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ABSTRACT 1 

Population-based proteomics offer a groundbreaking avenue to predict dementia onset. This 2 

study employed a proteome-wide, data-driven approach to investigate protein-dementia 3 

associations in 229 incident all-cause dementia (ACD) among 3,249 participants from the 4 

English Longitudinal Study of Ageing (ELSA) over a median 9.8-year follow-up, then 5 

validated in 1,506 incident ACD among 52,745 individuals from the UK Biobank (UKB) over 6 

median 13.7 years. NEFL and RPS6KB1 were robustly associated with incident ACD; MMP12 7 

was associated with vascular dementia in ELSA. Additional markers EDA2R and KIM1 8 

(HAVCR1) were identified from sensitivity analyses. Combining NEFL and RPS6KB1 with 9 

other factors yielded high predictive accuracy (area under the curve (AUC)=0.871) for incident 10 

ACD. Replication in the UKB confirmed associations between identified proteins with various 11 

dementia subtypes. Results from reverse Mendelian Randomization also supported the role of 12 

several proteins as early dementia biomarkers. These findings underscore proteomics' potential 13 

in identifying novel risk screening targets for dementia.  14 
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INTRODUCTION 1 

The understanding of Alzheimer’s disease and related dementia (ADRD) is increasingly 2 

shifting towards a systemic and multifactorial perspective.[1, 2] Circulating proteins, as pivotal 3 

agents in biological processes, offer direct insights into disease mechanisms and can serve as 4 

early indicators, regulators, and effectors in disease pathways. This renders their studies 5 

indispensable in both drug discovery and the development of diagnostics.[3, 4] 6 

Mounting evidence supports the significance of proteomics profiling in exploring pathways 7 

involved in ADRD.[3, 5-7] At the molecular level, deviations in protein function or expression 8 

play a role in the pathogenesis of prodromal dementia,[3, 8, 9] while protein biomarkers can 9 

forecast disease onset several years before symptoms manifest.[3, 8-10] Remarkably, 10 

approximately 96% of currently approved drugs target proteins,[4, 11] underscoring the 11 

substantial added value of proteomic analysis in ADRD drug discovery. 12 

Integration of large-scale proteomics data into population studies represents a recent 13 

development,[3, 12] enabling cost-effective simultaneous measurement of multiple proteins on 14 

many samples.[3, 13, 14] This has led to the identification of distinct protein signatures relevant 15 

to ADRD susceptibility.[4, 9, 10, 15, 16] For instance, longitudinal analyses in the UK 16 

Whitehall II study spanning across two decades, demonstrated associations between 15 non-17 

amyloid/non-tau-related proteins and cognitive decline and dementia.[4] Similarly, the 18 

Atherosclerosis Risk in Communities (ARIC) study in the US identified significant protein 19 

signatures for dementia, including immune and proteostasis/autophagy pathways.[10] 20 

Intriguingly, some of these associations were independent of known Alzheimer’s disease (AD) 21 

risk factors, suggesting novel potential targets for intervention.[4, 9, 10] Recent analyses based 22 

on data from the UK Biobank, which identified GFAP, NEFL, GDF15 and LTBP2 were most 23 

strongly associated with incident all-cause dementia (ACD), AD, and vascular dementia 24 

(VAD).[16] However, previous studies utilized the aptamer-based SomaScan platform in ARIC 25 
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and Whitehall II,[4, 9, 10] and the SomaScan platform is deemed to have lower specificity 1 

compared to the Olink platform, which employs multiplexed antibody-based immunoassays 2 

proximity extension assay (PEA) technology.[17] Moreover, the UK Biobank study faced 3 

limitations such as a lack of external validation cohorts and evidence triangulation with causal 4 

inference.[16] 5 

In this current study, we employed the large-scale Olink proteomics platform and a robust 6 

dementia algorithm to assess the proteomic signature of dementia risk in over 3,000 older adults 7 

using data from the English Longitudinal Study of Ageing (ELSA) as the discovery cohort. We 8 

validated these findings using Olink proteomics data from over 50,000 participants from the 9 

UK Biobank.[18] Two-sample bi-directional Mendelian randomization (MR) and drug target 10 

MR (or cis-MR) were utilized to infer causality between protein concentration and dementia 11 

outcomes, leveraging summary statistics from large genome-wide association study (GWAS) 12 

consortia. 13 

 14 

RESULTS 15 

Analysis 1: Protein-dementia associations in the ELSA discovery cohort 16 

The participant selection for the proteomics assay in ELSA is depicted in Supplementary Fig. 17 

1. In 3,262 samples with proteomics assayed, based on the dementia algorithm, prevalent 18 

dementia cases were excluded (N = 13), resulting in a final sample of 3,249 in the analysis. 19 

The mean age was 63.4 years (SD = 9.2), 55% were women, and 97.2% were of white ethnicity 20 

(Supplementary Table 1). A total of 229 incident dementia cases were documented over a 21 

median follow-up of 9.8 years (min – max: 0.4 – 10.9 years). Specific details on the data 22 

sources where these cases were extracted from in the first instance are included in 23 

Supplementary Fig. 2. The normalized protein expression (NPX) levels for participants with 24 
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no dementia, incident dementia, and prevalent dementia for each protein are presented as box 1 

plots in Supplementary Fig. 3. 2 

We initially assessed the relationship between the NPX value of 276 plasma proteins and ACD 3 

risk in the ELSA cohort, using Cox Proportional Hazard regression models. Unadjusted 4 

analyses revealed that 95 measured proteins were significantly associated with ACD 5 

(Supplementary Fig. 4). Among these, NEFL exhibited the strongest association with ACD, as 6 

indicated by the false discovery rate (FDR)-corrected p-value (denoted as PFDR = 8.66 × 10-37, 7 

hazard ratio (HR) [95% confidence intervals (CI)]: 3.01 [2.63, 3.44])), followed by EDA2R, 8 

SCARF2, LAYN, PGF, DCN, GFR-alpha-1, BNP, UNC5C, Dkk-4, KIM1 (also known as 9 

HAVCR1), TNFRSF12A, CADM3, TRAIL-R2, VWC2, and MMP12. 10 

In the minimally adjusted models (adjusted for age, sex, and ethnicity), NEFL (PFDR = 0.0002; 11 

HR [95% CI]: 1.55 [1.30, 1.85]), RPS6KB1 (PFDR = 0.003; HR [95% CI]: 1.34 [1.18, 1.53]), 12 

EDA2R (PFDR = 0.046; HR [95% CI]: 1.43 [1.19, 1.72]) and KIM1 (PFDR = 0.049; HR [95% 13 

CI]: 1.31 [1.14, 1.50]) were significantly associated with ACD (Supplementary Fig. 5). 14 

In the fully adjusted models (adjusted for age, sex, ethnicity, education, smoking status, 15 

depression, presence of cardiovascular diseases, body mass index (BMI), systolic blood 16 

pressure, low-density lipoprotein (LDL) cholesterol), NEFL (PFDR = 0.0008; HR [95% CI]: 17 

1.54 [1.29, 1.84]) and RPS6KB1 (PFDR = 0.01; HR [95% CI]: 1.33 [1.16, 1.52]) remained 18 

significantly associated with ACD (Fig. 1). 19 

Sensitivity analyses demonstrated the robustness of the association between NEFL and ACD, 20 

with significance persisting after excluding participants in other ethnic groups other than white 21 

participants (PFDR = 0.001; HR [95% CI]: 1.53 [1.28, 1.83]) (Supplementary Fig. 6), APOE ε4 22 

carriers (PFDR = 0.009; HR [95% CI]: 1.61 [1.29, 2.01]) (Supplementary Fig. 7), cases of 23 

dementia occurring within the first year of follow-up (PFDR = 0.005; HR [95% CI]: 1.50 [1.25, 24 

1.80]) (Supplementary Fig. 8), participants aged <60 years (PFDR = 0.011; HR [95% CI]: 1.47 25 
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[1.22, 1.78]) (Supplementary Fig. 9), and when death was considered as a competing risk in 1 

Fine-Gray regression models (PFDR = 0.002; HR [95% CI]: 1.50 [1.26, 1.80]) (Supplementary 2 

Fig. 10). Similarly, RPS6KB1 exhibited a robust association with ACD, which remained 3 

significant after excluding other ethnic groups (PFDR = 0.004; HR [95% CI]: 1.34 [1.18, 1.53]), 4 

cases of dementia occurring within the first year of follow-up (PFDR = 0.025; HR [95% CI]: 5 

1.31 [1.15, 1.50]), participants aged <60 years (PFDR = 0.031; HR [95% CI]: 1.31 [1.14, 1.50]), 6 

and it was significantly associated with ACD in the Fine-Gray competing risk model (PFDR = 7 

0.014; HR [95% CI]: 1.33 [1.16, 1.52]). However, the significance in association between 8 

RPS6KB1 and ACD based on PFDR attenuated after excluding APOE ε4 carriers (PFDR = 0.961; 9 

HR [95% CI]: 1.28 [1.08, 1.50]). After excluding other ethnic groups, KIM1 was additionally 10 

associated with ACD (PFDR = 0.027; HR [95% CI]: 1.32 [1.15, 1.53]). No evidence was found 11 

for any sex differences in the protein-dementia associations when sex was fitted as an 12 

interaction term in the Cox models (all PFDR for interaction > 0.05). 13 

When assessed by dementia subtypes, 89 incident AD and 41 cases of VAD were documented. 14 

After full adjustment, no protein was found to be significantly associated with AD indicated by 15 

PFDR < 0.05 (Supplementary Fig. 11). MMP12 was found to be associated with VAD (PFDR = 16 

0.046; HR [95% CI]: 2.06 [1.41, 2.99]) (Supplementary Fig. 12). Albeit being non-significant 17 

after FDR correction, of the proteins significantly associated with ACD, based on nominal 18 

statistical significance (denoted as Puncorrected < 0.05), RPS6KB1 was associated with AD 19 

(Puncorrected = 0.006; HR [95% CI]: 1.29 [1.07, 1.55]); and NEFL was associated with VAD 20 

(Puncorrected = 0.001; HR [95% CI]: 1.98 [1.31, 2.99]). 21 

For predicting incident ACD, plasma NEFL and RPS6KB1 parsimonious models yielded 22 

modest Area Under the Receiver Operating Characteristic Curve (AUC) values [95% CI] of 23 

0.787 [0.757, 0.815], and 0.609 [0.571, 0.647], respectively (Fig. 2). We also evaluated the 24 

performance of these two plasma proteins in combination with other measures, including 25 
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demographic predictors (age, sex, ethnicity, education), APOE ε4 status, and memory score (a 1 

combined test score of immediate- and delayed-recall). When NEFL was combined with these 2 

predictors, the model achieved an accuracy of AUC [95% CI] = 0.866 [0.840, 0.888]. 3 

Comparatively, when RPS6KB1 was combined with other predictors, the model achieved a 4 

comparable accuracy of AUC [95% CI] = 0.866 [0.842, 0.891]. NEFL and RPS6KB1 in 5 

combination with all the other predictors yielded AUC [95% CI] = 0.871 [0.845, 0.894]. 6 

The XGBoost models revealed that age (mean |SHAP| = 0.047) and memory score (mean 7 

|SHAP| = 0.017) were the most important features contributing to the prediction ACD onset. 8 

Additionally, the protein markers RPS6KB1 (mean |SHAP| = 0.009) and NEFL (mean |SHAP| 9 

= 0.008) emerged as the most prominent protein markers in predicting ACD (Fig. 3). The SHAP 10 

plot also illustrated that individuals with elevated levels of RPS6KB1 were more predisposed 11 

to developing ACD, while those with lower levels were more likely to remain ACD-free. 12 

 13 

Analysis 2: Protein-dementia associations in the UK Biobank validation cohort 14 

Based on the results from the main, sensitivity, and dementia subtype analyses conducted in 15 

ELSA discovery cohort, all identified proteins were selected for further validation analyses 16 

using proteomics data from UK Biobank validation cohort. However, RPS6KB1 was not 17 

assayed in the UK Biobank. 18 

In the UK Biobank, which included 52,745 participants with proteomics assayed and without 19 

dementia at study baseline (53.9% women, 93.3% white ethnicity), the mean age was 56.8 20 

years (SD = 8.2) (Supplementary Table 1). UK Biobank participants with proteomics assayed 21 

were, on average, younger than participants in ELSA. Over a median of 13.7 years (min – max: 22 

0.03 – 16.8 years) of follow-up, a total of 1,506 incident ACD, 732 incident AD, 281 incident 23 

VAD, and 111 incident frontotemporal dementia (FTD) cases were recorded. 24 
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Using the same adjustment strategy for the Cox regression models in ELSA, NEFL was 1 

replicated in the UK Biobank for ACD (PFDR = 1.02 × 10-81; HR [95% CI]: 1.87 [1.75, 1.99]). 2 

NEFL was also associated with AD (PFDR =1.89 × 10-35; HR [95% CI]: 1.81 [1.65, 1.99]), VAD 3 

(PFDR = 1.59 × 10-17; HR [95% CI]: 1.90 [1.64, 2.19]), and FTD (PFDR = 1.10 × 10-21; HR [95% 4 

CI]: 2.97 [2.30, 3.70]) (Fig. 4; Supplementary Table 2). KIM1 was replicated for ACD (PFDR 5 

=3.15 × 10-4; HR [95% CI]: 1.13 [1.06, 1.20]); and was also associated with AD (PFDR = 0.077; 6 

HR [95% CI]: 1.11 [1.02, 1.21]), and VAD (PFDR = 1.13 × 10-6; HR [95% CI]: 1.44 [1.25, 7 

1.66]). MMP12 was replicated for VAD (PFDR = 6.85 × 10-5; HR [95% CI]: 1.36 [1.18, 1.56]) 8 

and it was also significantly associated with ACD (PFDR = 2.00 × 10-6; HR [95% CI]: 1.17 9 

[1.10, 1.24]). EDA2R was replicated for ACD (PFDR = 3.18 × 10-13; HR [95% CI]: 1.31 [1.22, 10 

1.40]); and was also associated with AD (PFDR = 6.06 × 10-5; HR [95% CI]: 1.25 [1.13, 1.39]), 11 

and with VAD (PFDR = 0.001; HR [95% CI]: 1.34 [1.15, 1.58]). 12 

 13 

Analysis 3: Two-sample bi-directional MR 14 

We then assessed the potential causal relationships between the circulating protein 15 

concentration, identified as significant based on the analyses described above, in relation to 16 

dementia outcomes, using two-sample bi-directional MR. Summary statistics for genetic 17 

variants associated with the circulating protein levels, protein quantitative trait locus (pQTL), 18 

that is also associated with dementia in GWAS were used to infer causality. Since RPS6KB1 19 

was not assayed in the UK Biobank, MR analyses were therefore conducted for NEFL, KIM1, 20 

EDA2R, and MMP12. 21 

For the GWAS used for dementia outcomes, three separate GWAS for AD (denoted as Kunkle 22 

2019, Bellenguez 2022, FinnGen 2023), one GWAS for ACD (FinnGen 2023), and one GWAS 23 

for VAD (FinnGen 2023) were used. 24 
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In the forward direction MR (circulating protein concentration → dementia), there was 1 

evidence of a potential causal link from circulating EDA2R to AD (FinnGen 2023) (coefficient 2 

(β) [standard error (se)] = 0.259 [0.096], P = 0.007, based on the inverse-variance weighted 3 

(IVW) method), and ACD (β [se] = 0.232 [0.110], P = 0.035, based on IVW) (Fig. 5, 4 

Supplementary Table 3). However, these findings were less robust when methods such as MR-5 

Egger were applied, suggesting the presence of horizontal pleiotropy.  6 

MR analyses in the backward direction (dementia → circulating protein concentration) 7 

supported AD (Bellenguez 2022) ((β [se] = 0.056 [0.014]; P = 1.081 × 10-4, based on IVW), 8 

AD (FinnGen 2023) (β [se] = 0.033 [0.015]; P = 0.024, based on IVW), and VAD (β [se] = 9 

0.036 ([0.014]; P = 0.008, based on maximum likelihood) as cause of altered NEFL abundance 10 

(Fig. 5, Supplementary Table 3). Furthermore, there was evidence supporting a causal link 11 

between AD (Kunkle 2019) and MMP12, demonstrated by MR-Egger, weighted median, and 12 

weighted mode methods (β [se] = 0.027 [0.012], P = 0.043; β [se] = 0.025 [0.012], P = 0.037, 13 

and β [se] = 0.026 [0.012], P = 0.037, respectively). There was evidence suggesting that AD 14 

(FinnGen 2023) (β [se] = 0.013 [0.049], P = 0.007 (based on IVW)), ACD (β [se] = -0.032 15 

[0.012], P = 0.007 (based on IVW)), and VAD (β [se] = -0.036 (0.012), P = 0.003 (based on 16 

weighted median)) might have a causal link to altered EDA2R abundance. 17 

 18 

Analysis 4: Two sample drug target MR (cis-MR) 19 

The instrument selection for drug target MR (cis-MR) relies on single nucleotide 20 

polymorphisms (SNPs) within or near the gene encoding region that regulates the protein of 21 

interest. However, the encoding region of EDA2R is located within the X chromosome, which 22 

precluded the analysis of drug target MR on EDA2R, as the sex chromosomes were excluded 23 

from GWAS summary statistics. Cis-MR was conducted for NEFL, KIM1, and MMP12. 24 
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In drug target MR, there was no causal evidence for any of the protein-dementia relationships 1 

(Fig. 5, Supplementary Table 4).  2 

In sensitivity analysis using a less stringent instrument selection approach, results were largely 3 

consistent with the main analysis. There was some evidence indicating a causal relationship 4 

between KIM1 and AD (FinnGen 2023) (β [se] = -0.102 [0.041], P = 0.037) and ACD (and β 5 

[se] = -0.094 [0.037], P = 0.036) based on MR-Egger.  6 

 7 

Analysis 5: Enrichment analysis 8 

In Fig. 6 (also depicted in Supplementary Table 5), the enrichment analyses revealed several 9 

biological pathways potentially implicated for the identified proteins (NEFL, RPS6KB1, 10 

KIM1, EDA2R, and MMP12), including the immune system, cancers, and insulin signaling. 11 

Tissue expression analysis showed expression in the brain for NEFL and in the kidney for 12 

KIM1. Notably, one drug, LY2584702, which is a selective, adenosine triphosphate (ATP)-13 

competitive p70S6K inhibitor, has been investigated in clinical trials for the treatment of renal 14 

cell carcinoma, metastases, neoplasm, and neuroendocrine tumors – where RPS6KB1 was 15 

shown to be implicated in the mechanisms of action of the drug. 16 

Furthermore, upon searching the Open Targets platform for the identified proteins, we 17 

identified ten known small molecule drugs in clinical trials (including LY2584702) that are 18 

linked to two proteins (RPS6KB1 and MMP12), targeting various cancers, chronic hepatitis C 19 

infection, and chronic obstructive pulmonary disease (Supplementary Table 6). 20 

 21 

DISCUSSION 22 

Through a broad proteomics study within the ELSA cohort, encompassing 276 proteins across 23 

3,249 participants, we identified key plasma proteins linked to an elevated risk of incident ACD 24 

(NEFL and RPS6KB1) and vascular dementia (MMP12), based on fully adjusted models. 25 
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Secondary findings from minimally adjusted models and sensitivity analyses revealed EDA2R 1 

and KIM1 as additional significant markers. NEFL and RPS6KB1 individually displayed 2 

moderate predictive accuracy for ACD risk (AUC = 0.787 and 0.609, respectively), which 3 

yielded an AUC of 0.871 when combined with demographic, genetic, and cognitive factors. 4 

Notably, the XGboost machine learning algorithm further underscored RPS6KB1 and NEFL 5 

as the most important protein features in predicting ACD onset. These discoveries from ELSA 6 

were robustly replicated in the UK Biobank, where NEFL, MMP12, KIM1, and EDA2R were 7 

significantly associated with various ACD and dementia subtypes, including AD, VAD, and 8 

FTD. Furthermore, employing diverse MR approaches, several causal relationships were 9 

observed between AD and VAD with NEFL, AD with MMP12, and between AD, ACD, VAD, 10 

with EDA2R in the reverse direction. There was no evidence supporting causal relationships 11 

between proteins and dementia from cis-MR analyses. 12 

Elevated NEFL were found to be associated with an increased risk of ACD in ELSA, and with 13 

ACD, AD, VAD, and FTD in the UK Biobank. Consistently, a previous study from the UK 14 

Biobank ranked NEFL as the most important protein associated with future dementia events 15 

out of 1463 protein markers.[16] NEFL is a marker of axonal injury,[19, 20] and is implicated 16 

in several biological mechanisms related to dementia,[21, 22] including 17 

neurodegeneration,[23, 24] inflammation,[25] central nervous system (CNS) injury,[26-28] 18 

and atherosclerosis.[29] It is a well-established (non-specific) marker of neurodegenerative 19 

diseases. While NEFL was found in our study to be causally linked to dementia based on the 20 

MR findings, the strongest indication was in the backwards direction, which points toward its 21 

role as a manifestation of prodromal dementia and anomalies in the brain, rather than a cause 22 

of dementia. This underscores the value of NEFL as an important diagnostic and early 23 

identification marker, as also demonstrated by the prediction models. It should be noted that 24 

the inconsistencies in MR findings from the current study across various AD GWAS could stem 25 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.04.24308415doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308415


12 
 

from the fact that the chosen genetic variant serving as the instrumental variable might exert a 1 

varied impact on the outcome within the represented population. Such differences may arise 2 

from variations in genetic backgrounds, environmental influences, or other population-specific 3 

factors. 4 

RPS6KB1, functions as a serine/threonine-protein kinase, operating downstream of 5 

phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling in 6 

response to growth factors and nutrients,  promoting cell proliferation, growth, and progression 7 

through the cell cycle.[30] The mTOR complex 1 (mTORC1) signaling was found in a previous 8 

study to be implicated in the biological aging process,[31] such that the inhibition of mTOR 9 

may extend lifespan given that the mTOR activity becomes abnormally high with age.[31] In 10 

the nervous system, the mTOR pathway is implicated in the regulation of synaptic remodeling 11 

and long term potentiation.[32-35] Importantly, mTOR plays a crucial role in autophagy 12 

regulation in neurons,[35, 36] and the mTOR/p70S6K axis is shown to be essential in the early 13 

phases of plasticity for synaptic modifications and the formation of enduring memory.[37] 14 

Previous analyses of the ARIC study similarly highlighted the importance of autophagy 15 

signaling pathways in the two decades before dementia onset.[10] Interestingly, our sensitivity 16 

analysis which excluded APOE ε4 carriers observed an attenuation in association between 17 

RPS6KB1 and dementia after considering multiple testing. Previous literature highlighted the 18 

mechanisms affected by APOE ε4,[38] such that the presence of  APOE ε4 may be necessary 19 

for the overactivation in mTOR pathway which subsequently lead to tau hyperphosphorylation 20 

and reduced Aβ clearance.[39] At a lower expression level, RPS6KB1 can facilitate the growth 21 

of damaged axons resulting from CNS injury.[40] In AD patients, there is a down-regulation 22 

of RPS6KB1,[40] and RPS6KB1 has also been implicated in the etiology of other complex 23 

neurological diseases including depression and autism.[41] Transcriptomic exploration has 24 

revealed the central role of RPS6KB1, and alterations in its co-expression occur during the 25 
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initial stages of AD, which highlights its potential as a biomarker for the early diagnosis of 1 

AD.[42] Several small clinical trials of rapamycin are underway for investigating age-related 2 

diseases including AD,[31] with primary outcomes assessing the effects on cognitive 3 

performance, and biomarkers of aging.[31] From the Proteomics Drug Atlas, one drug 4 

(LY2584702) was found to target RPS6KB1, which is a highly selective adenosine triphosphate 5 

competitive inhibitor against p70S6 Kinase. However, the clinical trials associated with 6 

LY2584702 mostly target cancers. Further explorations are therefore needed to decipher the 7 

relationship between RPS6KB1 and the protein’s pharmacological properties. 8 

Matrix metalloproteinases (MMPs) belong to a multigenic family of membrane-bound or 9 

secreted zinc-containing endopeptidases, which indirectly modulate the cellular processes 10 

through activation and inactivation of signaling molecules such as trophic factors cytokines, 11 

and receptor.[43, 44]  MMPs play important roles in cell proliferation and death, 12 

neuroinflammation, neurodegeneration, and glial reactivity,[45] and are linked to their 13 

proteolytic disruption action on the blood-brain barrier.[46] Based on experimental models, 14 

Aβ40 contribute to the changes in blood-brain barrier (BBB) permeability, and increased 15 

expression of MMPs in transgenic human amyloid precursor protein (hAPP)-overexpressing 16 

mice, in turn compromises BBB integrity.[47] There is also an increased expression of MMPs 17 

in cerebrospinal fluid of AD patients.[48] Selective inhibitors for MMP12[49] was shown to 18 

reduce inflammation and delay of atherosclerosis progression.[50, 51] While observational 19 

studies demonstrated an association between high levels of plasma MMP12 and recurrent 20 

cardiovascular disease,  MR yielded the inverse finding, such that genetic variants associated 21 

with higher MMP12 levels are associated with decreased risks of coronary artery disease and 22 

large artery atherosclerotic stroke, discouraging potential clinical trials of MMP12 23 

inhibitors.[3, 52] For dementia, the associations between MMP12 and VAD risk in the UK 24 

Biobank, and MMP12 and AD risk in the ARIC cohort was similarly highlighted.[10, 16] At 25 
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an elevated dosage, this medication can penetrate the BBB and manifest an inhibitory effect on 1 

metalloproteinase activity within the brain,[53] and was shown to decrease some seizure-2 

related parameters.[53]  3 

In our study, although the significant findings from minimally adjusted models for KIM1 and 4 

EDA2R, attenuated after full adjustments, results from the MR analyses showed some possible 5 

causal links between these proteins and dementia. We acknowledge however that some of these 6 

MR results may be biased by horizontal pleiotropy with the proteins affecting multiple 7 

diseases,[54] possibly via immune, renal, and metabolic disease pathways,[54-56] which 8 

subsequently contribute to the risk of dementia.[54] There was also evidence from previous 9 

studies indicating higher levels of EDA2R were associated a smaller total brain volume, 10 

smaller grey matter volume, and less normal-appearing white matter volume.[55] 11 

The current study exhibits robustness through several key strengths. Firstly, it draws upon two 12 

extensive population-based cohorts with prolonged follow-up, employing data-driven 13 

proteome-wide methods that yield high-throughput and reliable proteomics data. The selection 14 

of the protein panel in ELSA is also noteworthy for its focused curation on dementia-related 15 

markers, enhancing the study's precision in investigating associations with dementia risk in a 16 

nationally representative sample of older adults. The findings through the inclusion of the UK 17 

Biobank cohort encompassing a broader selection of proteins enhance the validity of our 18 

results. Both cohorts are well-characterized longitudinal cohorts, which enabled adjustment for 19 

wide range of factors. Furthermore, our study benefits from applying a robust and 20 

comprehensive dementia algorithm in ELSA, which integrated information from various 21 

sources, bolstered by details on medication use and informant-solicited information, which has 22 

been reported to correlates better with objective cognitive performance than self‐report alone 23 

as well as medication which particularly captured those with younger onset dementia,[57] 24 

allowing for accurate identification of incident dementia cases and the exclusion of prevalent 25 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.04.24308415doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308415


15 
 

cases. Another significant strength lies in our approach to assessing protein-dementia 1 

associations through a range of established methods for evidence triangulation. Additionally, 2 

the utilization of Olink antibody-based PEA is recognized for its superior specificity in 3 

proteomics assays.[17] The integration of proteogenomic in MR analyses was an additional 4 

strength.[12] 5 

Some limitations should be acknowledged. First, several circulating protein markers potentially 6 

relevant to dementia, for example, proteins such as GFAP and GDF-15, were not assayed in 7 

ELSA. There is also limited specification, or a lack of protein measurements from the A/T/N 8 

classification framework,[58] such as beta-amyloid, p-tau217 and p-tau181. Third, another 9 

source of limitation is that the algorithm used for dementia ascertainment lacked information 10 

extracted from primary care data, and uncertainties exist ascertaining dementia subtypes. 11 

Nevertheless, it is important to note that AD and VAD pathology often co-exist on a population 12 

level, and many dementia patients exhibit mixed neuropathology.[59] Fourth, it is important to 13 

note that we lacked external validation cohorts for RPS6KB1. Lastly, there are inherent 14 

assumptions in MR analyses, and for drug target MR specifically, genetics might not directly 15 

inform on specific pharmacological aspects of drug exposure. 16 

In conclusion, in our proteome-wide study from two UK-based large-scale population-based 17 

cohorts, we demonstrated the utility of data-driven proteomics analyses in identifying novel 18 

targets for dementia. MR analyses leveraging extensive GWAS data substantiated some of 19 

these protein-dementia relationships with causal evidence. Looking forward, given the cost-20 

effectiveness and minimal invasiveness of peripheral blood-based biomarkers, developing a 21 

panel of blood-based protein markers could greatly enhance dementia diagnostics in routine 22 

clinical practice. Integrating large-scale population-based proteomics with other omics, such 23 

as genomics,[12] offers immense potential for deeper biological insights into diseases. 24 

Additionally, several proteins identified in our study emerge as promising candidates for future 25 
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clinical trials, addressing the urgent need for more treatment options amid the growing global 1 

burden of dementia. 2 

 3 

ONLINE METHODS 4 

ELSA discovery cohort study population 5 

ELSA is a nationally representative sample of men and women aged 50 years and over living 6 

in the community in England. Data collection started in 2002-2003, with participants re-7 

interviewed every two years. Details of survey design are available elsewhere.[60] Blood 8 

sample collection in ELSA took place for the first time in wave 2 nurse visit in 2004-2005 and 9 

subsequently in every four-year interval. The blood collected from wave 4 nurse visits in 2008-10 

2009 were used for the proteomics profiling (thus forming the baseline sample of this study), 11 

thereby affording a unique temporal perspective that allows for the exploration of the 12 

relationship between protein concentrations and ADRD over a span exceeding 10 years. The 13 

following exclusion criteria were applied: 1) participants who died within 2 years of the wave 14 

4 nurse visit; or 2) participants lost to follow-up (missing at ≥ 2 waves). A total of 3,305 15 

available plasma samples from wave 4 were retrieved for the proteomics profiling. 16 

 17 

Measurement of plasma proteins in ELSA 18 

The proteomics dataset in ELSA was curated with a specific focus on investigating the 19 

underlying biological processes associated with ADRD and cognitive decline. The 20 

comprehensive assays encompassed an extensive array of cardiovascular and inflammatory 21 

markers, in addition to markers integral to neurological processes such as axon guidance, 22 

neurogenesis, and synapse assembly. These analyses were conducted utilizing the Olink 23 

proteomics platform, the antibody based Olink PEA technology.[61] 24 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.04.24308415doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308415


17 
 

We used Olink Target 96 Neurology, Cardiovascular II and Neurology Exploratory arrays in 1 

these analyses. The cardiovascular array includes major inflammatory and cardiometabolic 2 

pathways relevant to dementia risk, while the neurology array has been designed to include 3 

proteins implicated in brain aging. Frozen samples were shipped to Olink for aliquoting, 4 

plating, and assays. These assays include a built-in quality control based on four internal 5 

controls that are spiked into all samples, and external controls. 6 

Following stringent data quality control (Supplementary Methods), proteins were measured 7 

across three panels containing 276 proteins. Proteins were presented as NPX values, the 8 

arbitrary unit on log2 scale from Olink proteomics. 9 

 10 

Covariates assessment in ELSA 11 

Baseline (at wave 4, 2008-2009) sociodemographic and socioeconomic covariates included age 12 

(in years), biological sex (male vs female) and ethnicity (white vs other ethnic groups) were 13 

self-reported. The age that participants left formal education was coded as follows: none, age 14 

14 or under, 15, 16, 17, 18, 19 or over. Smoking status was self-reported and was categorized 15 

as never, former, and current smoker. Physician-diagnosed cardiovascular disease (heart attack, 16 

angina, or heart failure) was self-reported. Depression was also self-reported. BMI was 17 

calculated using participant’s height and weight measured during the wave 4 nurse visit. Three 18 

measurements were taken of systolic and diastolic pressure on the respondent’s right arm while 19 

they were seated, and the average of the three measurements was used. LDL cholesterol was 20 

assayed using the blood sample collected by the nurse. The APOE genotype in ELSA was 21 

derived from the analysis of two specific SNPs, namely rs7412 and rs429358. To determine 22 

these genotypes, two TaqMan assays from Assay-On-Demand, a product of Applied 23 

Biosystems and Gene service Ltd in Cambridge, UK, were employed. These assays were 24 

conducted on a 7900HT analyzer, manufactured by Applied Biosystems, and the genotypes 25 
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were determined using the Sequence Detection Software (version 2.0), also from Applied 1 

Biosystems. The quality control of genome-wide genotyping has been described 2 

elsewhere.[62] Episodic memory was assessed at wave 4, evaluated through the immediate and 3 

delayed recall tasks of the Consortium to Establish a Registry for AD (CERAD). Participants 4 

were presented with a ten-word list and tasked with recalling it both immediately and after a 5 

delay. The scores from these tests were then aggregated to compute a memory score. 6 

 7 

Dementia algorithm in ELSA 8 

The standardized algorithm for identifying dementia cases relied on five primary data sources: 9 

1) coded information extracted from interviews across all waves using participant self-reported 10 

physician diagnosis of AD and dementia; 2) caregivers who completed a modified short-form 11 

Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE); 3) medication data 12 

collected during nurse visits (wave 6, 8, and 9); 4) linked data from hospital admissions (NHS 13 

Hospital Episode Statistics) and 5) mortality records (Office for National Statistics Mortality 14 

Statistics). All data sources were integrated into the algorithm development process. 15 

Regarding self-reported diagnosis of dementia, during each interview, participants were asked 16 

whether a medical professional had informed them of a diagnosis of AD, dementia, organic 17 

brain senility, or any other serious memory condition. A positive response indicates the 18 

presence of dementia. 19 

Caregivers completed a modified short-form IQCODE on behalf of individuals unable to 20 

respond independently. Caregivers (acting as proxies) were instructed to assess the current 21 

functional performance of the participant, comparing it to that of two years prior, instead of the 22 

standard 10-year interval. Consistent with prior research, individuals with an IQCODE score 23 

exceeding 3.38 were classified as having dementia.[63] 24 
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Medication data, encoded for analysis, was collected during nurse visits in waves 6 (2012-1 

2013) and wave 8 (2016-2017), and wave 9 (2018-2019). In waves 8 and 9, two mutually 2 

exclusive subsets of the sample underwent nurse visits. As specified in the British National 3 

Formulary (BNF), we specifically considered four common drugs for dementia: Donepezil 4 

hydrochloride (0411000D0), Galantamine (0411000F0), Memantine hydrochloride 5 

(0411000G0), and Rivastigmine (0411000E0). 6 

The 10th revision of the International Statistical Classification of Diseases and Related Health 7 

Problems (ICD-10) was employed to extract dementia-related outcomes from the National 8 

Health Service (NHS) Hospital Episode Statistics (HES) data (see Supplementary Table 7A for 9 

ICD-10 codes used for ascertaining all-cause dementia); HES data covered the period between 10 

March 1997 and January 2018. Mortality statistics provided by the Office for National Statistics 11 

(ONS) were accessible for the period between April 2002 and April 2018. The methodology 12 

used to determine ACD using the mortality-linked data mirrored the approach taken with HES 13 

data based on ICD codes. 14 

Dementia subtypes, specifically AD and VAD, were also derived (Supplementary Table 7B). 15 

In the case of AD, all four data sources were utilized: self-reported physician-diagnosis of AD 16 

during each study interview, medication usage based on BNF from nurse visits, and the 17 

presence of ICD-10 codes in HES and mortality data. For ascertaining VAD, ICD-10 codes 18 

from HES and mortality data were used. 19 

The computation of time-to-event for dementia cases depended on the data source where the 20 

event of dementia was first recorded. The date of censoring for non-dementia cases varied 21 

across participant groups. Details can be found in the Supplementary Methods. 22 

 23 

UK Biobank for protein validation 24 
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UK Biobank is a large population-based cohort from the UK with over half a million 1 

participants aged 40 – 69 years, recruited between 2006 and 2010.[18] The UK Biobank 2 

Pharma Proteomics Project (UKB-PPP) is a consortium of 13 biopharmaceutical companies 3 

which funded the proteomic profiling on blood plasma samples. Proteomics profiling was 4 

conducted in 54,219 participants at study baseline, with 2,923 unique proteins assayed using 5 

the antibody based Olink Explore 3072 PEA, across eight Olink panels (Cardiometabolic I, 6 

Cardiometabolic II, Inflammation I, Inflammation II, Neurology I, Neurology II, and Oncology 7 

I, Oncology II). Consortium members opted for samples enriched in specific diseases of 8 

interest, while the remaining population was randomly sampled using a stratified approach 9 

based on age, sex, and recruitment center.[18] The current analysis excluded those with 10 

dementia at study baseline, which yielded a total sample of 52,745 individuals. 11 

We have attempted, where possible, to derive similar variables for both the ELSA and biobank 12 

cohorts with consideration of the level of missingness, to maximize comparability. Participant’s 13 

age was derived based on date of birth and date of attending an initial assessment center. 14 

Participant’s biological sex was acquired from central registry at recruitment and contains a 15 

mixture of the sex recorded by the NHS and self-reported sex. Ethnicity was self-reported and 16 

categorized into White, Mixed, Asian, or Asian British, and Black or Black British. Highest 17 

qualification was determined by the answers provided to the question: "Which of the following 18 

qualifications do you have?", with options included: College or University degree; NVQ 19 

(National Vocational Qualification) or HND (Higher National Diploma) or HNC (Higher 20 

National Certificate) or equivalent; other professional qualifications e.g.: nursing; A levels/AS 21 

levels; O levels/GCSEs (General Certificate of Secondary Education) or equivalent; CSEs 22 

(General Certificate of Secondary Education) or equivalent; or none of the above. Smoking 23 

status was self-reported and constructed using information about the current/past smoking 24 

status of the participant and categorized as never, former, and current smoker. Self-reported 25 
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medical conditions were solicited through the touchscreen questionnaire as well as during 1 

verbal interview conducted by a trained nurse, and the presence of cardiovascular disease (heart 2 

attack, angina, or heart failure) were defined if the participant reported any of these conditions. 3 

Depression was affirmatory if the participant confirmed to have any of probable recurrent 4 

major depression (severe), probable recurrent major depression (moderate), or single probable 5 

major depression episode, if reported on the questionnaire or nurse-administered verbal 6 

interview. BMI was constructed from height and weight measured during the initial assessment 7 

center visit using an Omron device. Two automatic readings of blood pressure were taken a 8 

few moments apart, using an Omron HEM-7015IT digital blood pressure monitor, and the 9 

average of the readings were used. LDL cholesterol was measured by enzymatic protective 10 

selection analysis on a Beckman Coulter AU5800 from the blood sample collected at 11 

recruitment. 12 

ACD, AD, VAD and FTD were defined by the UK Biobank dementia algorithm.[64] The last 13 

date of censoring was 31st December 2022 (last date of linkage to death and inpatient records). 14 

Baseline dementia was removed. 15 

 16 

Statistical analysis 17 

Analysis 1: Protein-dementia associations in the ELSA discovery cohort 18 

We used Cox proportional hazards regression models to evaluate the associations between each 19 

plasma protein NPX value (scaled) and incident dementia using the ‘survival’ R package. Rank-20 

based inverse normal transformation was first applied to the protein levels and scaled to have 21 

a mean of 0 and standard deviation of 1 prior to all analyses.[65] 22 

All proteins had ≤ 6% missing. Missing protein measurements were imputed using the K-23 

nearest neighbor (k = 57) imputation using the ‘impute’ R package,[66] which works by 24 

identifying the nearest 57 individuals defined using Euclidean distances and imputing with 25 
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their medians, with k calculated from the square root of the total sample size (N = 3,249). 1 

Missingness was imputed for proteomics and clinical data independently, where clinical data 2 

was imputed using the Multiple Imputation by Chained Equations procedure (‘mice’ R 3 

package),[67] with 30 imputed datasets and 10 iterations. 4 

Based on the normalized and imputed protein data, we first assessed the protein-dementia 5 

associations without any model adjustments by pooling the estimates from all 30 imputed 6 

datasets. The models were further adjusted for age, sex, and ethnicity for the minimally-7 

adjusted model; and adjusted for age, sex, ethnicity, education, smoking status, depression, 8 

cardiovascular disease, BMI, systolic blood pressure, and LDL cholesterol for the fully-9 

adjusted models for each protein NPX value associated with the risk of incident dementia, with 10 

PFDR set at a cut-off of 0.05, this translates to an uncorrected p-value of 0.00018 (with 276 tests 11 

for significance for 276 proteins). All p-values were two-sided. FDR-corrected p-values 12 

(denoted as PFDR) were reported and displayed using volcano plot, accompanying the HR. 13 

The Cox proportional hazard regression analyses were repeated for AD and VAD as the 14 

outcome of interest separately. 15 

A series of sensitivity analyses were conducted using the same adjustment methods as the main 16 

Cox regression for incident ACD, by excluding the following: 1) dementia cases that occurred 17 

during the first year of follow-up to reduce the possibility of reverse causation bias; 2) other 18 

ethnic groups other than white ethnicity; 3) APOE ε4 carriers; and 4) participants <60 years of 19 

age. We also conducted competing risk of death using Fine-Gray regression models[68] with 20 

the same set of covariate adjustments, given that death may preclude dementia from occurring. 21 

The competing risk models, which estimated sub-distribution HRs, were conducted for incident 22 

ACD accounting for all-cause mortality as a competing risk, incorporating time to event 23 

data.[68, 69] Lastly, sex differences in the protein-dementia associations were assessed by 24 

fitting sex as an interaction term in the Cox regression models.[70] 25 
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Next, receiver operating characteristic (ROC) analyses were conducted to assess the precision 1 

of the identified proteins from the fully adjusted Cox regression models in predicting incident 2 

ACD. These analyses were performed independently and in combination with additional 3 

factors including age, sex, ethnicity, education, APOE ε4 status, and memory score. To evaluate 4 

the performance of the Cox models, bootstrapping was performed to assess the stability of the 5 

AUC estimates. A total of 2000 bootstrap resamples were generated. Bootstrapping involves 6 

resampling with replacement from the original dataset to estimate the sampling distribution of 7 

a statistic. We used the bootstrapped samples to compute 95% CI for the AUC of each model, 8 

utilizing the R packages ‘caret’[71], ‘boot’[72] and ‘pROC’.[73] The mean AUC value across 9 

all bootstrap resamples was calculated to estimate the overall predictive performance of the 10 

survival model. 11 

We utilized eXtreme Gradient Boosting (XGBoost), an advanced decision-tree ensemble 12 

machine learning algorithm within a gradient boosting framework, to identify the most 13 

important features predictive of future ACD onset.[74] To ensure comprehensive analysis and 14 

validation, we incorporated all available protein, demographic, and clinical predictors into our 15 

models, using imputed data to handle any missing values. The XGBoost model feature 16 

importance scores were used to select key predictors. To explain the outputs of our XGBoost 17 

models and to provide interpretability to the feature importance rankings, we employed 18 

SHapley Additive exPlanations (SHAP) values. SHAP values offer a consistent and 19 

theoretically sound method for interpreting the contributions of individual features to the 20 

model’s predictions.[75] Furthermore, this process of evidence triangulation with XGBoost 21 

and SHAP values was conducted to validate and complement the findings from our Cox 22 

regression models. By comparing and cross validating, the results from these two different 23 

methodological approaches, we aimed to enhance the robustness and reliability of our 24 

predictive model for future ACD onset. 25 
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 1 

Analysis 2: Protein-dementia associations in the UK Biobank validation cohort 2 

The significant proteins from the main and sensitivity analyses based on ELSA were then 3 

validated using the UK Biobank proteomics data, if assayed. The reason for choosing ELSA as 4 

the discovery cohort and UK Biobank as the validation cohort is that ELSA’s target panels were 5 

specifically designed to investigate proteomic signatures related to cognitive decline and 6 

dementia, resulting in a more focused selection of proteins. In contrast, UK Biobank offers a 7 

broader protein selection, allowing for effective validation. 8 

The UKB-PPP proteomics samples underwent sample selection, processing, and quality 9 

control procedures.[18] Missing protein measurements for the remaining individuals were 10 

imputed using K-nearest neighbor imputation (k = 230), the protein levels were normalized 11 

and scaled akin to the analyses in ELSA proteomics data described above.[65] Clinical data 12 

was imputed with 30 imputed datasets and 10 iterations, and was imputed separately to the 13 

proteomics data. 14 

Data was processed and analyzed using the R Studio Workbench on the UK Biobank Research 15 

Analysis Platform, under application No. 71702. 16 

 17 

Analysis 3: Two-sample bi-directional MR 18 

MR pertains to employing genetic variants to explore causal connections regarding the 19 

influence of modifiable exposures on a range of outcomes. Anchored in Mendel's laws of 20 

inheritance and instrumental variable estimation techniques, MR principles facilitate the 21 

inference of causal effects, even in the presence of unobserved confounding factors. MR studies 22 

are often compared to naturally occurring randomized trials, resembling a randomized control 23 

trial where genetic factors are inherently assigned at random by nature.[76] The MR approach 24 

rests on three key assumptions: 1) the instruments are correlated with the exposure; 2) the 25 
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instruments are linked to the outcome solely through the studied exposure (exclusion restriction 1 

assumption); and 3) the instruments are independent of other factors influencing the outcome 2 

(independence assumption). 3 

To infer causality between dementia-associated proteins and AD, ACD, and VAD, we 4 

performed bidirectional two-sample MR, leveraging summary statistics from different GWAS 5 

consortia. For AD, we used GWAS summary statistics derived from three consortia: 6 

(International Genomics of Alzheimer’s Project (IGAP) (Kunkle et al 2019),[77] European 7 

Alzheimer & Dementia Biobank (EADB) consortium (Bellenguez et al 2022),[78] and the 8 

FinnGen 2023 study);[79] For ACD and vascular dementia GWAS were both derived from the 9 

FinnGen 2023 study.[79] Summary details of the dementia GWAS used were included in 10 

Supplementary Table 8. 11 

Selection of instruments to proxy for altered protein abundance were derived using pQTL 12 

mapping proteins that identifies genetic associations in participants of European ancestry from 13 

the UK Biobank based on Olink data (https://doi.org/10.7303/syn51364943).[18] The effects 14 

of protein pQTL were standardized to align with the same effect allele. 15 

To ensure the three MR assumptions were not violated, instruments for the exposure were 16 

selected by using association at genome-wide significance (P < 5 × 10−8). SNP with a minor 17 

allele frequency (MAF) < 5% were excluded. linkage disequilibrium (LD) clumping was done 18 

with a window size of 10,000 kilobases [kb] at an R2 threshold of 0.001. In cases where a 19 

requested SNP from the exposure GWAS is not found in the outcome GWAS, a proxy SNP 20 

with a LD coefficient of R2 > 0.8 to the requested missing target SNP were sought as a 21 

substitute, if available, by querying the LDLink web server. LD proxies are determined using 22 

data from the 1000 Genomes European sample. The returned information includes the effect 23 

of the proxy SNP on the outcome, along with details such as the proxy SNP itself, the effect 24 

allele of the proxy SNP, and the corresponding allele for the target SNP. The effect of a SNP 25 
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on an outcome and exposure were then harmonized to be relative to the same allele. We specify 1 

the inference of positive strand alleles by utilizing allele frequencies for palindromes instead 2 

of eliminating palindromic variants. F-statistics were used to assess the SNP-exposure strength 3 

(F > 10). 4 

We first performed the MR in the forward direction (circulating protein concentration → 5 

dementia) on the harmonized effects to estimate the effect of genetically proxied protein 6 

abundance on genetic liability to the dementia outcome of interest to be relative to the same 7 

allele. Given the study outcomes were AD and related dementia, variants in the APOE region 8 

(human genome reference builds GRCh38 - chromosome: 19, base pair position: 44,407,913 – 9 

45,408,821) were removed due to its pleiotropic nature and large effect size. We then calculated 10 

the effects for each individual variant by employing a two-term Taylor series expansion of the 11 

Wald ratio. Subsequently, we utilized the weighted delta inverse-variance weighted (IVW) 12 

method to conduct a meta-analysis of individual SNP effects, to estimate the combined effect 13 

of the Wald ratios. Sensitivity analyses included using various MR methods, including MR-14 

Egger, Weighted Median, Maximum Likelihood, Weighted Mode, and leave-one-out 15 

methods.[76] 16 

The same method was then applied to the backward MR (dementia → circulating protein 17 

concentration), with SNPs extracted from the same GWAS as described above, except with 18 

dementia being the exposure data and protein being the outcome. 19 

All analyses were conducted using human genome reference build GRCh38. In instances where 20 

the genome build was based on GRCh37 assembly Hg19, a lift-over process was executed to 21 

convert genome coordinates and annotations to the GRCh38 using a designated alignment. All 22 

MR analyses were conducted using ‘TwoSampleMR’, ‘MendelianRandomization’ and 23 

‘LDlinkR’ R packages.[80] 24 

 25 
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Analysis 4: Two sample drug target MR (cis-MR) 1 

Next, we used a two-sample MR study design, based predominantly on genetic variants located 2 

in or near genes that encode the relevant drug targets, to infer causality from protein 3 

concentration → dementia (cis-MR).[81-84] Cis-MR is considered to be less susceptible to 4 

pleiotropy, and the potential effect of a drug by analyzing the genomic locus encoding protein 5 

targets, which may be informative for drug trial design.[82, 84]  6 

The selection of the primary cis-MR models included SNPs successfully harmonized with the 7 

gene encoding regions, with the flanking region being within 10-kilobase (kB) in either 8 

direction of the start and stop coordinates for the genes, according to Human Genome reference 9 

release GRCh38. LD clumping was then done to remove the excess of most highly correlated 10 

variants at each locus, with R2 threshold set at < 0.001, retaining the SNPs with the strongest 11 

associations with the protein of interest filtered by P < 5 × 10−5. The sensitivity analyses which 12 

took a more liberal approach, selecting valid instruments at the threshold of P < 5 × 10−5 and 13 

clumped at R2 < 0.01. 14 

All analyses were done on human genome reference builds - GRCh38, lift over was performed 15 

from GRCh 37 assembly Hg19 to GRCh 38, using CrossMap 0.7.0 in Python (version 3.12).  16 

Analysis 1 to 4 were done using R Studio (version 4.4.0). 17 

 18 

Analysis 5: Enrichment analysis 19 

Enrichment analysis was conducted by searching open-source databases to further characterize 20 

the identified proteins from the Cox proportional hazard regressions. We employed the 21 

Enrichr,[85] which is a computational method infers knowledge about an input gene set by 22 

comparing it to annotated gene sets that represent existing biological knowledge. It determines 23 

if the input set of genes significantly overlaps with these annotated gene sets. We used the full 24 

set of ELSA proteins as the background gene set, to glean a deeper biological understanding. 25 
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We searched the following bioinformatics databases: Gene Ontology (GO): GO Molecular 1 

Function, GO Biological Process, and GO Cellular Component [86], Kyoto Encyclopedia of 2 

Genes and Genomes (KEGG) [87], Reactome Pathway Database (REACTOME) [88], 3 

Illuminating the Druggable Genome (IDG) [89], Proteomics Drug Atlas (PDA) [90], and 4 

Genotype-Tissue Expression (GTEx) [91]. Statistical significance was indicated if PFDR < 0.05, 5 

considering multiple testing. 6 

Furthermore, we utilized the Open Targets platform (https://www.opentargets.org/) for the 7 

systematic identification of potential therapeutic drug targets among the identified proteins. 8 

[92]  9 
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Figure 1. Volcano plot showing the Hazard ratio (x-axis) and two-sided false discovery rate (FDR)-corrected P values (y-axis) for the association of protein
concentration with incident all-cause dementia using imputed data.

Hazard ratios from Cox Proportional Hazard Regression models adjusted for age, sex, education, race, smoking status, depression, cardiovascular disease, body mass index, systolic blood
pressure, low-density lipoprotein (LDL) cholesterol.

Proteins above the horizontal dotted grey line were significantly associated with incident dementia false discovery rate (FDR)-corrected p-value <0.05.
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Figure 2. Predictive accuracy of NEFL and RPS6KB1, alone or in combination with demographic variables, APOE 4 status, and memory score for all-cause
dementia.

Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curves illustrate the performance of various variable models in predicting the A) incidence of all-cause
dementia. Demographics variables included sex, age, education, and race. Memory score included a combined test score of immediate recall and delayed recall.
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Figure 3. Protein importance ranking using XGBoost decision tree-based machine learning algorithm and SHAP visualization for selected features on all-cause
dementia.

A) SHapley Additive exPlanations (SHAP) values from eXtreme Gradient Boosting (XGBoost) model displaying the selected features. The y-axis indicates the feature names in order of
importance ranked from top to bottom.The x-axis represents the SHAP value, which indicates the degree of change in log odds. The width of the range of the horizontal bars showed the

extent of the contribution to the prediction of all-cause dementia. The color of each point on the graph represents the value of the corresponding feature, with orange indicating high values
and purple indicating low values. The direction on the x-axis indicates the likelihood of developing all-cause dementia towards the right, and likelihood of free from dementia towards the

left. B) Mean absolute SHAP values for each feature derived from XGBoost model.
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Figure 4. Forest Plots for the associations between identified proteins from ELSA and dementia and dementia subtypes validated in the UK Biobank.

Multiple adjusted hazard ratios and 95% confidence intervals from Cox Proportional Hazard Regression models for NEFL, KIM1 (HAVCR1), MMP12, EDA2R and the associations with:
A) all-cause dementia; B) Alzheimer’s disease; C) vascular dementia; D) frontotemporal dementia. All models adjusted for age, sex, education, ethnicity, smoking status, depression,

cardiovascular disease, body mass index, systolic blood pressure, low-density lipoprotein (LDL) cholesterol. P values were false discovery rate (FDR) corrected.
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Figure 5. Two-sample bidirectional Mendelian randomisation and drug target Mendelian randomisation scatter plots for four proteins (NEFL, KIM1 (HAVCR1),
MMP12, EDA2R) in five GWAS for Alzheimer’s disease, all-cause dementia, and vascular dementia.
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Scatter plots for Mendelian randomization (MR) analyses of the causal effect of proteins and dementia in forward and backward directions and drug target cis-MR. Analyses were
conducted using the inverse variant weighted, maximum likelihood, MR-Egger, Weighted median, Weighted mode methods. The slope of each line corresponding to the estimated MR effect

per method.
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Figure 6. Enrichment analysis of the identified proteins.

Enrichment for Gene Ontology (GO) 2023 (GO MF: Gene Ontology Molecular function), Genotype-Tissue Expression (GTEx) 2023, Illuminating the Druggable Genome (IDG) drug
target 2022, Kyoto Encyclopaedia of Genes and Genomes (KEGG) 2021, Proteomics Drug Atlas (PDA) 2023, and Reactome pathways 2022. Significant proteins after FDR correction

derived from Cox proportional hazard regressions in minimally- and fully-adjusted models were fed into Enrichr (https://maayanlab.cloud/enrichr/) for enrichment analysis. The full list
of proteins from ELSA was used as the background gene set.
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