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Abstract 62 

Respiratory viral infections (RVIs) are a major global contributor to morbidity and mortality. The 63 

susceptibility and outcome of RVIs are strongly age-dependent and show considerable inter-64 

population differences, pointing to genetically and/or environmentally driven developmental 65 

variability. The factors determining the age-dependency and shaping the age-related changes 66 

of human anti-RVI immunity after birth are still elusive. We are conducting a prospective birth 67 

cohort study aiming at identifying endogenous and environmental factors associated with the 68 

susceptibility to RVIs and their impact on cellular and humoral immune responses against the 69 

influenza A virus (IAV), respiratory syncytial virus (RSV) and severe acute respiratory 70 

syndrome coronavirus 2 (SARS-CoV-2). The MIAI birth cohort enrolls healthy, full-term 71 

neonates born at the University Hospital Würzburg, Germany, with follow-up at four defined 72 

time-points during the first year of life. At each study visit, clinical metadata including diet, 73 

lifestyle exposures, sociodemographic information, and physical examinations, are collected 74 

along with extensive biomaterial sampling. Biomaterials are used to generate comprehensive, 75 

integrated multi-omics datasets including transcriptomic, epigenomic, proteomic, metabolomic 76 

and microbiomic methods. The results are expected to capture a holistic picture of the 77 

variability of immune trajectories with a focus on cellular and humoral key players involved in 78 

the defense of RVIs and the impact of host and environmental factors thereon. Thereby, MIAI 79 

aims at providing insights that allow unraveling molecular mechanisms that can be targeted to 80 

promote the development of competent anti-RVI immunity in early life and prevent severe 81 

RVIs.   82 

 83 

Trial registration number: DRKS00034278 84 

Keywords: Birth cohort, respiratory viral infection, IAV, RSV, SARS-CoV-2, multi-omics data, 85 
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INTRODUCTION 87 

Several epidemiological studies demonstrate strong age-dependent differences for the 88 

susceptibility and outcome of respiratory viral infections (RVIs) (1). Prime examples are 89 

infections with the respiratory syncytial virus (RSV), the influenza A virus (IAV) and the severe 90 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2).  91 

RSV is the most common cause of severe respiratory infection in infants, leading to over 3 92 

million hospitalizations and around 66,000 deaths worldwide each year (2–4). Remarkable 93 

age-related differences in innate cytokine responses following recognition of RSV have been 94 

observed (3, 5), suggesting a critical role of the host response in the disease pathology and 95 

clinical outcome. RSV infects virtually all children by the age of three years and then repeatedly 96 

infects throughout life. Therefore, host factors of the epithelial barrier and the innate immune 97 

system might define the susceptibility to RSV infections, while adaptive immunity, which 98 

underlies profound maturational changes during early life, might rather contribute to the 99 

severity of the course of an established RSV infections but does not necessarily acquire long-100 

lasting protective memory. 101 

In contrast to the age profile of RSV infections, work from the Global Burden of Disease Study 102 

showed that the population attributable fraction of IAV-caused mortality as well as morbidity 103 

are lowest in children under 5 years of age and highest in mid-aged adults (30-40 years) (6). 104 

The age-dependent differences in the clinical outcome of IAV infection are not fully explained 105 

by pre-existing comorbidities or maternal transfer of adaptive anti-influenza immunity to infants 106 

and point to hitherto unidentified immunological peculiarities that protect infants against IAV. 107 

Children have also less severe symptoms when infected with SARS-CoV-2 (7, 8). Several 108 

hypotheses for the age-related difference in the severity of coronavirus disease 2019 (COVID-109 

19) are discussed, such as more robust type I interferon (IFN) response, more effective T cell 110 

immunity (9), and higher expression of SARS-CoV-2 sensing receptors and inflammatory 111 

baseline activation of pediatric compared to adult airway epithelial cells (AECs) (10–12). 112 

However, the causes and biological meaning of such differential programming of anti-viral 113 

immunity at different ages and in dependency of the type of virus remains elusive. 114 
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Apart from the age dependency there is also strong heterogeneity in the course and outcome 115 

of RVIs among individuals of same age, pointing to considerable genetic variability or 116 

differential development of immunity in concert with their environment. Understanding inter-117 

individual variation and its causes has important implications for targeting patients for 118 

escalation of care, inclusion in clinical trials, and individualized medical therapy including 119 

vaccination. Besides clear biological differences such as age, sex, race, presence of 120 

comorbidities, and genetic variation, differential maturation of immunity during environmental 121 

adaptation after birth might result in a different education and regulation of immune responses 122 

against RVIs. In humans, the key factors influencing the reprogramming of immunity towards 123 

RVIs are still poorly defined and comparison of their effect sizes is long overdue.  124 

A myriad of data has demonstrated that the immune system of the fetus and infant is 125 

characterized by a high plasticity, which comes with a high susceptibility to lifelong imprinting 126 

effects from environmental cues. Over the past two decades strong evidence accumulated that 127 

the composition and function of the human microbiome play a particularly critical role for the 128 

development of immunity and overall health (13, 14). Several longitudinal studies revealed 129 

aberrant trajectories of upper respiratory microbiota during infancy that are associated with an 130 

increased susceptibility to respiratory tract infections. These particularly include delayed and 131 

low abundance of Corynebacterium and Dolosigranulum species and high abundance of 132 

Moraxella, Haemophilus or Streptococcus species (15–19). However, our knowledge on how 133 

exactly these strains impede respective promote immunity against respiratory viruses remains 134 

largely elusive.  135 

Furthermore, the gut microbiota seems to have impact on the development of immunity against 136 

RVIs. Though hitherto only shown in mice, gut microbiota-derived short chain fatty acids 137 

protected against RSV infections by improving type 1 IFN responses and increasing IFN-138 

stimulated gene expression in lung epithelial cells (20), while the presence of segmented 139 

filamentous bacteria protected against IAV, RSV as well as SARS-CoV-2 infection by priming 140 

resident alveolar macrophages (21). In humans, only an association between specific gut 141 

microbial profiles and RSV disease severity in hospitalized infants has been detected so far 142 
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(22). However, the molecular pathways of this gut-lung axis and their delicate dependency on 143 

age and interactions with environmental exposures (e.g., diet, passive smoke, pollutants) 144 

remain unclear. Several clinical trials contributed to an increasing body of evidence that 145 

probiotics might be an option to lower the susceptibility to RVIs (23–25); however, many 146 

questions on how exactly (e.g., strain dependency), to what extent individualized (e.g., age 147 

dependency, host microbial background) and when (e.g., neonatal window) to use such 148 

interventions are still open (26–28). Addressing these remaining knowledge gaps could enable 149 

modulation of airway and gut microbial communities and their metabolic patterns, presenting 150 

a potential therapeutic strategy to prevent or ameliorate severe RVIs. 151 

In summary, at specific developmental stages opposite infectious susceptibility can be 152 

observed depending on the causative viral strain. Moreover, different trajectories of immune 153 

maturation after birth can lead to strong inter-population differences in the susceptibility to 154 

severe RVIs. To understand which specific age- and microbiota-related immunological 155 

differences and temporal changes are most relevant across various RVIs, we need a 156 

comprehensive view of the longitudinal development of anti-RVI immunity and the impact of 157 

and interplay with key factors involved. This requires the establishment of a tailored birth cohort 158 

study that investigates longitudinally and in-depth the development of the function of the airway 159 

epithelial barrier site and professional innate and adaptive immune cells in newborns against 160 

different respiratory viruses. Simultaneously, the study will assess the potential clinical and 161 

environmental factors including the status of the respiratory and gut microbiota that may 162 

influence these processes. Such comprehensive data sets are mandatory for the development 163 

of novel interventions that either target the host or the microbiota to early prevent or 164 

successfully treat severe RVIs in the future. 165 

Aim 166 

The MIAI study hypothesizes that: (i) the course and outcome of RVIs among individuals is 167 

related to the large variability in maturational trajectories of anti-viral immunity and (ii) 168 

environmental, lifestyle and dietary factors influence the early imprinting of anti-viral immunity 169 

in ways that either promote an increased susceptibility to RVIs and their complicated course 170 
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or support protective patterns (Figure 1). To verify these hypotheses, the MIAI birth cohort has 171 

been set up and includes healthy newborn infants born at term and their families. We aim at a 172 

comprehensive characterization of age-related differences and changes in the human immune 173 

system of the participants with a focus on the function of the cellular key players involved in 174 

the establishment of infections with RSV, IAV and SARS-CoV-2. Detailed phenotyping 175 

including factors potentially promoting and confounding the individual immune trajectory will 176 

be established; in particular, we are interested in the role of the developing microbiome on 177 

priming and regulating anti-RVI immunity. The specific aims of our study are: 178 

 Aim 1. To characterize the developmental changes of innate and adaptive immune 179 

responses to RVIs during the first year of life. 180 

 Aim 2. To determine the impact of sociodemographic background, clinical histories and 181 

environmental exposures including lifestyle, vaccinations and dietary factors on the 182 

trajectories of immune responses toward RVIs. 183 

 Aim 3. To elucidate whether there is a link between the microbiome establishment and 184 

anti-RVI immunity developing after birth. 185 

In brief, we aim to provide insights into age-dependent programming and early-life changes of 186 

immunity toward RVIs in humans, highlighting training, priming and acquisition of tolerance, by 187 

collecting granular clinical metadata and performing comprehensive unbiased immune 188 

phenotyping using multi-omics approaches (Figure 2). 189 

  190 
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METHODS AND ANALYSIS 191 

Study design, cohort recruitment and follow-up visits  192 

The MIAI study is a single center, population-based birth cohort study at the University Hospital 193 

Würzburg. MIAI enrolls healthy newborn infants and their families and follows them throughout 194 

the first year of life (Figure 2). The ongoing recruitment started in February 2022 reaching 195 

about 170 infants up to date (with a 2-month interruption of recruitment due to an interim 196 

shortage of staff) (Table 1). Inclusion criteria encompass full-term, healthy neonates (37+0 to 197 

41+6 gestational weeks) born at the perinatal center of the University Hospital Würzburg, 198 

Germany, whose families´ residency is located in the city of Würzburg or its administrative 199 

district. Exclusion criteria are amniotic infection syndrome, early-onset neonatal sepsis, 200 

congenital malformations, primary immunodeficiency or metabolic diseases, and remarkable 201 

language barriers. We will however do an earnest attempt to provide understandable 202 

information on our study in the native language of parents whose infants would be eligible thus 203 

aiming for a population-representative sample. The study recruits a convenience sample 204 

cohort; as such, the sample size is not calculated. 205 

The first study visit is performed at the University Hospital for Women`s health and Obstetrics 206 

Würzburg. Mothers of eligible infants are approached in the first three days after birth. After 207 

obtaining written informed consent from the parents, the baseline assessment takes place 208 

during the hospital stay of mother and infant. The follow-up appointments are performed one 209 

month, six months and one year after birth at the dedicated Pediatric Clinical Study Outpatient 210 

Service at the University Children’s Hospital Würzburg. We are planning to track the study 211 

participants for long-term follow-up during childhood.  212 

Overall, the acceptance of our study design with its follow-up appointments and sample 213 

collection is high with a relatively low drop-out rate of about 8% after one year as of May 2024, 214 

including families that relocated outside of Würzburg and its administrative district. The 215 

baseline characteristics of infants enrolled so far are presented in Table 1. Overall, the 216 

proportions of female and male infants are equal and the mean gestational age and birth weight 217 

appropriate and in line with the inclusion criterium of full-term birth. The largest number of 218 
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neonates was born vaginally (VD, 62%). Cesarean sections (CS, 38%) were in the majority of 219 

CS secondary (60%), i.e. after rupture of membranes, and only a minor part elective (37%) or 220 

due to emergency (3%). Half of the MIAI infants have older siblings which of 86% are visiting 221 

child care or school. The exposure to nicotine due to smoking family members affects 22% of 222 

the MIAI infants and 22% of the families have pets. The distribution of rural compared to urban 223 

living environments is even.     224 

Characteristic values of pregnancy histories from infants enrolled in MIAI including maternal 225 

factors potentially impacting on the child’s RVI immunity are listed in Table 2. The mean weight 226 

gain during pregnancies was 14 kg with a mean body mass index (BMI) of 29.4 (± 5.8) at birth, 227 

not exceeding the limits recommended by obstetricians (29). The smaller number of mothers 228 

were primigravida (38%). During routine prenatal screenings, gestational diabetes mellitus was 229 

detected in 12% and gestational hypertension in 1.8%. The proportions of mothers vaccinated 230 

and/or recovered from IAV and SARS-CoV-2 infections are 48% and 97%, respectively. For 231 

the Influenza status, 52% of mothers did not know whether they have experienced an IAV 232 

infection, while only 3% of mothers did not know their SARS-CoV-2 status. 233 

Table 3 summarizes anthropometric, medical and sociodemographic characteristics of 234 

participating parents. The mean age of mothers and fathers from the entire cohort is 32.8 (± 235 

4.5) years and 35.3 (± 5.4) years, respectively. The medical history data of the parents showed 236 

that 52% of the mothers and 24% of the fathers reported somatic disorders including allergies, 237 

psoriasis, neurodermatitis, cardiovascular disorders, obesity, thyroid disorders, as well as 238 

benign and malignant tumors. Mental disorders were indicated by 8.4% of the mothers and 239 

6.0% of the fathers. About 84% of the participating parents reported a Western European 240 

ethnicity and 79% of the mothers and 71% of the fathers were higher educated. 241 

 242 

Clinical data collection and data management 243 

Clinical data collection in MIAI is accomplished using tailored case report forms (CRFs) at each 244 

study timepoint (Table 4). At baseline, the histories of pregnancy and perinatal events are 245 

documented upon enrollment. From mothers and fathers, detailed information on demographic 246 
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and psychosocial background, family histories and lifestyles are requested. Particular attention 247 

is paid on maternal respiratory infections and vaccinations, before and during pregnancy. For 248 

the infants, we document at each study visit body measurements, the histories of vaccinations, 249 

infections, antibiotics including days of treatment, medications including inhalations, episodes 250 

of wheezing, skin rashes, allergies, hospital stays, and surgical procedures, diets including 251 

dietary supplements, lifestyle including the number of siblings and further household members, 252 

pets, residence (rural/urban), and stays abroad. In addition to the questionnaires, the MIAI 253 

pediatrician performs a comprehensive physical examination of the infant at each study 254 

appointment to monitor the overall health status including growth, physical and psychomotor 255 

development (Table 4).  256 

To align with the FAIR data principles (Findable, Accessible, Interoperable, Reusable), the 257 

collected clinical data is managed to ensure high standards of data quality and usability. For 258 

data protection reasons, the participant’s data is pseudonymized and assigned a unique study 259 

ID, which is documented in a separate and password-secured data file accessible by 260 

authorized MIAI staff only. A separate external data file is used as a contact database for 261 

tracking study participations and invitations to follow-up. The pseudonymized clinical data are 262 

double-entered into a password-secured REDCap database hosted at the Institute of Clinical 263 

Epidemiology and Biometry, University of Würzburg (IKE-B). Local password-secured copies 264 

of the database are generated. The database provides a comprehensive log/audit feature to 265 

record data input and changes based on user and time/date. By adhering to these FAIR 266 

principles, MIAI enhances the value of its clinical data, promoting its use in further research 267 

while maintaining high standards of data security and participant confidentiality. 268 

 269 

Collection and storage of biomaterials  270 

At each appointment, biomaterials from mothers (breast milk) and child (nasal brushes, 271 

pharyngeal swabs, skin swabs, stool, blood) are collected according to the schedule illustrated 272 

in Figure 3. We have chosen these timepoints to afford serial profiling while minimizing burden. 273 

Collection and storage of biomaterials are performed according to established standard 274 
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operating procedures (SOPs). After collection, biomaterials are immediately transferred to the 275 

adjacent laboratory for processing and biobanking.  276 

Breast milk samples 277 

As long as the mother is breastfeeding, breast milk/colostrum are sampled at each 278 

appointment. First, cells are pelleted by centrifugation and the skim milk and the fat layer are 279 

removed. The skim milk and fat layer are once more sharply centrifuged and aliquoted for 280 

storage at -80°C for later proteomic and microbial studies. The cells are cryopreserved at -281 

152°C following multiple washing steps for later single cell studies.  282 

Nasal brushes 283 

Nasal brushing is an established method in pediatric pulmonology, e.g. essential for 284 

diagnosing primary ciliary dyskinesia, and provides a robust technique to generate AEC 285 

cultures in term and even preterm infants (12, 30). Brushings are taken from the inferior nasal 286 

turbinate using sterile interdental brushes (Rossmann, ISO sizes 4 or 5). After sampling, 287 

brushes are immediately placed in sterile tubes with transport medium (MEM without additives, 288 

antibiotics and antimycotics) and processed within 1 h of collection. Brushes are carefully 289 

moved up and down to scrape the cells off and collect them into the transport medium. Next, 290 

cells are centrifuged and supernatants stored as “nasal secretions” at -80°C for later proteomic, 291 

cytokine and microbiota profiling. The AECs are first expanded in submersion according to 292 

established protocols (31, 32) and then cryopreserved at -152°C. Some of the expanded AECs 293 

are directly differentiated at the air-liquid-interface (ALI) into a mature pseudostratified 294 

respiratory epithelium as described previously (32) and used for infection experiments with 295 

RSV (RSV-A-ON1, HRSV/A/DEU/H1/2013) (33) and IAV (H1N1, A/Netherlands/602/2009). 296 

Infections with SARS-CoV-2 (SARS-CoV-2/human/DEU/REGS-200701-CA/2020) are done 297 

later under biosafety level 3 conditions using cryopreserved AECs for differentiation at ALI. 298 

After infection, AECs are harvested and subjected to immediate FACS studies capturing cell 299 

composition and cell quality, generation of total RNA lysates for the analysis of transcriptomes 300 

(bulk RNASeq) and viral loads (qRT-PCR), and standardized cryopreservation (34) for later 301 

single cell (scRNASeq) and epigenetic (ATACSeq) studies. Apical and basolateral 302 
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supernatants are stored at -80°C for later analyses of proteome (Mass Spectrometry) and 303 

cytokine (FACS-based multiplex assays) profiles and virus plaque assays assessing viral 304 

progeny. This approach aims at generating data from each MIAI participant regarding 305 

individual airway epithelial immune responsiveness and function toward RVIs at birth and at 1 306 

year of life (Figure 3). The strategy is based on previous reports that ALI-AEC models 307 

established from human primary AECs recapitulate well the in vivo phenotype of the airway 308 

epithelium (12, 35, 36).  309 

Pharyngeal and skin swabs 310 

Three pharyngeal swabs and two skin swabs are collected, respectively. One of the respective 311 

swabs is transferred to a sterile tube containing sterile PBS with 10% BSA (for protein 312 

stabilization) and stored at -80°C for protein and cytokine measurements. The other two 313 

respective swabs are stored at -80°C without additives for later DNA isolation and microbiota 314 

studies (16S rRNA sequencing and shotgun metagenomics).  315 

Stool samples 316 

Stool samples are collected by the MIAI staff from diapers and immediately transferred to -317 

80°C. In cases where stool collection at the respective appointments not succeeds, we use 318 

samples collected and stored at 4°C by the parents at the evening before or the morning of the 319 

follow-up appointment for biobanking at -80°C. Three 1.5 ml tubes are filled with stool, 320 

respectively, one of which contains 600 µl DNA/RNA shield (Zymo Research, California, USA) 321 

to preserve nucleic acids for 16S rRNA sequencing and metagenomics studies. The other two 322 

stool aliquots are stored without additives and used for the extraction and analysis of 323 

immunoactive proteins such as S100-alarmins (37) and cytokine profiles according to 324 

established protocols (38). 325 

Blood samples  326 

Cord blood is collected preemptively from all eligible neonates but only processed when 327 

parents agree on participation in the MIAI study. If no consent is given, cord blood samples 328 

are discarded. The volumes of drawn peripheral venous blood samples align to the pediatric 329 

guidelines of the European Medical Agency, which recommends that blood collection for 330 
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research purposes should be at maximum 1% of total blood volume (i.e., 0.8 ml/kg body 331 

weight). At the first sampling timepoint, we seek to combine blood collection in MIAI with the 332 

routine newborn screening taken between 36 and 72 hours of life. Blood samples are 333 

processed within 1 h after collection. The serum samples are stored at -80 °C and used for 334 

cytokine, metabolome and serological studies including quantification of antibody titers against 335 

RSV, IAV and SARS-CoV-2. From EDTA samples, peripheral blood mononuclear cells 336 

(PBMCs) are isolated and profiled using established multidimensional FACS panels (39–43). 337 

One part of isolated PBMCs is cryopreserved at -152°C for later single cell, epigenetic and 338 

experimental studies (e.g., analysis of T and B cell subsets and receptor repertoires including 339 

virus-specific effector T cells). To avoid functional impairment of the myeloid cells due to 340 

cryopreservation, monocytes are directly isolated from the other part of isolated PBMCs as 341 

described previously (44, 45) and infected with RSV and IAV. After infection, total RNA lysates 342 

are generated and culture supernatants harvested and both stored at -80°C for the analysis of 343 

transcriptomes, viral loads, proteome and cytokine profiles, and viral progeny. 344 

 345 

Data analysis and statistics 346 

Omics data analysis in MIAI will be performed on different levels as results from transcriptomics 347 

including lymphocyte receptor repertoires, epigenomics, 16S rRNA gene and shot-gun 348 

metagenomics sequencing, breast milk and serum metabolomics and proteomics including 349 

cytokine and serologic profiles. We aim at subjecting full longitudinal sample series from 400 350 

infants to study the omics profiles. Given the longitudinal nature of our study set up, samples 351 

previewed for these studies will be randomized to reduce batch effects. Initially, each omics 352 

dataset will undergo individual analysis to elucidate its unique characteristics. Subsequent 353 

exploratory analyses will determine the necessity of batch correction for each dataset. If 354 

required, corrections will be implemented using ComBat batch method to normalize across 355 

multiple analytical runs and WithinVariation function implemented in the R mixOmics package 356 

and to normalize features as change over time within each child. Post-correction, we will 357 

validate that the biological variability is preserved and that no artifacts were introduced. We 358 
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will perform omics-specific statistical analyses and co-expression network analyses using 359 

hCoCena (46, 47) to identify and characterize differential subgroups with greater precision. All 360 

data generated including standardized meta-data will be quality-controlled and gathered within 361 

a unified framework following standards for omics and clinical measurement representation, 362 

allowing within-study integration and comparative analysis with previous studies according to 363 

FAIR data principles. 364 

Differential trajectorial endotypes will be identified using KmL (k-means for longitudinal data) 365 

clustering. To determine the optimal number of clusters (k), we will run 1000 permutations, 366 

utilizing the Harabasz criterion (Calinski-Harabasz index) to evaluate clustering validity. This 367 

methodology will facilitate a nuanced, continuous classification of patients, transcending binary 368 

categorization and allowing also for a more detailed representation of endotypic variation. 369 

Specialized software packages for dataset-specific imputation will be employed to address any 370 

missing data points, ensuring robust classification of immune and microbiome trajectories 371 

across the cohort. Advanced statistical methods and machine learning algorithms will be 372 

integrated into the analysis pipeline to enhance the precision and reliability of the endotype 373 

classification.  374 

To elucidate the relationships between specific immunotypes, respiratory or gut microbiome 375 

profiles, environmental factors, and clinical outcomes, we have created two specialized 376 

software tools, metadeconfoundR (48) and longdat (49). These tools enable comprehensive 377 

mixed omics data analysis while managing the complex interplay of numerous demographic, 378 

therapeutic, and disease-related variables. MetadeconfoundR is designed to facilitate the 379 

identification of biomarkers within cross-sectional multi-omics medical datasets, while carefully 380 

accounting for confounders. Initially, it identifies significant associations between features and 381 

metadata using nonparametric tests such as the Mann-Whitney U test. Subsequently, it 382 

assesses and adjusts for confounding effects among these metadata variables through post-383 

hoc nested linear model comparison. Importantly, metadeconfoundR can integrate previously 384 

established knowledge of confounders, such as drug associations from the MetaCardis cohort, 385 

into its analysis. This inclusion aids in maintaining robust conclusions even when new datasets 386 
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lack the statistical power to independently identify these confounders. LongDat, meanwhile, is 387 

an R package tailored for analyzing longitudinal multivariable data, effectively handling a wide 388 

array of covariates. It distinguishes direct from indirect intervention effects and identifies key 389 

covariates that may act as mechanistic intermediates. Although primarily focused on 390 

longitudinal microbiome data, LongDat's versatility allows application to various data types 391 

including binary, categorical, and continuous data. Comparative testing against other analytical 392 

tools like MaAsLin2, ANCOM, lgpr, and ZIBR has demonstrated LongDat's superior 393 

performance in terms of accuracy, runtime, and memory efficiency, making it an ideal choice 394 

for high-dimensional longitudinal studies where multiple covariates are a consideration. 395 

 396 

Next steps and outlook 397 

To gain a comprehensive picture of how immune profile development including cellular 398 

responses to RVIs varies amongst individuals, we are in the process to analyze the 399 

biomaterials by a multi-omics approach. This encompasses transcriptomic, epigenomic, 400 

metagenomic, and metabolomic layers. These data are extended by cellular phenotyping using 401 

high-dimensional flow cytometry and the innate and adaptive immune responses to IAV, RSV 402 

and SARS-CoV-2. Next, the omic phenotypes will be integrated with large clinical data sets. 403 

As most of the one-year-old infants have not yet attended a day care center, which is an 404 

important contributor to microbiome maturation (50, 51), we continue the longitudinal 405 

assessment of MIAI participants by the means of annual questionnaires until regular follow-up 406 

at early school age. Our long-term vision is to disentangle the role of early programming of 407 

anti-viral immunity for the susceptibility to RVIs and also non-communicable diseases such as 408 

asthma, obesity or autoimmune disorders. Future plans include data collection of participants 409 

until 12 years of participants’ age, which would allow to investigate how differences in omics 410 

immune and microbiome endotypes translate into population differences in clinical outcomes 411 

and susceptibility to RVIs. 412 

  413 
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DISCUSSION 414 

Considering the impact of the recent SARS-CoV-2 pandemic (52) or previous pandemics and 415 

epidemics due to IAV and RSV on human health (6, 53, 54), our knowledge about the ontogeny 416 

of immunity towards RVIs and the factors determining the developmental variability is little. 417 

Except for pre-existing co-morbidities and primary immunodeficiencies, hitherto, only the 418 

acquisition of autoantibodies against type I IFNs (55) and genetic variants, particularly in 419 

cytokines and pattern recognition receptors (56), could be linked to severe RVI cases, though 420 

only in a minor proportion of RVIs, and explain inter-population variability of anti-RVI immunity. 421 

We recently initiated the recruitment of a birth cohort of healthy newborn infants in Germany 422 

that has been designed to investigate in particular the development of immunity towards RVIs 423 

in early childhood. The data shown in the present manuscript reflect an initial characterization 424 

of the MIAI cohort. Comparison of the structure of the current MIAI cohort with those reported 425 

from other recruiting maternal or term infant birth cohorts in Europe show similar distributions 426 

and rates of e.g. sex, gestational age, birth weight, multiple births, mode of delivery, first-time 427 

mothers, number of siblings, maternal age and BMI, gestational diabetes and hypertension, 428 

infections during pregnancy, and parental education and smoking (57–60). It is gratifying that 429 

in MIAI the drop-out rate of 8% is low in comparison to other birth cohorts which also perform 430 

repeated collection of biomaterials, e.g., the SweMaMi cohort (59) and KUNO-Kids cohort (57) 431 

that recorded 40-50% of lost 1-year follow-ups. Hence, we assume that the MIAI cohort will be 432 

representative of an infant population in Central Europe. 433 

The common immunological finding in severe IAV, RSV and SARS-CoV-2 related infectious 434 

diseases is an exceeding cytokine release (61–64), suggesting a strong involvement of a 435 

systemic inflammatory response due to a lack of viral clearance at the epithelial barrier site or 436 

its breakage. Therefore, our first research focus in MIAI will lay on the age-dependent 437 

immunological profiling of the airway epithelium and blood monocytes, as key mediators of 438 

systemic cytokine storms during severe RVIs (65, 66), and the identification of demographic, 439 

clinical, environmental, lifestyle and dietary factors on the trajectories of their immune 440 

responsiveness toward RVIs. Interestingly, a previous study revealed a link between a low 441 
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susceptibility of monocytes to IAV infections and high basal monocyte activation, which the 442 

authors assumed to be driven by environmental factors and/or weak-effect genetic variants 443 

that remain to be identified (67). 444 

A plethora of studies report on distinct gut and respiratory microbiota compositions that are 445 

associated with an increased risk of RVIs with either IAV, RSV or SARS-CoV-2 (13, 15, 16, 446 

18–20, 22, 68–70). How exactly such reported microbiota profiles influence anti-RVI immunity 447 

remains largely elusive. To what extent the developmental changes of the microbiota shape 448 

the postnatal ontogeny of the development of anti-RVI immunity is even less understood. The 449 

MIAI study will help to characterize differential trajectories of anti-RVI immunity and improve 450 

our knowledge about influencing factors, in particular the influence of the gut and respiratory 451 

microbiota. 452 

The strength of the MIAI study is the population-based approach and the standardized in-depth 453 

longitudinal characterization of healthy individuals at birth and the comprehensive analysis of 454 

preserved biomaterials. The usage of cutting-edge multi-omics technology for the generation 455 

of longitudinal immune-microbiome profiles combined with functional profiling of the cellular 456 

immune response against RVIs make this cohort study a unique approach. Finally, by ensuring 457 

that the multi-omics-based profiles are integrated with highly granular clinical information, we 458 

are confident to identify factors that either promote or impede the development of immunity 459 

against RVIs. As in other population-based studies, we observe a bias toward high 460 

socioeconomic status among MIAI participants. Technically, the study has its limitation in the 461 

standardization of stool sample collection as sometimes home sampling is required, which 462 

precludes immediate freezing at -80°C as warranted by on-site visit sampling through the staff. 463 

With respect to clinical information, the study would benefit from an app-based monitoring that 464 

allows immediate reporting of acute infections that in case of respiratory symptoms then would 465 

prompt viral diagnostics. We aim at a timely implementation of this important add-on. 466 

In conclusion, the MIAI birth cohort study expects to generate data that give a holistic picture 467 

on the variability of the maturation of immunity towards RVIs in early life and identify host and 468 

environmental factors that influence the trajectory. By linking differential trajectories along with 469 
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clinical information on incidences and outcomes of RVIs to specific immune features, MIAI will 470 

pave the way for in-depth elucidation of molecular mechanisms, which is the basis for the 471 

development of age-specific host-directed treatment strategies against severe courses of RVIs 472 

(e.g., (anti-)cytokine biologicals, tailored cell- or RNA-technology-based therapies). Of 473 

particular importance will be the identification of factors shaping anti-RVI immunity, as this is 474 

essential to design personalized interventions such as metabolic, probiotic and/or dietary 475 

measures that promote developing competent anti-RVI immunity in early life thus preventing 476 

severe RVIs in the long term. 477 

 478 

ETHICS AND DISSEMINATION 479 

This study was reviewed and approved by the Institutional Review Boards of the University of 480 

Würzburg (no. 13/22_z-am). The study is also registered on the German Clinical Trials 481 

Register (DRKS). The MIAI cohort is being conducted in compliance with all pertinent 482 

legislation and directives and following the guidelines on human biobanks for research and 483 

other relevant directives on research ethics. All parents have before inclusion signed informed 484 

consent in accordance with the Declaration of Helsinki II. Special emphasis is placed on 485 

privacy and safety of data. 486 

The proposed research is anticipated to generate a significant body of knowledge of interest 487 

to a wide range of stakeholders, from the clinical (pediatricians and other health professionals) 488 

to the research community but also to the public. Hence, a multilayered dissemination strategy 489 

will be followed and builds on cross-media communication to reach the specific target groups 490 

through their preferred media and information platforms. Local, national and international 491 

meetings and publication in peer-reviewed medical journals and via websites are used to 492 

inform for the scientific community. Once a year, study participants and healthcare 493 

professionals are invited by the study team to join online video meetings where they can 494 

discuss medical questions and pose any questions or comments on the study procedures. In 495 

addition, participating families will be provided with a copy of this publication to disseminate 496 

the MIAI study results. 497 
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FIGURE LEGENDS 530 

Figure 1. Hypothesis of the MIAI study. The hypothesis of the MIAI study is that the 531 

maturation of anti-viral immunity toward RVIs in early life underlies a large developmental 532 

variability, which is imprinted by clinical and environmental factors such as dietary habits, 533 

lifestyle, and particularly the composition and function of the co-evolving respiratory and gut 534 

microbiota.  535 

 536 

Figure 2. Design MIAI study. The MIAI study encompasses four phases starting with 537 

recruitment of term healthy infants and follow-up visits at defined timepoints. At each 538 

appointment, clinical data and biomaterials are collected for storage and/or usage in ex vivo 539 

respiratory viral infection models. Multi-omics datasets will be generated including immune 540 

profiles, transcriptomics, epigenomics, proteomics, metabolomics and microbiomics. To gain 541 

clinical and scientific knowledge, overall integration of mixed omics data shall enable 542 

participant stratification based on marker patterns linking to RVI susceptibility and reveal host 543 

and environmental factors imprinting anti-RVI immunity in the first year of life.   544 

 545 

Figure 3. Collection of biomaterials in MIAI. Biomaterials collected in the MIAI cohort include 546 

breast milk, nasal brushes and secretions, pharyngeal swabs, skin swabs, stool, cord blood 547 

and peripheral blood (EDTA and serum). They are obtained at the defined study time points, 548 

i.e. either at day 1-3 and/or day 30 of life and/or at 6 months and/or 1 year following birth. 549 

(Created with BioRender.com)  550 

  551 
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Table 1 Baseline characteristics of the MIAI cohort 775 

Total number 171 

Sex, female (%) 85 (49.7) 
Gestational age [weeks] (SD) 39.8 (± 1.2) 

Mode of delivery 
VD (%) 
CS total (%) 

 
106 (62) 
65 (38) 

Multiples  
Singles (%) 160 (96) 
Multiples (%) 6 (4) 

Antenatal corticosteroids 4 (2.4) 

Mean umbilical cord arterial pH (SD) 7.2 (± 0.1) 

APGAR score  
Mean APGAR at 1 min (SD) 8.9 (± 0.9) 
Mean APGAR at 5 min (SD) 9.7 (± 0.5) 
Mean APGAR at 10 min (SD) 9.9 (± 0.3) 

Premature rupture of membranes (%) 47 (27) 

Bonding in the delivery room (%) 163 (95) 

Mean birth weight [g] (SD) 3429 (± 459) 

Mean percentile birth weight [g] (SD) 54 (29) 

Mean birth length [cm] (SD) 51 (± 2.0) 

Mead head circumference at birth [cm] (SD) 34.9 (± 1.4) 

SGA (%) 14 (9) 

LGA (%) 24 (14) 

Siblings  
None (%) 85 (50) 
One (%) 67 (39) 
Two or more (%) 19 (11) 

Siblings in child care or school (%) 74 (43) 

Mean number household members (SD)  3.6 (± 0.7) 

Smoking in family (%) 37 (22) 

Pets (%) 37 (22) 
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Environment  
Rural (%) 84 (49) 
Urban (%) 87 (51) 

SD, standard deviation; CS, cesarean section; VD, vaginal delivery; SGA, small for 776 
gestational age; LGA, large for gestational age 777 
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Table 2 Baseline characteristics of pregnancy in the MIAI cohort 779 

 Mothers 

Total number 166 

Mean body weight before pregnancy [kg] (SD) 68.7 (± 15.2) 

Mean BMI before pregnancy (SD) 24.6 (± 5.9) 

Mean body weight at delivery [kg] (SD) 82.7 (± 16.4) 

Mean BMI at delivery (SD) 29.4 (± 5.8) 

Previous deliveries 
One (%) 
Two or more (%) 

67 (40) 
20 (12) 

Previous pregnancies 

One (%) 
Two or more (%) 

53 (32) 
49 (30) 

Blood type 
A (%) 
B (%) 
AB (%) 
0 (%) 

 
68 (41) 
20 (12) 
6 (3.6) 
72 (43) 

Rhesus factor 
Positive (%) 
Negative (%) 

 
142 (86) 
24 (14) 

Diet 
Vegetarian (%) 
Vegan (%) 
Other (%) 

 
13 (8) 
0 (0.0) 
4 (2.4) 

Gestational diabetes mellitus 
Diet-controlled (%) 
Insulin-treated (%) 

 
16 (10) 
4 (2.4) 

Gestational hypertension (%) 3 (1.8) 

Preeclampsia (%) 0 (0.0) 

CMV status 
Negative (%) 
Positive (%) 
Unknown (%) 

 
68 (41) 
19 (11) 
79 (48) 

HBV status 
Negative (%) 

 
84 (51) 
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Positive (%) 
Unknown (%) 
Vaccinated (%) 

1 (0.6) 
9 (5.4) 
72 (43) 

Influenza status 
Unknown (%) 
Recovered (%) 
Vaccinated (%) 
Recovered and vaccinated 

 
87 (52) 
2 (1.2) 
74 (45) 
3 (1.8) 

SARS-CoV-2 status 
Unknown (%) 
Recovered (%) 
Vaccinated (%) 
Recovered and vaccinated (%) 

 
5 (3.0) 
5 (3.0) 
42 (25) 
114 (69) 

Respiratory tract infections during pregnancy (%) 78 (47) 

Antibiotic treatment during pregnancy (%) 38 (23) 

Long-term medication during pregnancy (%) 37 (22) 

Nicotine abuse 
Smoking (%) 
No smoking (%) 

 
3 (1.8) 

163 (98) 
BMI, Body mass index; CMV, Cytomegalovirus; HBV, Hepatitis B virus 780 
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Table 3 Baseline characteristics of the parents in the MIAI cohort 782 

 Mothers Fathers 

Total number 166 164* 

Mean age at delivery (SD) 32.8 (± 4.5) 35.3 (± 5.4) 

Somatic disorders (%) 87 (52) 40 (24) 

Mental disorders (%) 14 (8.4) 10 (6.0) 

Smoker (%) 3 (1.8) 34 (21) 

Origin 
Germany (%) 
Asia (%) 
Africa and Middle East (%) 
Other (%) 

 
140 (84) 
7 (4.2) 
6 (3.6) 

13 (7.8) 

 
138 (84) 
5 (3.0) 
8 (4.9) 
13 (7.9) 

Education 
Certificate <10 years school (%) 
Certificate ≥10 years school (%) 
No/other certificate (%) 

 
26 (16) 
131 (79) 
9 (5.4) 

 
35 (21) 

116 (71) 
13 (7.9) 

*In two cases, father unknown. SD, standard deviation 783 
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Table 4 Overview of study appointments and clinical data collected in MIAI 

Age of the child Day 
1 - 3 

Day 
30 (-40) 

Month 
6 (-7) 

Month 
12 (-14) 

Screening for enrollment O    

Pregnancy and perinatal history 

History of diseases during pregnancy including gestational diabetes and hypertension, antenatal and perinatal 

antibiotics, mode of birth, multiplicity, sex, gestational age, umbilical artery pH and base excess, APGAR, body 

measurements, complications at delivery 

O    

Physical examination child 

Total body physical examination, anthropometric measurements, blood pressure, respiratory rate, 

neurodevelopmental milestones 

O O O O 

CRF child 

Body measurements and notes as documented in the child health record book by the attending pediatrician, 

history of vaccinations, infections, antibiotics including days of treatment, medication, inhalation, episodes of 

wheezing, skin rashes, allergies, hospital stays, and surgical procedures, diet (exclusive breastfeeding, mixed 

feeding with formula, age at introduction of solid food) and supplements, day care, lifestyle including further 

siblings, household members, pets, and residence (rural/urban), stays abroad, family history 

O O O O 

CRF mother 

Age, somatic or psychiatric diseases, previous pregnancies, height, weight before and at end of pregnancy, 

BMI, CMV/HBV/HIV status, vaccination before and during pregnancy, blood type, infections, medication, diet, 

smoking, ethnicity, educational level, lifestyle, family history, subjective stress level 

O O O O 

CRF father 

Age, somatic or psychiatric diseases, medication, smoking, ethnicity, educational level, lifestyle, family history 
O    
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