833, 

0.8973] 

0.8705 
[0.8615, 

0.8787] 

0.8498 
[0.8406, 

0.8573] 

0.8502 
[0.8428, 

0.8582] 
0.9118 

0.9556 
[0.9511, 0.9597] 

0.9446 
[0.9391, 

0.9497] 

0.9556 
[0.9511, 

0.9597] 

0.9229 
[0.915, 

0.9303] 
0.8716 

Precision  
Finetuned on 

SKMCH&RC Tested 
on SKMCH&RC 

0.7826 
[0.7608, 

0.8027] 

0.8328 
[0.8175, 

0.8529] 

0.8098 
[0.7906, 

0.8303] 

0.8243 
[0.8016, 

0.8424] 
 

0.8449 
[0.8303, 0.8604] 

0.9115 
[0.8967, 

0.9225] 

0.8987 
[0.8844, 

0.9089] 

0.9093 
[0.8947, 

0.9184] 
 

Recall  
Finetuned on 

SKMCH&RC Tested 
on SKMCH&RC 

0.7812 
[0.7639, 

0.8007] 

0.8341 
[0.8208, 

0.8516] 

0.8188 
[0.7994, 

0.8388] 

0.8395 
[0.8252, 

0.8543] 
 

0.8704 
[0.8556, 0.8846] 

0.9178 
[0.9048, 

0.9314] 

0.9076 
[0.8981, 

0.9214] 

0.9131 
[0.8967, 

0.9275] 
 

F1  
Finetuned on 

SKMCH&RC Tested 
on SKMCH&RC 

0.7819 
[0.7659, 

0.8017] 

0.8334 
[0.8204, 

0.8521] 

0.8142 
[0.7993, 

0.8343] 

0.8318 
[0.8136, 

0.8468] 
 

0.8575 
[0.8449, 0.8717] 

0.9146 
[0.9015, 

0.9263] 

0.9031 
[0.8912, 

0.914] 

0.9112 
[0.8967, 

0.9222] 
 

Accuracy  
Finetuned on 

SKMCH&RC Tested 
on SKMCH&RC 

0.9531 
[0.9502, 

0.9571] 

0.9399 
[0.935, 

0.9456] 

0.934 
[0.9281, 

0.9407] 

0.9382 
[0.9319, 

0.9431] 
 

0.9733 
[0.9697, 0.9769] 

0.9761 
[0.9733, 

0.9792] 

0.9744 
[0.9720, 

0.9774] 

0.9737 
[0.9700, 

0.977] 
 

Precision  
Finetuned on 

SKMCH&RC Tested 
on Public 

0.4398 
[0.4315, 

0.4523] 

0.6317 
[0.6217, 

0.6429] 

0.6525 
[0.6432, 

0.6632] 

0.6274 
[0.6172, 

0.6384] 
 

0.6757 
[0.6654, 0.686] 

0.7317 
[0.7244, 

0.7399] 

0.712 
[0.703, 

0.7229] 

0.7302 
[0.724, 

0.7378] 
 

Recall  
Finetuned on 

SKMCH&RC Tested 
on Public 

0.4068 
[0.3963, 

0.4194] 

0.5321 
[0.5191, 

0.5459] 

0.5948 
[0.5811, 

0.6094] 

0.5623 
[0.5451, 

0.5773] 
 

0.6291 
[0.6166, 0.6463] 

0.6417 
[0.6323, 

0.6492] 

0.7112 
[0.7002, 

0.7253] 

0.6335 
[0.6227, 

0.646] 
 

F1  
Finetuned on 

SKMCH&RC Tested 
on Public 

0.4226 
[0.4146, 

0.4337] 

0.5776 
[0.5671, 

0.5879] 

0.6223 
[0.6121, 

0.6336] 

0.593 
[0.5799, 

0.6039] 
 

0.6515 
[0.643, 0.6625] 

0.6837 
[0.6774, 

0.6899] 

0.7116 
[0.7043, 

0.7204] 

0.6784 
[0.6722, 

0.6871] 
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Accuracy  
Finetuned on 

SKMCH&RC Tested 
on Public 

0.8199 
[0.8161, 

0.8243] 

0.8269 
[0.8209, 

0.832] 

0.8379 
[0.8315, 

0.8421] 

0.8363 
[0.83, 

0.842] 
 

0.9524 
[0.9503, 0.9541] 

0.9363 
[0.9337, 

0.9386] 

0.9488 
[0.947, 

0.9505] 

0.9343 
[0.9322, 

0.9364] 
 

 201 

Table 4: Question answering model performance for internal and external validation of LLMs fine-tuned on publicly available and SKMCH&RC datasets. In 202 

this table, each row indicates whether fine-tuning and testing were conducted on public or SKMCH&RC datasets. 203 

Model Name 
 

GatorTron 
Base  

BioMegatron  
 

Clinical_BERT 
 

Bio_BERT 
 

ChatGPT  
 

BLEU  
Finetuned on Public 

Tested on Public 

0.9089 
[0.9047, 

0.9135] 

0.9081 
[0.9038, 

0.9133] 

0.8853 
[0.8808, 

0.8892] 

0.9056 
[0.9000, 

0.9099] 

0.5651 
[0.5526, 

0.578] 

ROUGE-L  
Finetuned on Public 

Tested on Public 

0.9532 
[0.9486, 

0.9573] 

0.9534 
[0.9491, 

0.9589] 

0.9336 
[0.9278, 

0.9386] 

0.9502 
[0.9444, 

0.9559] 

0.6264 
[0.6134, 

0.6403] 

BLEU  
Finetuned on Public 

Tested on 
SKMCH&RC 

0.4630 
[0.4552, 

0.4711] 

0.5127 
[0.5063, 

0.5208] 

0.201 
[0.1951, 

0.2083] 

0.2836 
[0.2768, 

0.2896] 

0.6621 
[0.6555, 

0.6699] 

ROUGE-L  
Finetuned on Public 

Tested on 
SKMCH&RC 

0.5587 
[0.5496, 

0.5659] 

0.6037 
[0.5960, 

0.6098] 

0.2909 
[0.2847, 0.299] 

0.382 
[0.3741, 

0.3875] 

0.742 
[0.735, 

0.7495] 

BLEU  
Finetuned on 

SKMCH&RC Tested 
on SKMCH&RC 

0.8475 
[0.8358, 

0.8591] 

0.8222 
[0.8077, 

0.8367] 

0.7311 
[0.7164, 

0.7495] 

0.778 
[0.7606, 

0.7948] 
 

ROUGE-L  
Finetuned on 

SKMCH&RC Tested 
on SKMCH&RC 

0.8966 
[0.8840, 

0.9077] 

0.8766 
[0.8658, 

0.8864] 

0.7911 
[0.7768, 

0.8125] 

0.8408 
[0.8269, 

0.8553] 
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BLEU  
Finetuned on 

SKMCH&RC Tested 
on Public 

0.4671 
[0.4601, 

0.4736] 

0.483 
[0.4739, 

0.4918] 

0.2888 
[0.2812, 

0.2987] 

0.3562 
[0.3482, 

0.3636] 
 

ROUGE-L  
Finetuned on 

SKMCH&RC Tested 
on Public 

0.5584 
[0.5502, 

0.5652] 

0.5666 
[0.5587, 

0.5754] 

0.3538 
[0.3451, 

0.3646] 

0.4254 
[0.4161, 

0.4329] 
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In general, for open-source LLMs, including GatorTron, BioMegatron, ClinicalBERT, and 204 

BioBERT, when we fine-tuned the models on public data, their performance significantly 205 

reduced when tested on SKMCH&RC, and vice versa in both NLP tasks. This observation 206 

indicates the presence of bias in these models, likely stemming from inherent biases in the 207 

data sources on which these models were trained. Interestingly, ChatGPT, whose source 208 

training datasets are not fully disclosed, exhibited higher performance on SKMCH&RC 209 

compared to publicly accessible datasets. This pattern persisted across other performance 210 

metrics such as accuracy, precision, and recall for concept extraction and BLEU and 211 

ROUGE metrics for question answering task (Figure 2 a and b). 212 

In general, LLMs fine-tuned on the SKMCH&RC training dataset resulted in the highest 213 

accuracy, precision, recall, and F1 score when tested on the SKMCH&RC test set. 214 

Specifically, the highest and lowest accuracy of 0.9531 (0.9502, 0.9571) and 0.934 (0.9281, 215 

0.9407) belongs to GatorTron and ClinicalBERT respectively and the highest and lowest F1 216 

score of 0.8334 (0.8204, 0.8521) and 0.7819 (0.7659, 0.8017) belongs to BioMegaTron and 217 

GatorTron in the dataset with 3-labels (I2B2). For the dataset with 9 labels (N2C2), 218 

BioMegaTron had the best performance with accuracy and F1 score of 0.9761 (0.9733, 219 

0.9792), 0.9146 (0.9015, 0.9263) respectively, and GatorTron had the worst performance 220 

with 0.9733 (0.9697, 0.9769) and 0.8575 (0.8449, 0.8717). 221 

For question answering task, GatorTron performs the best with BLEU and ROUGE-L scores 222 

of 0.8475 (0.8358, 0.8591) and 0.8966 (0.884, 9077) and ClinicalBERT was the worst 223 

performing with 0.7311(0.7164, 7495) and 0.7911 (0.7768, 0.8125). ChatGPT produced 224 

BLEU of 0.6621 (0.6555, 0.6699) and ROUGE-L of 0.742 (0.735, 0.7495)  225 

Models fine-tuned on public datasets I2B2 and N2C2 resulted in the highest accuracy, 226 

precision, recall, and F1 score when internally validated on their respective test sets. In the 227 

I2B2 dataset, GatorTron demonstrated superior performance in terms of accuracy, achieving 228 

a score of 0.9584 (0.9564, 0.9607). ClinicalBERT outperformed other models in recall and 229 

F1 score, attaining scores of 0.8791 (0.8679, 0.888) and 0.8701 (0.8623, 0.8746), 230 
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respectively. BioBERT exhibited the highest precision, recording a value of 0.0.8641 (0.8584, 231 

0.8704). Conversely, ChatGPT displayed the lowest performance across all metrics, yielding 232 

scores of 0.76 for accuracy, 0.8114 for precision, 0.7667 for F1 score, and 0.76 for recall. 233 

For the N2C2 dataset, GatorTron emerged as the top performer in terms of accuracy, 234 

precision, F1 score with 0.9934 (0.993, 0.9938), 0.9555 (0.9516, 0.9599), and 0.959 235 

(0.9556, 0.9628) respectively and BioBERT had the best Recall of 0.9678 (0.9653, 0.9714). 236 

In contrast, ChatGPT exhibited the least favourable performance on this dataset, achieving 237 

scores of 06978 for accuracy, 0.0.9124 for precision, 0.7496 for F1 score, and 0.6978 for 238 

recall. 239 

Highest performing models for question answering in open dataset was GatorTron with the 240 

highest BLEU of 0.9089 (0.9047, 0.9135) and BioMegaTron with the highest ROUGE-L of 241 

0.9534 (0.9491, 0.9589) and ClinicalBERT had the worst BLEU and ROUGE-L of 0.8853 242 

(0.8808, 0.8892), and 0.9336 (0.9278, 0.9386) respectively. ChatGPT was evaluated with 243 

BLEU of 0.5651 (0.5526, 0.578) and ROUGE-L of 0.6264 (0.6134, 0.6403) 244 

When models fine-tuned on public datasets I2B2 and N2C2 were evaluated on the 245 

SKMCH&RC test set with three labels, a significant decline in performance was observed 246 

compared to models fine-tuned specifically on SKMCH&RC, as illustrated in Figure 2a. This 247 

decline in performance persisted when evaluating the SKMCH&RC test set with nine labels 248 

(Figure 2b). A similar pattern was evident in the question answering task (Figure 2c). 249 

Figure 3 presents the F1 scores of Language Models (LLMs) under different settings. Each 250 

LLM is depicted with a distinct colour, and the size of each circle corresponds to the F1 251 

score of the models. The circles are divided by a "/", where the text before the "/" indicates 252 

the dataset used for fine-tuning, and the text after the "/" signifies the datasets used for 253 

testing. Upon examination of the figure, a notable trend emerges: for each model designed 254 

to accommodate any number of labels, circles labelled with the same dataset for both fine-255 

tuning and testing exhibit larger relative radii. This observed difference in radii can serve as 256 
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an indicator of the dissimilarity in distributions between the two datasets, providing valuable 257 

insights into the impact of dataset variations on model performance. 258 

Figure 4 shows the label-specific misclassification performance for GatorTron, which had the 259 

largest drop in performance in internal (tested on I2B2) vs external validation (tested on 260 

SKMCH&RC). The left of Figure 4a showcases the absolute difference in model 261 

performances normalized by true labels, while the right highlights the differences between 262 

normalized confusion matrices based on predicted labels. Examining the diagonal elements 263 

of the matrices suggests differences in misclassification of all labels in the two testing 264 

datasets, with smaller differences observed in "B-Treatments."  In the 9-label dataset (Figure 265 

4b), the smallest differences were in the classification of the “B-Drug”, “B-Form”, “B-266 

Frequency”, “I-Duration”, and “I-Frequency” labels. A similar pattern was observed for the 267 

other LLMs. 268 

Figure 5 displays two excerpts from sample notes within the SKMCH&RC dataset, each 269 

containing 9 labels (19 BIO labels), with true labels annotated by clinical experts and 270 

estimated labels generated by the GatorTron LLM. The 5a represents a snippet of text for 271 

which the LLM performed well in correctly predicting labels for the tokens, while 5b illustrates 272 

a case where the LLM performed poorly. 273 

Discussion  274 

In this study, we tested openly available medical LLMs in a real-world clinical setting in South 275 

Asia. Internal and external validation of the performance of these LLMs was performed, with 276 

and without fine-tuning to the local EHR dataset. We further tested how well LLMs fine-tuned 277 

on the local dataset perform when tested on open-source medical datasets.  278 

In general, models fine-tuned on open datasets performed poorly on the local EHR 279 

database. However, the same models, when fine-tuned on the local EHR database, 280 

performed well when tested on the local EHR database, albeit poorly on open datasets. 281 

Interestingly, ChatGPT, whose source training datasets are not fully disclosed (at the time of 282 
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writing), was the exception to this trend, exhibiting better performance in terms of accuracy, 283 

F1 score, precision, recall, BLEU, ROUGE-L when tested on SKMCH&RC compared to 284 

publicly accessible datasets. 285 

Our findings indicate that off-the-shelf LLMs can be biased when directly applied in real-286 

world clinical settings. This is unsurprising given that the LLMs used in the study were 287 

trained on open-source datasets that are not representative of data from the real-world 288 

clinical setting we investigated. However, our results also showed it is possible to reduce 289 

such data-driven bias by fine-tuning the models on local data, under expert supervision. By 290 

doing so, the models can be made more equitably tailored to the local clinical needs. 291 

The equitable use of LLMs entails several considerations. LLMs that do not perpetuate data-292 

generated and algorithmic biases can make this powerful technology beneficial for diverse 293 

patient populations in resource-limited, overburdened settings. However, for these models to 294 

be applicable in a localised setting, the training data must be representative of these 295 

populations. We know that most research-ready medical data perpetuate the digital divide, 296 

overrepresenting high-income geographies and populations, which results in algorithmic 297 

assumptions about gender, race, geography and socio-economic status, etc. On the other 298 

hand, local data used in isolation is often sparse and ungeneralisable. As demonstrated in 299 

this study, fine-tuning is one way to reduce data-driven biases which can result in health 300 

inequity. It can also help to save time and resources over training an LLM from scratch, 301 

which can otherwise be prohibitively time and resource-intensive and requires expensive 302 

computing infrastructure which renders it inaccessible to healthcare providers in resource-303 

limited settings. Tailoring to local data and context can also help alleviate the issue of 304 

hallucination and confabulation in LLMs, where a model can produce made-up or clinically 305 

nonsensical results. Reducing the likelihood of these outputs increases the validity and 306 

applicability of LLMs in health care and makes the models more trustworthy for clinicians. 307 
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However, there are several key challenges in making models equitable in practice. Real-308 

world data such as EHR databases are not pre-designed for LLM applications. The manual 309 

labelling of data, and re-structuring of clinical notes to conform to the required formatting of 310 

LLMs is time-consuming and demanding for busy clinician experts, preventing rapid 311 

development of suitably accurate and unbiased models. Their production also requires close 312 

collaboration between clinicians, data scientists and IT specialists, which further complicates 313 

the generation of models. For example, it is particularly important to ensure that LLM-314 

generated responses are rigorously validated and that any potential biases or inaccuracies 315 

are identified, communicated, and corrected with adequate transparency. In addition, ethical 316 

concerns around the sharing of patient data necessitate privacy-preserving measures for 317 

these data sources. 318 

In this work, we fine-tuned locally running, privacy-preserving LLMs within a federated 319 

learning framework that precluded the need for patient data sharing.  This is just one of the 320 

strengths of this research; to our knowledge, this is one of the few studies investigating the 321 

use of LLM technology in the global South, and the first study from Pakistan. All LLMs used 322 

in this work are publicly available (except for ChatGPT, which requires a paid subscription), 323 

rendering this approach reproducible in other settings without access and cost constraints. 324 

Models were tested on two forms of clinical notes (DS and SOAP notes) for the task of 325 

parsing clinical notes, making the approach disease-agnostic and generalisable. This work 326 

can be applied to further downstream tasks such as summarising and extracting key 327 

information for busy clinicians, answering medical questions, organising patient workups and 328 

other instances of clinical task-shifting. 329 

Fair AI fundamentally relies on locally-driven co-creation of models that are 1) trained on 330 

locally representative bias-aware datasets, 2) account for algorithmic bias in the modelling 331 

process, 3) incorporate transparent reporting, and 4) are subjected to independent, context-332 

aware internal and external validation to ensure local use and generalisability. The strengths 333 
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of this study lie in its demonstration of how these models can be produced, presenting the 334 

feasibility and value of producing localised LLMs in this way. 335 

Inevitably our study has some limitations.  The findings reflect the performance of models on 336 

a random subset of clinical notes extracted from one EHR dataset in South Asia. While this 337 

EHR dataset has national coverage and is therefore representative of data from the general 338 

population of Pakistan in terms of socio-demographics and medical history, it represents a 339 

smaller-scale basis for LLM training. The key to successful health innovation lies in its 340 

reliability and perception as fit for use by the populations of interest and key stakeholders. 341 

Alongside increasing the scale of training data, future work should also focus on the 342 

challenges of creating clinical LLMs trusted by doctors, nurses, and front-line staff, and how 343 

these users envision the future role of these models in patient care. The testing of these 344 

models in patient care will not only allow further analysis of their technical validity but also 345 

allow patients and clinicians to discuss the cultural and ethical acceptability of novel health-346 

focused LLM technology in local health settings. This is an important first step to ensure that 347 

local stakeholders have agency and ownership in the development of transformative health 348 

technology, including LLMs, going forwards, in ways that make them safe, fair and beneficial 349 

for all. 350 

Conclusions 351 

Despite the elevated interest in LLMs, their assessment in real-world clinical settings is 352 

lacking. This study evaluates the feasibility of equitable access and use of LLMs for clinical 353 

decision-making by assessing the performance of medical LLMs on a local dataset from a 354 

hospital in Pakistan. Given that most medical datasets suffer from the digital divide, we 355 

tested and independently validated LLMs on a large local EHR database. The database was 356 

first labelled by a team of clinical experts from the setting in context through expert 357 

consensus to review to contest and redress algorithmic decisions. To minimise algorithmic 358 

bias, we compared model performance with and without fine-tuning the LLMs to the local 359 

dataset.  360 
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We recognise that equitable use of health innovations extends well beyond considerations of 361 

technological bias; it necessitates consideration of clinical explainability, acceptability, trust 362 

and local ownership such as can be assessed through regular stakeholder engagement and 363 

interaction. This is an important avenue for future research to ensure clinical practitioners, 364 

decision-makers, and patients and carers have agency and ownership in the development 365 

and implementation of transformative health technology including LLMs going forward. 366 

In conclusion, our findings highlight the presence of data-driven and algorithmic biases in 367 

existing publicly available clinical LLMs predominantly pre-trained on data from global north 368 

settings. This work indicates that pre-trained LLMs can be tailored for parsing clinical notes 369 

in specific clinical contexts, but only through careful consideration of multi-dimensional 370 

biases. It emphasizes the need for continued scrutiny of LLMs and suitable corrective 371 

measures, such as regular fine-tuning on local data under the supervision of local context-372 

aware clinical experts. 373 
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Figure Legends: 431 

Figure 1: Study Design for assessing bias of LLMs in real-world clinical settings. Internal and 432 

external validation was undertaken with and without fine-tuning on real-world data.  433 

Figure 2: Difference between performance on public and SKMCH&RC data compared 434 

between models. a) compares 3-label performance, b) compares 9-label performance. 435 

Figure 3: Comparative Analysis of LLMs F1 Scores Across Varied Settings, Highlighting 436 

Dataset-Dependent Performance Disparities. The circle radius corresponds with F1 score – 437 

larger circles depict higher scores. 438 
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Figure 4: Absolute Differences in Normalized Confusion Matrices between true and predicted 439 

labels. The left tables show normalized to true labels, and the right tables show normalized 440 

to predicted labels; a) shows the 3-label I2B2 dataset difference to SKMCH&RC data, b) 441 

shows the 9-label N2C2 and SKMCH&RC data. 442 

Figure 5: LLM labelling of 2 different clinical notes examples, demonstrating where the 443 

model performs well (a) and performs badly (b). Red boxes indicate misclassified labels; 444 

both examples were labelled by the GatorTron LLM using the 9-label classifications. 445 
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