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Abstract

Objective: Large-scale multi-modal deep learning models and datasets have
revolutionized various domains such as healthcare, underscoring the critical role
of computational power. However, in resource-constrained regions like Low and
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Middle-Income Countries (LMICs), GPU and data access is limited, leaving
many dependent solely on CPUs. To address this, we advocate leveraging vec-
tor embeddings for flexible and efficient computational methodologies, aiming to
democratize multimodal deep learning across diverse contexts.
Background and Significance: Our paper investigates the computational effi-
ciency and effectiveness of leveraging vector embeddings, extracted from single-
modal foundation models and multi-modal Vision-Language Models (VLM), for
multimodal deep learning in low-resource environments, particularly in health-
care applications. Additionally, we propose an easy but effective inference-time
method to enhance performance by further aligning image-text embeddings.
Materials and Methods: By comparing these approaches with traditional
multimodal deep learning methods, we assess their impact on computational
efficiency and model performance using accuracy, F1-score, inference time, train-
ing time, and memory usage across 3 medical modalities such as BRSET
(ophthalmology), HAM10000 (dermatology), and SatelliteBench (public health).
Results: Our findings indicate that embeddings reduce computational demands
without compromising the model’s performance, and show that our embedding
alignment method improves the performance of the models in medical tasks.
Discussion: This research contributes to sustainable AI practices by optimizing
computational resources in resource-constrained environments. It highlights the
potential of embedding-based approaches for efficient multimodal learning.
Conclusion: Vector embeddings democratize multimodal deep learning in
LMICs, especially in healthcare. Our study showcases their effectiveness, enhanc-
ing AI adaptability in varied use cases.

Keywords: foundation Models, Efficient Deep Learning, Embeddings, Multimodal
Data

1 Introduction

In the era of data-driven decision-making in healthcare, deep learning has emerged as
a pivotal methodology for extracting meaningful information from the vast amounts
of data from different modalities such as clinical notes, vital signs, lab values, and
medical images, among others. The increase of multimodal data, which integrates
disparate data formats such as text, image, or audio, requires developing sophisticated
computational techniques to process and integrate these heterogeneous data types [1–
3]. This integration, known as multimodal data fusion, leverages mainly deep learning
techniques [4, 5] and is critical for building systems that can interpret complex data
in a manner akin to human cognition, thereby enhancing decision-making processes in
clinical applications [6–13]: with fundus photos [14], Chest X-rays [15], or even public
health applications using remote sensing techniques [16–23].

However, the computational exigencies of such advanced methods pose a formidable
barrier, especially in low-resource settings [24] environments characterized mainly by
limited computational power [25, 26] and medical data scarcity [27–32]. Address-
ing these constraints requires innovative approaches that optimize computational
efficiency without compromising the efficacy of the learning algorithms.
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Vector embeddings represent a promising concept in the domain of data efficiency,
particularly concerning high-dimensional data like images and text. The embeddings
are high-dimensional vectors that encapsulate the essential features of data entities
(e.g., words, or images) in a continuous vector space [33]. By transforming raw data
into a more abstract and computationally manageable form, embeddings facilitate sig-
nificant reductions in the complexity and dimensionality of data, which is paramount
in resource-constrained environments[34].

The concept of foundation models, representing deep learning architectures pri-
marily based on the transformer framework, has garnered significant attention in
recent years [35]. These models exhibit remarkable capabilities across diverse domains,
such as natural language processing (NLP), exemplified by BERT [36], GPT [37], and
LLAMA 2 [38]; as well as Computer Vision with Vision Transformer (ViT) [39], or
DINO v2 [40]; and even multimodal tasks such as Vision Language Models (VLM)
with models like CLIP [41], or BLIP 2 [42]. Leveraging pre-training on extensive
datasets, foundation models offer a versatile starting point for various tasks by pro-
viding pre-learned representations that capture a wide array of data characteristics.
When applied to multimodal data fusion, embeddings extracted from such models can
dramatically lessen the computational load, making it feasible to deploy sophisticated
deep-learning models in low-resource settings.

On the other hand, although the use of foundation models such as computer vision
models, Large Language Models (LLMs), or VLMs provide us with a robust way of
extracting embeddings, we must also take into account that these embeddings may
be biased depending on the distribution of data learned during training, mostly from
overrepresented groups, perpetuating health biases [43]. Liang et al. [44] demonstrated
that the intrinsic structure of deep learning models generates embedding represen-
tations biased to a very small latent space (cone effect). The cone effect generates
representations where the image and text embeddings are distant and confined to a
very small region of the latent space. Liang et al. also demonstrated how modify-
ing the gap between the embeddings of different modalities improves the fairness and
performance of the models [44].

In this paper, we’ll comprehensively examine the computational efficiency gleaned
from leveraging vector embeddings extracted from foundation models in multimodal
data fusion tasks. We will compare the results with the conventional transfer learning
approach using the raw data. Additionally, we’ll demonstrate how the cone effect can
be amplified in medical data and propose an embedding alignment method to close
the modality gap in medical data.

This comparison, grounded in a series of methodical experiments across diverse
benchmark datasets, aims to elucidate the trade-offs regarding model performance,
processing time, memory utilization, and convergence rates. Through this analysis, our
research contributes to the broader dialogue on sustainable AI practices, advocating
for efficient computational resource utilization in an era marked by the escalating
ecological footprint of AI technologies [45].
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2 Methods

This study investigates the computational efficiency of using embeddings extracted
from foundation models and VLMs versus processing raw data in multimodal deep
learning, particularly for healthcare applications. We conducted a series of experiments
across three image-text medical datasets to compare the performance of three distinct
approaches: 1. Unimodal embedding extraction using a foundation computer vision
model, and an LLM for image and text individual embedding extraction; a VLM
for image and text embedding extraction; and a transfer learning approach to fine-
tune pre-trained transformer-based models using raw data directly. This comparison
focuses on key metrics such as accuracy, F1 score, inference time, training time, and
memory usage, providing insights into the effective use of computational resources in
multimodal data fusion. Additionally, we’ll provide a tool to close the embedding gap
between modalities generated in medical data.

2.1 Datasets

The evaluations encompassed four multimodal datasets across healthcare applications:
diabetic retinopathy, skin lesion classification, and dengue prediction using satellite
imagery. The datasets include:

• BRSET (Brazilian Multilabel Ophthalmological Dataset) [46, 47]: A multi-labeled
ophthalmological Brazilian dataset. In this case we use BRSET focusing only on
binary diabetic retinopathy disease classification. The dataset comprises 16,266 reti-
nal photos from 8,524 patients with metadata corresponding to patient demographic
and disease information.

• HAM10000 [48]: The HAM10000 dataset, an acronym for ”Human Against Machine
with 10,000 training images,” encompasses a comprehensive collection of 10,015
dermatoscopic images for the automated diagnosis of pigmented skin lesions. The
images have been sourced from diverse populations and were captured using vari-
ous dermatoscopic imaging techniques. The categories include Actinic keratoses and
intraepithelial carcinoma/Bowen’s disease (akiec), basal cell carcinoma (bcc), benign
keratosis-like lesions (solar lentigines/seborrheic keratoses and lichen-planus like
keratoses, bkl), dermatofibroma (df), melanoma (mel), melanocytic nevi (nv), and
vascular lesions (angiomas, angiokeratomas, pyogenic granulomas, and hemorrhage,
vasc).

• Satellite Images for Public Health (SatelliteBench) [49, 50]: Adapted from 12-band
satellite images to RGB images, the dataset comprises 12,636 satellite images from
81 Colombian municipalities. The task in this dataset involves binary dengue out-
break classification: ’1’ is assigned to instances with Dengue cases surpassing the
median (indicating higher risk), while ’0’ is assigned to those below. The dataset
contains more than 156 images per municipality taken between 2015 and 2018.

The study used an 80-20 split for training and testing to ensure integrity. Text
prompts were generated for datasets without text using prompt templates. with the
information of each patient and image. The final number of train and test samples per
dataset were defined as:

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.03.24308401doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.03.24308401
http://creativecommons.org/licenses/by-nc-nd/4.0/


• BRSET [46, 47]: 13012 training samples, and 3254 testing samples.
• HAM10000 [48]: 8012 training samples, and 2003 testing samples.
• SatelliteBench [49, 50]: 936 training samples, and 312 testing samples.

2.2 Models

2.2.1 Single-Modal foundation Models as Embeddings Extractor

As shown in Figure 1B, this approach leverages pre-trained foundation models to
extract embeddings, hypothesizing that these models, having been trained on extensive
datasets, can generate rich, informative representations without further fine-tuning.
Image embeddings were obtained using Meta’s foundation computer vision model
DINO V2 [40], and text embeddings were extracted from Meta’s Large Language
Model (LLM) LLAMA 2 [38]. To alleviate computational resources, for LLAMA 2, we
used the smaller version of LLAMA 2-7B with 7 Billion parameters. We also used a
version quantized to 8 bits to allow faster inference and lower usage of computational
resources. It is important to mention that this same methodology can be applied to
bigger models like LLAMA 2-70B, or GPT 4, to extract better-quality information.
The embeddings derived from these models were then archived into individual CSV
files, ready for subsequent model training and evaluation processes.

2.2.2 Vision Language foundation Models(VLMs) as Embeddings
Extractors

This method based in Figure 1B, uses VLMs as embedding extractors, assuming that
the model learned a joint representation of both modalities, text, and images. In this
case, we selected a CLIP model [41], widely used in the community due to its simplicity
and good performance. CLIP was selected also due to its ability to extract uni-modal
embeddings instead of a joint embedding representation, allowing us more flexibility
during the following experiments. The embeddings extracted from the CLIP model
were stored in a CSV file for subsequent model training and evaluation.

2.2.3 Vector Embeddings Multimodal Fusion Learning

For the modeling tasks, two fusion techniques, an early (Figure 1C-1) and late (Figure
1C-2) fusion methods were employed [51]:

• Early Fusion: The embeddings from both modalities were concatenated at the input
level of our classifier. The classifier consists of a feature extraction block composed
of a dense layer with ReLu activation, dropout, and batch normalization. Finally,
the output of the previous block was passed to a dense layer with the number of
neurons as to the number of output classes for the classification. This approach can
be seen in Figure 1C-1.

• Late-Joint Fusion: In the Late-Joint Fusion approach, the embeddings of each
modality were passed separately through two feature extraction blocks composed of
a dense layer with ReLu activation, a dropout, and a batch normalization of each
one. These feature representations were merged later and passed through a final
classification head. The approach can be seen in Figure 1C-2.
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2.3 Raw Data Multimodal Fusion Learning

In this method, represented in Figure 1A, raw data were directly fed into pre-trained
models based on transformers. In this case, a transfer learning approach was used by
fine-tuning two transformer-based backbones pre-trained on image and text. Text data
were tokenized using a BERT tokenizer and processed through a BERT model archi-
tecture [39], while images were inputted into a ViT base architecture [40] pre-trained
on ImageNet. The outputs from these models were then integrated using a classifica-
tion head with the same fusion techniques as the embedding approach in Figure 1C-1
and Figure 1C-2, ensuring a consistent comparison between the two methods.

Classification
Head

Dense
+

ReLu
Dropout Batch
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A) Vector Embedding Multimodal Approach B) Fusion Model - Early Fusion Approach

D) Fusion Model - Late-joint Fusion ApproachC) Multimodal Traditional Fusion Apprach

Fig. 1 Schematic Representation of Multimodal Fusion Approaches. (1A) depicts the traditional
multimodal fusion approach using raw data. The approach processes text and images through BERT
and ViT models respectively. (1B) shows our embedding multimodal modeling approach, illustrating
the extraction of image and text embeddings from foundation models and their subsequent utiliza-
tion in multimodal learning. (1C) shows the two distinct approaches for data fusion. C-1 represents
an early fusion approach, where embeddings are concatenated at the input and passed through a fea-
ture extraction block, followed by a classification layer. C-2 presents the late-joint fusion approach,
highlighting the separate feature extraction from each modality and their integration at a later stage.

2.4 Experimental Setup

2.4.1 Hardware

Experiments ran on Oracle’s Standard.E4.Flex platform, with 2 CPU cores, 64GB
each, no GPU, mimicking low-resource settings. PyTorch executed experiments
independently, ensuring consistent model architectures and preventing memory leaks.
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2.4.2 Training and evaluation details

The AdamW optimizer was employed with default settings from the PyTorch library.
We used BCEWithLogitsLoss for binary classification on BRSET, and Satellite Bench
and CrossEntropyLoss for multi-class classification on the Ham 10000 dataset. Each
loss function was adjusted with class weights inversely proportional to the samples per
class to avoid overfitting. A batch size was set to 64 for train and test data loaders,
and all the models were trained during 30 epochs.

For the classifiers, the initial dense layers were set to have 64 neurons in each initial
block for late-joint fusion; and 128 neurons in the initial block for early fusion followed
by a ReLu activation function. A dropout was defined as 0.0 for the three medical
datasets.

Accuracy and F1 score were selected as the performance metrics. The use of F1
as a complement was selected to present the performance of each binary or multi-
class classification model while avoiding biased results due to class imbalance. These
metrics were reported based on the best test set performance at the end of each epoch
during the models’ training. In this case, the epoch when the model reached the best
performance in the test set, was reported to have a notion of the time to convergence
of the model. The models’ training and inference times were recorded to compare the
model’s efficiency in terms of computational resources alongside the memory usage.

To calculate the amount of memory used during training and testing, we iterate
over each modality (like ’text’, ’images’, ’labels’) in a batch, determining the memory
consumption by multiplying the total number of elements in each tensor by the size of
each element and summing these values to get the total memory usage for the batch.
For the model, it calculates memory usage by summing the number of elements across
all model parameters (weights and biases), and then multiplying by the size of each
element, accounting for the data type used (32-bit floats).

2.4.3 Reducing the Modality Embedding Gap

The phenomenon known as the ”cone effect” in deep neural networks, notably
described by Liang et al. [44], highlights how embeddings tend to be concentrated
within a narrow region of the high-dimensional space, primarily due to the network’s
architecture and activation functions. This effect is particularly pronounced in the
context of medical data, where the variance in medical images and texts is inherently
lower compared to general datasets used for pre-training models. In this section, we
provide a formal mathematical demonstration of how the cone effect, induced by ran-
dom initialization, is amplified in medical datasets. These experiments were carried
out for the VLM model CLIP due to its efficiency in performance and efficiency met-
rics, as well as its ability to extract image and text embeddings independently. To
understand how the cone effect in medical data, we need to understand 3 components:
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2.4.4 Increase of Cone Effects in Deeper Models & Contrastive
Models

Deep learning models are composed of a set of layers, each defined by a non-linear
transformation of the input vector X = (x1, x2, . . . , xdin

); X ∈ Rdin . This transforma-
tion involves a linear transformation specified by a weight matrix W ∈ Rdout×din , and
a bias vector b ∈ Rdout . The resulting linear transformation is given by 1:

Z = WX + b (1)

where Z ∈ Rdout . Each linear transformation is followed by a non-linear activation
function. One commonly used activation function is the ReLU (Rectified Linear Unit),
defined as equation 2:

ϕ(x) = max(x, 0) (2)

The ReLU function is applied element-wise to the vector from Equation 1. The
output embedding of a layer in a neural network is thus defined as 3:

emb = ϕ(W ·X + b) (3)

The CLIP model is trained using a contrastive learning approach where they try
to minimize the cosine similarity distance between the image embeddings and text
embeddings, represented using the equation as:

u = ϕ(WimageXimage + bimage) (4)

and
v = ϕ(WtextXtext + btext) (5)

The cosine similarity of the embeddings is defined as equation 6:

cos(u, v) =
ϕ(WimageXimage + b)⊤ϕ(WtextXtext + b)

∥ϕ(WimageXimage + b)∥∥ϕ(WtextXtext + b)∥
(6)

In this case, the activation function ensures that all negative components of the
vectors are set to zero, thus restricting the vectors to the positive quadrant of the n-
dimensional space increasing the similarity in deeper layers as stated in 7 by Liang et
al. [44].

ϕ(WimageXimage + b)⊤ϕ(WtextXtext + b)

∥ϕ(WimageXimage + b)∥∥ϕ(WtextXtext + b)∥
≥

X⊤
imageXtext

∥Ximage∥∥Xtext∥
(7)

Additionally, the second part of the CLIP loss is a repulsive structure that further
preserves the modality gap [52].

− log

(
exp(sim(xi, zi)/τ)∑N
j=1 exp(sim(xi, zj)/τ)

)
= −sim(xi, zi)/τ + log

N∑
j=1

exp(sim(xi, zj)/τ) (8)

The first term in the equation pulls the positive examples closer, whereas the second
term pushes the negative examples away, effectively managing the modality gap.
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2.4.5 Variance Considerations

Medical data typically exhibit lower variance σ2
med in their embeddings compared to

embeddings derived from general natural domain datasets σ2
gen as can be see in 9. This

lower variance means that medical data embeddings are more tightly clustered even
before any training, making them more susceptible to the cone effect. The reason of this
is that, given D, which is the set of all natural domain data and M ⊆ D represent the
medical domain data as a subset. This relationship is expressed as M ⊆ D. This effect
can be demonstrated empirically when we compare the variance of the embeddings of
the 3 medical datasets BRSET [46, 47] (text embedding = 5.4e-4, image embedding
= 7.919e-5), HAM 10000 [48] (text embedding = 5.6e-3, image embedding = 6.8e-
5), and SatelliteBench [49, 50] (text embedding = 1.7e-5, image embedding = 3.2e-3)
compared with the variance of 3 non-medical benchmarks datasets: COCO-QA [53]
(text embedding = 3e-3, image embedding = 1.7e-3), Fakeddit [54] (text embedding
= 1.9e-3, image embedding = 8e-3), and Recipes 5K [55] (text embedding = 1.9e-3,
image embedding = 8e-3). This difference can also be seen graphically in Figure 2A
and Figure 2B.

σ2
gen ≥ σ2

med (9)

Additionally, as stated by Liang et al. [44], the variance of the hidden state and
layer depends directly on the random initialization and the variance of the data, repre-
sented as the variance due to the model weights Weightsvariance = VAR[E[hθ(embed)]]
and the variance due to data Datavariance = E[VAR[hθ(embed)]]. So the total model’s
variance is represented as:

VAR[hθ(embed)] = E[VAR[hθ(embed)]] + VAR[E[hθ(embed)]] (10)

The variance of an intermediate layer in medical contexts can be articulated as:

VAR[hθ(embedmedical)] = E[VAR[hθ(embedmedical)]] + VAR[E[hθ(embedmedical)]]
(11)

This contrasts with the variance in more general contexts, where:

VAR[hθ(embedgeneral)] = E[VAR[hθ(embedgeneral)]] + VAR[E[hθ(embedgeneral)]] (12)

Finally, since we know that σ2
med < σ2

gen, we can say that:

VAR[hθ(embedmedical)] < VAR[hθ(embedgeneral)] (13)

2.4.6 Embedding Alignment & Shift, Semantic Robustness

In the preceding discussions, we highlighted the complexities associated with align-
ing medical image-text data pairs due to the intricate nature of the data and the
challenges posed by contrastive learning’s deep network requirements and repulsive
loss formulation. These factors contribute to a misalignment of extracted embeddings,
a problem that not only persists but also intensifies during cross-modal alignment,
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b) PCA of Text and Image CLIP Embeddings of General Benchmark Datasets

a) PCA of Text and Image CLIP Embeddings of Medical Datasets
Embeddings  SatelliteBench Embeddings  BRSET Embeddings  HAM 10000

Embeddings  Recipes 5kEmbeddings  COCO-QAEmbeddings  Fakeddit

Fig. 2 Embedding modality gap between image and text embeddings for medical and non-medical
datasets. (A) Represents the medical image (orange), and text (blue) embeddings generated using
CLIP. (B) Represents the general image (orange), and text (blue) embeddings generated using CLIP
from non-medical benchmark datasets. The embedding representations were normalized to fit inside
on a unit sphere, and PCA method was used to reduce the dimensionality for visualization.

thereby undermining the robustness of the alignment process. To bridge the modal-
ity gap and bolster the semantic robustness of the embedding pairs, we propose the
following approach:

1. Inject standard normal noise into the embeddings. As each embedding can be
viewed as a point on the unit sphere’s surface, the addition of Gaussian noise can
transform the point into a small sphere. Hence, aligning two embeddings with noise
forces the model to acquire the ability to align all the embeddings within the two
circles and makes the semantics represented by the circle more robust than the
original embedding:

E′
Text = EText + θt;

E′
Image = EImage + θi.

Where θt ∼ N (0, 1) and θi ∼ N (0, 1).
2. To further refine the cross-modal embedding alignment, we calculate the embedding

gap and adjust the embeddings via a shift controlled by the hyperparameter λ,
followed by renormalization to the unit hypersphere:

Gap = E[∥EText − EImage∥ | X,Y ];
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E′
Text = EText −

λ

2
× Gap;

E′
Image = EImage −

λ

2
× Gap.

3. Moreover, we introduce an additional layer of regularization to the modality align-
ment process through a hyperparameter-controlled intra-modal alignment loss. This
loss function is derived from the outputs of our decoupled late-fusion encoder’s
branch, aiming to draw paired samples closer and thereby narrow the modality gap.
The regularization loss is defined as:

Lreg =
1

2N

∑
j

∥∥E′
Textj − E′

Imagej
∥∥22 (14)

As result of this process, Figure 3 here visually displays the original embedding
representation versus the aligned embeddings.

3 Results

Our evaluation extensively demonstrates the performance and efficiency gains achieved
by embedding utilization in multimodal deep learning, particularly in resource-
constrained environments. Metrics measuring accuracy and computational demands
underscore the advantages of embedding-based methods in low-resource scenarios.

3.1 Performance Metrics

To calculate the performance metrics of the evaluation of on the three distinct med-
ical datasets, BRSET, HAM 10000, and SatelliteBench, different methodologies were
employed to measure their effectiveness in terms of accuracy, F1-score, and conver-
gence epoch. The approaches included embeddings using Dino v2 + Llama 2, CLIP,
and direct use of raw data, each tested under early and late-joint fusion methods using
our modifications. As can be seen in 1, in the BRSET dataset, the Dino v2 + Llama
2 embedding with early fusion achieved the highest accuracy of 0.987 and an F1-score
of 0.944 by the fourth epoch, indicating a rapid convergence and superior model per-
formance. This was closely followed by its late-joint counterpart, which also showed
high efficacy with a slightly lower accuracy and F1-score. Similarly, the CLIP approach
demonstrated robust performance with both fusion methods, though it peaked slightly
later in epochs compared to Dino v2 + Llama 2. The raw data approach lagged behind
the embedding methods, indicating the added value of sophisticated feature extraction
techniques in handling medical datasets.

3.2 Efficiency Metrics

Table 2 provides a comprehensive analysis of the memory efficiency of the different
embedding and fusion methodologies. The results delineate a contrast in memory
utilization between models that utilize embeddings such as Dino v2 + Llama 2 and
CLIP versus those that employ raw data directly. Notably, in the BRSET dataset,
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b) Image and text embeddings on medical datasets shifted to 0 (no shift) 

a) Image and text embeddings on medical datasets shifted to -1  (negative shift)

c) Image and text embeddings on medical datasets shifted to 1 (overlap) 

Embeddings  SatelliteBench with lambda = -1 Embeddings  BRSET with lambda = -1 Embeddings  HAM 10000 with lambda = -1 

Embeddings  SatelliteBench with lambda = 0 Embeddings  BRSET with lambda = 0 Embeddings  HAM 10000 with lambda = 0

Embeddings  SatelliteBench with lambda = 1 Embeddings  BRSET with lambda = 1 Embeddings  HAM 10000 with lambda = 1

Fig. 3 Embedding alignment in the medical datasets represented as image embeddings (orange),
text embeddings (blue). 3A shows the original embedding representation of each dataset with no
shift. 3B Shows the embedding alignment process pooling together both embedding modalities into
the same space.

the raw data approach consumed substantially more memory (approximately 747.94
MB for model size and over 7471.78 MB per epoch for training data) compared to
the Dino v2 + Llama 2 and CLIP methods, which required significantly less memory
(2.38 MB and 0.50 MB for model sizes respectively). Similar trends are observed in
both HAM 10000 and SatelliteBench datasets where raw data approaches consistently
show higher memory footprints, indicating the efficiency of embedding techniques in
reducing model and data handling requirements.

Aditional to the memory and performance, the table 3 highlights the intference
and training time. In the table 3 we can see how for BRSET the traditional raw data
processing required significantly more time both for training (over 538 seconds) and
inference (around 134 seconds) per epoch compared to the more advanced embedding
techniques using Dino v2 + Llama 2 and CLIP, which drastically reduced these times
(ranging from 0.95 to 1.85 seconds for training and 0.28 to 0.72 seconds for inference).
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Table 1 Performance Metrics Across Medical Datasets (Max Epoch 30)

Dataset Approach Method Accuracy F1-Score Epoch

BRSET Embedding Dino v2 + Llama 2 Early 0.987 0.944 4
Late-joint 0.984 0.929 14

Embedding CLIP Early 0.974 0.886 19
Late-joint 0.975 0.885 14

Raw Data Early 0.952 0.760 27
Late-joint 0.952 0.758 8

HAM 10000 Embedding Dino v2 + Llama 2 Early 0.798 0.697 28
Late-joint 0.815 0.715 12

Embedding CLIP Early 0.818 0.715 21
Late-joint 0.811 0.712 5

Raw Data Early 0.739 0.545 8
Late-joint 0.743 0.617 14

SatelliteBench Embedding Dino v2 + Llama 2 Early 0.752 0.751 13
Late-joint 0.758 0.758 18

Embedding CLIP Early 0.734 0.733 30
Late-joint 0.728 0.725 24

Raw Data Early 0.574 0.570 11
Late-joint 0.571 0.565 21

Table 2 Memory Consumption Across Medical Datasets (Max Epoch 30)

Dataset Approach Fusion Model Size Training Test
Method Dataset Size Dataset Size

per Epoch per Epoch

BRSET Embedding Dino v2 + Llama 2 Early 2.38 MB 241.48 MB 15.10 MB
Late-joint 1.19 MB 241.48 MB 15.10 MB

Embedding CLIP Early 0.50 MB 50.88 MB 3.18 MB
Late-joint 0.25 MB 50.88 MB 3.18 MB

Raw Data Early 747.94 MB 7471.78 MB 467.13 MB
Late-joint 747.57 MB 7471.78 MB 467.13 MB

HAM 10000 Embedding Dino v2 + Llama 2 Early 2.38 MB 148.87 MB 9.45 MB
Late-joint 1.19 MB 148.87 MB 9.45 MB

Embedding CLIP Early 0.50 MB 31.51 MB 2.00 MB
Late-joint 0.25 MB 31.51 MB 2.00 MB

Raw Data Early 747.95 MB 4600.85 MB 292.12 MB
Late-joint 747.57 MB 4600.85 MB 292.12 MB

SatelliteBench Embedding Dino v2 + Llama 2 Early 2.38 MB 17.37 MB 1.93 MB
Late-joint 1.19 MB 17.37 MB 1.93 MB

Embedding CLIP Early 0.50 MB 3.66 MB 0.41 MB
Late-joint 0.25 MB 3.66 MB 0.41 MB

Raw Data Early 747.94 MB 537.48 MB 59.72 MB
Late-joint 747.57 MB 537.48 MB 59.72 MB

Similar trends are observed in the HAM 10000 and SatelliteBench datasets, where raw
data approaches consistently consume more computational resources. In particular,
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the SatelliteBench dataset shows the most substantial efficiency in embedding meth-
ods, especially with CLIP, achieving training times as low as 0.16 seconds and inference
times around 0.09 seconds per epoch. These results underscore the effectiveness of
embedding-based approaches in reducing computational load, thus enhancing the fea-
sibility of deploying these models in real-world applications where quick processing
times are crucial.

Table 3 Training and Inference Times Across Medical Datasets (Max Epoch 50)

Dataset Approach Fusion Average Average
Method Training Time Inference Time

Per Epoch [s] Per Epoch [s]

BRSET Embedding Dino v2 + Llama 2 Early 1.54 0.40
Late-joint 1.85 0.72

Embedding CLIP Early 0.95 0.28
Late-joint 1.64 0.50

Raw Data Early 538.38 134.14
Late-joint 543.11 132.89

HAM 10000 Embedding Dino v2 + Llama 2 Early 1.02 0.28
Late-joint 1.20 0.42

Embedding CLIP Early 0.65 0.20
Late-joint 1.12 0.42

Raw Data Early 260.08 64.66
Late-joint 263.79 66.08

SatelliteBench Embedding Dino v2 + Llama 2 Early 0.25 0.11
Late-joint 0.28 0.13

Embedding CLIP Early 0.16 0.09
Late-joint 0.22 0.12

Raw Data Early 28.64 9.63
Late-joint 30.34 10.12

3.3 Embedding Alignment

The embedding alignment was tested by adding variations of the λ value to the best
performing fusion models on each dataset and plotting the changes on F1-score and
accuracy.

The results for BRSET using the early fusion embeddings extracted from Dino v2
and Llama 2 can be seen in figure 4, where we can see minor improvements in the
F1-score from 0.944 to 0.949 using a lambda λ = 0.8, and no substantial change for
accuracy.

The embedding alignment showed an increase in the model performance for Satel-
liteBench from an F1 score of 0.75 without data shifting, to 0.80 increasing the lambda
shifting for the late fusion approach as can be seen in figure 6. Similar tendency can
be seen for the F1 values in Figure 5 for the Ham 10000 dataset where the value of the
clip embeddings for early fusion increased from 0.715 with no lambda shift, to 0.745.

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.03.24308401doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.03.24308401
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Lambda Shift

0.944

0.945

0.946

0.947

0.948

0.949

F1
 S

co
re

Early Fusion Best F1 Score BRSET

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Lambda Shift

0.942

0.943

0.944

0.945

0.946

0.947

F1
 S

co
re

Late Fusion Best F1 Score BRSET

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Lambda Shift

0.9868

0.9870

0.9872

0.9874

0.9876

0.9878

0.9880

Ac
cu

ra
cy

Early Fusion Best Accuracy BRSET

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Lambda Shift

0.9866

0.9868

0.9870

0.9872

0.9874

0.9876

Ac
cu

ra
cy

Late Fusion Best Accuracy BRSET

Fig. 4 Metrics calculated over shifts from negative shift -1, to positive shift 1 for BRSET Dataset.

4 Discussion

Multimodal vector embeddings present a promising avenue for computationally effi-
cient research, particularly in low-resource settings. Our findings underscore the
potential benefits of this approach, notably its simplicity and effectiveness in harness-
ing the power of pre-trained foundation models without the substantial computational
overhead typically associated with fine-tuning or training raw data input models from
scratch.
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Fig. 5 Metrics calculated over shifts from negative shift -1, to positive shift 1 for HAM 10000 Dataset.

4.1 Benefits

The primary advantage of using embeddings lies in their ability to condense complex
data into more manageable representations, thereby reducing the computational load
and memory requirements. This is particularly beneficial in low-resource environments
where computational constraints and specific expertise might limit the deployment
of advanced deep-learning models. Our results indicate that embeddings can pro-
vide a rich source of pre-encoded information, enabling models to achieve competitive
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Fig. 6 Metrics calculated over shifts from negative shift -1, to positive shift 1 for SatelliteBench
Dataset.

performance levels with significantly less computational demand. This is evident in
the reduced training and inference times across all evaluated datasets, highlighting
the approach’s suitability for real-time applications and environments with limited
computational capabilities.

Moreover, the simplicity of the embedding-based approach facilitates ease of
implementation and adaptation to various multimodal tasks. By leveraging the gen-
eralizability of foundation models like DINO V2 [40] and LLAMA 2 [38], we can
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extract high-quality embeddings that capture essential features from both images
and text, enabling effective multimodal fusion without the need for extensive model
customization or hyperparameter tuning.

4.2 Performance Metrics

The performance metrics—accuracy and F1-score—demonstrated that the embedding
approach generally outperforms the traditional raw data approach in multimodal tasks
even using pre-trained models. This superiority can be attributed to the embeddings’
ability to condense complex, high-dimensional data into more manageable, seman-
tically rich representations. These compact representations facilitate more efficient
learning processes, allowing models to capture the nuances of multimodal data with
fewer computational resources.

4.3 Memory Consumption

The embedding approach’s reduced memory requirements underscore its computa-
tional efficiency and practical applicability in low-resource settings. This aspect is
crucial for deploying advanced AI models on devices with limited memory capacity,
such as mobile devices and embedded systems. Furthermore, the lower memory con-
sumption aligns with sustainable AI practices, reducing the environmental impact
associated with data storage and processing.

4.4 Training and Inference Time Insights

The significant reduction in training and inference times with the embedding approach
directly impacts the practical deployment of deep learning models, especially in real-
world scenarios where rapid decision-making is essential. The efficiency gains observed
in the study highlight the potential for embeddings to enable advanced deep-learning
models on devices with limited computational capabilities, such as mobile phones or
embedded systems.

4.5 Implications

The discussion extends beyond the immediate findings to consider the broader impli-
cations for sustainable AI practices. The embedding approach’s ability to deliver
competitive performance with reduced computational demands aligns with the grow-
ing need for environmentally sustainable AI methodologies. By minimizing the energy
and hardware requirements for training and deploying deep learning models, the
embedding approach contributes to the development of more eco-friendly AI solutions.

Furthermore, the study’s insights into the role of data simplicity and task com-
plexity in model optimization processes underscore the importance of dataset selection
and task design in AI research. Understanding how these factors influence model per-
formance and resource efficiency can guide future studies in developing more effective
and efficient deep learning algorithms.
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4.6 Limitations

A notable challenge arises in domain-specific tasks, where the data might significantly
deviate from the content typically encountered by foundation models during their
training. For instance, in specialized fields such as healthcare, the images and text
may encompass highly technical information that is underrepresented in the training
corpora of general-purpose models like DINO V2 [40] or LLAMA 2 [38]. This can
result in embeddings lacking crucial domain-specific features, leading to suboptimal
performance.

While foundation model embeddings offer rich information for common data,
they might miss unique characteristics in specialized datasets. Task-specific models
or advanced pre-training techniques like self-supervised learning could address this,
albeit with added computational costs, potentially offsetting efficiency gains in general
applications.

While the use of embeddings from foundation models offers a compelling strat-
egy for improving computational efficiency in multimodal deep learning, particularly
in low-resource settings, it is not a one-size-fits-all solution. The effectiveness of this
approach is contingent upon the nature of the task and the characteristics of the data
involved. In domain-specific contexts where the data diverge from these norms, alter-
native strategies, potentially involving task-specific model training or fine-tuning, may
be more appropriate. Future research should prioritize developing adaptive, domain-
aware embedding strategies and exploring trade-offs between computational efficiency
and task-specific performance across various application contexts.

5 Conclusion

This paper has presented a comprehensive evaluation of the use of vector embed-
dings extracted from foundation models for multimodal data fusion in low-resource
settings, comparing it against the traditional approach of processing raw data through
end-to-end models. The results highlight the potential of using aligned embeddings
to significantly reduce the computational burden while retaining, and in some cases
enhancing, model performance.

Our findings contribute to the ongoing discourse on sustainable AI practices by
offering a viable solution for efficient computational resource utilization. By demon-
strating the effectiveness of embeddings in multimodal learning, this work provides
a foundation for developing more resource-efficient methodologies in AI, particularly
beneficial in resource-limited environments.

However, even when this research shows promising results, further research into
task-specific embeddings and advanced pre-training techniques should be carried out.
Future work should explore these areas to extend the benefits of efficient multimodal
learning across a broader spectrum of domains.
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