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Abstract
Background: Hepatocellular carcinoma (HCC), is a prevalent and fatal malignancy 
originating from hepatic cells with a consistently rising incidence in recent decades. In 
this study, we aim to identify potential prognostic biomarkers and reveal new 
mechanism in HCC.  
Methods: HCC-related datasets (GSE45267 and GSE49515) and TCGA information 
were downloaded for DEGs, and the common DEGs were WGCNA, protein-protein 
interaction network (PPI), risk model, expression, survival and prognostic nomogram 
to determine the key gene related to HCC. Further, the key gene was analyzed by 
clinical feature analysis, immunoassay and cell experiments to investigate its exact role 
in HCC.
Results: Based on the above comprehensive analysis, we targeted the key gene PAK1-
interacting protein 1(PAK1IP1) with a good prognostic value in HCC. PAK1IP1 was 
remarkably increased in tumor samples than normal samples, which might be related to 
immune cell infiltration in liver cancer. It was up-regulated in HCC cells, and its 
knockdown could suppress HCC proliferation and migration. Besides, ELISA and flow 
cytometry showed that PAK1IP1 could regulate Lipopolysaccharide (LPS)-induced 
pyroptosis of HCC cells. Knocking down PAK1IP1 could induce CASP-3-dependent 
pyroptosis in HCC cells to suppress the development of HCC. 
Conclusion: To sum up, PAK1IP1 was identified as a promising prognostic biomarker, 
and knockdown of PAK1IP1 can induce CASP-3-dependent pyroptosis to suppress 
HCC development, which sheds new light on HCC tumorigenesis. 
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Short Title: PAK1IP1 knockdown triggers CASP-3 pyroptosis in HCC
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Liver cancer, or hepatocellular carcinoma (HCC), is a prevalent and fatal malignancy 
originating from hepatic cells[1]. Its incidence has shown a consistent rise in recent 
decades, making it one among the most common malignancies to be diagnosed 
globally[2]. The current treatment options for HCC encompass surgical intervention, 
chemotherapy, radiation therapy, targeted therapy, and immunotherapy[3]. The 
appropriate treatment modality is up to cancer stage, overall health status, liver function 
and other factors[4]. In spite of the availability of several therapeutic options, the 5-
year survival rate for individuals with HCC is still poor, at about 18%. Thus, the 
development of a reliable prognostic model that integrates clinical, laboratory, and 
molecular biomarkers is crucial for guiding the clinical management of HCC patients[5]. 
Prognostic factors commonly employed in HCC encompass clinical parameters, 
laboratory data, radiological findings, and molecular biomarkers[6]. With the 
advancement of artificial intelligence and machine learning, numerous studies have 
focused on constructing predictive models to enhance the accuracy of prognostic 
predictions, which holds great promise in providing valuable insights for the 
customized therapy of HCC patients. 

Pyroptosis was initially discovered in the 1970s[7]. It is a form of programmed cell 
death (PCD) characterized by cellular swelling, culminating in cell membrane rupture 
and the release of cellular contents, thereby inciting a robust inflammatory response[8]. 
This process of inflammatory cell death, also known as cellular inflammatory necrosis, 
plays a pivotal role in tumor suppression by stimulating anti-tumor immune responses. 
Pyroptosis is orchestrated by the activation of the inflammasome upon sensing 
endogenous danger signals or environmental stimuli, which recruits and activates 
caspase[9]. Activated caspase has a dual role; it not only cleaves and activates 
inflammatory factors such as IL-18 and IL-1β but also cleaves Gasdermin-D (GSDMD), 
inducing cell membrane perforation and triggering cell pyroptosis[10]. In the context 
of liver cancer, researchers have found that inducing pyroptosis holds significant 
therapeutic potential for cancer treatment. Several studies have demonstrated that liver 
cancer cells are more susceptible to pyroptosis induction compared to normal cells[11, 
12]. Furthermore, the regulation of HCC cell death through pyroptosis involves various 
factors, including the Bcl-2 protein family and the tumor suppressor gene p53[13]. 
Pyroptosis is a well-established cellular mechanism of cell death that has drawn interest 
from cancer researchers because of its potential applications in cancer therapy[14]. The 
mechanism and potential uses of copper-dependent pyroptosis in inducing cancer cell 
death are still under exploration. In liver cancer, inducing pyroptosis shows great 
promise as a therapeutic approach, and ongoing research in this field aims to enhance 
our understanding of cancer biology, particularly in HCC cells.

In this comprehensive study, we employed a combination of computational and 
experimental approaches to investigate HCC. Initially, we curated and analyzed 
datasets from Gene expression omnibus (GEO) and the cancer genome atlas (TCGA), 
utilizing bioinformatics tools to determine key prognostic genes related to HCC. 
Subsequently, we developed a prognostic risk model and prognostic nomogram to 
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evaluate gene clinical significance. In addition, we employed thorough analyses of 
clinical features and immune profiles to explore a comprehensive knowledge of these 
key genes in liver cancer. Subsequently, we conducted cell experiments to investigate 
the mechanisms by which these key genes, as well as pyroptosis-related genes, regulate 
the development of HCC. Overall, this research contributed new understanding of HCC 
and offered potential targets for clinical applications, offering promising avenues for 
improved diagnosis and treatment strategies in the field of HCC.

Materials and methods 
Data origination
We obtained 371 Liver hepatocellular carcinoma (LIHC) samples and 50 normal 
samples from TCGA. Additionally, we downloaded two publicly available datasets 
GSE45267 and GSE49515 from GEO. Raw data from TCGA and GEO were 
preprocessed using the "affy" and "limma" packages in R software. Clinical information 
of patients, including age, sex, stage, and survival data, was extracted from the TCGA 
database. 

Weighted gene co-expression network analysis (WGCNA)
Differentially expressed genes (DEGs) identification was screened on three datasets: 
GSE45267, GSE49515 and TCGA. Venn diagrams were used to identify overlapping 
up- and down-regulated genes. WGCNA is a powerful bioinformatics tool that can 
identify groups of highly related genes and their relationship to phenotypic traits. We 
utilized WGCNA to analyze the overlapping genes to determine key module for the 
following analysis.

Functional enrichment analysis and MCODE analysis
Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis were conducted. P<0.05 was used to determine the significance of the enriched 
results. Additionally, the co-expression network of important genes had major modules 
that we were able to locate using the Molecular Complex Detection (MCODE) 
algorithm. MCODE analysis was carried out using the Cytoscape program by k-core 
(2), degree cutoff (2), a maximum depth (100), node score cutoff (0.2). These helped 
us identify key biological pathways and subnetworks relevant to HCC progression. 

Establishment and validation of prognostic risk model
LASSO regression analysis was conducted on the 75 node genes screened out by the 
MCODE algorithm, and selected the minimum lambda value (lambda. min=0.0166) in 
this study. To create a prognostic risk model, a risk score was determined for each 
TCGA-HCC tumor sample. We created scatterplots and heatmaps of gene expression 
for the risk model and identified 26 significant genes. The TCGA samples were split 
into high- (n=185) and low-risk (n=185) groups according to average risk score, and 
the overall survival (OS) analyses was performed by Kaplan-Meier database. The risk 
score formula was as follows: Riskscore = (-0.0199)*RPA1 + (0.2099)*WDR12 + 
(0.0206)*CDK4 + (0.0147)*DCAF13 + (0.1308)*FTSJ3+(0.3767)*CPSF3 + (-
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0.1757)*RFC1 + (-0.1788)*RRP1B + (0.1366)*RMI1 + (-0.0077)*POLD3 + 
(0.1838)*ASF1A + (0.1581)*CPSF2 + (0.0078)*NUP43 + (0.1364)*XPOT + 
(0.0332)*CCNF + (0.1683)*ESF1 + (0.23IP1) + (-0.0111)*NOL12 + (-
0.1896)*DDX59 + (-0.4887)*RFC3 + (0.487)*TTK + (0.0187)*RRM2 + 
(0.0052)*CEP55 + (0.0855)*ECT2 + (0.0763)*FBXO5 + (-0.6687)*ZWILCH. Then, 
using receiver operating characteristic (ROC) analysis, we reported 1-, 3-, and 5-year 
OS and compared OS curves between subgroups. The capability of the model was 
evaluated by area under the area under curve (AUC). 

Prognostic gene expression and survival analysis in TCGA and GEO 
First, we obtained gene data from TCGA, GSE45267 and GSE49515 datasets, 
respectively. Then, univariate Cox regression analysis was employed to determine the 
most important prognostic genes. Next, we applied batch survival analysis on the 
selected genes to identify genes significantly related to patient survival, by Kaplan-
Meier tool. 

Prognostic nomogram construction
The Cox proportional hazards model is a widely applied statistical method for survival 
analysis, which considers the influence of multiple variables on the survival time of 
patients. Herein, we applied univariate/multivariate Cox analyzes to investigate the 
prognostic value of 19 genes with significant expression in survival analysis. 
Multivariate Cox analysis was used to assess the individual prognostic potential of each 
gene after adjusting for other covariates. Finally, we selected genes substantially related 
to survival outcomes in both univariate and multivariate Cox analyzes to construct 
prognostic nomograms. The nomogram was further validated using a calibration curve. 

Clinical feature analysis of key gene and immune score evaluation
In this study, we utilized the UALCAN (http://ualcan.path.uab.edu/index.html) 
database to study the levels and trends of key genes in the clinical characteristics of 
liver cancer, including age, gender, individual cancer, TP53 mutation and tumor grade. 
UALCAN is an interactive portal that provides easy access to TCGA data. The immune 
scores were then further evaluated using immuneDeconv that uses gene expression data 
to evaluate the comparative abundance of immune cell types in tumor samples.

Cell culture
American type culture collection (ATCC) provided HCC cell lines (Huh7, Hep3B, 
HepG2, MHCC97H) and normal liver cell (LO2). HepG2 and MHCC97H were put in 
RPMI-1640 media with 10% FBS, whereas Huh7 and Hep3B in DMEM/F12 conditions. 
10% FBS was added to DMEM to boost the culture of LO2 cells. Experiments were 
conducted on cells between passages 3 and 8, and cells were subcultured every three to 
four days.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)
We conducted siRNA transfection by Lipofectamine RNAiMAX Transfection Reagent. 
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Total RNA was collected from the cells 48 hours after transfection by TRIzol reagent. 
Utilizing the StepOnePlus Real-Time PCR System and SYBR Green PCR Master Mix, 
qRT-PCR analysis was carried out. The primers for PAK1IP1 were as follows: forward 
5’-TGGTCCACGATGCCCTATG-3’ and reverse 5’-GGCTTTGGT
TTCGGTGTTGT-3'; for GAPDH: forward 5’-ACAGTCAGCCGCATCTTCTT-3' and 
reverse 5’-GTTAAAAGCAGCCCTGGTGA-3’.

Western blotting (WB)
Using RIPA buffer enhanced with protease and phosphatase inhibitors, total protein 
was recovered from cells. The BCA protein assay kit was applied to calculate the 
protein concentration. Electrophoresis was used to separate equal quantities of protein 
(20-40 µg) that had been put onto 10-12% SDS-PAGE gels. A wet transfer technique 
was then employed to transfer the isolated proteins onto nitrocellulose or PVDF 
membranes. Membranes were kept with primary antibodies at 4°C overnight after 
blocked with 3% BSA in TBST for an hour. The membranes were TBST-washed before 
incubation for an hour with secondary antibodies that were HRP-conjugated. An ECL 
substrate was used to see the protein bands, and an imaging equipment was used to take 
pictures of them. For the purpose of balancing the amounts of protein expression, we 
employed either β-actin or GAPDH as an internal control. With ImageJ, the bands were 
quantified. 

Cell counting kit-8 (CCK-8) assay
5×103 cells were planted each well in 96-well plates, and the cells were then left to 
attach for 24 hours. After treatment with the experimental reagents, the CCK-8 solution 
was diluted to 10 L in each well, and the plates were incubated at 37°C for 1-4 hours. 
The absorbance at 450 nm was measured with a microplate reader. By contrasting the 
absorbance of treated and control cells, the vitality of the cells was determined. The 
experiments were carried out three times, and the mean standard deviation was used to 
show the findings.  

Transwell assay
Cells were put into the upper chamber of a Transwell insert with an 8 µm hole size for 
the migration test after being suspended in serum-free DMEM. 10% FBS-containing 
media was put into the bottom chamber. The upper chamber of the Transwell insert had 
Matrigel (BD Biosciences) precoated for use in the invasion experiment. In order to 
seed the upper chamber, cells were suspended in serum-free media. 10% FBS-
containing media was put into the bottom chamber. The migrating and invading cells 
were fixed and stained with DAPI. The amount of invading or migrating cells was 
counted after microscopically captured images. 

ELISA assay
To assess the amounts of IL-1 protein expression in cell culture supernatants, the 
enzyme-linked immunosorbent assay (ELISA) was used. Briefly at 4°C, 96-well plates 
were coated with anti-IL-1β capture antibody overnight. The wells were filled with the 
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cell culture supernatants and cultured for 2 hours indoor after blocking with 1% bovine 
serum albumin in Phosphate buffered saline (PBS) for 2 hours. Anti-IL-1 detection 
antibody that had been biotinylated was then added to the wells and incubated for an 
additional hour indoor in a solution containing 1% bovine serum albumin and PBS. 
Streptavidin-horseradish peroxidase (1:5000 dilution) was added to each well after 
three PBS washes with 0.05% Tween 20 were completed. Each well was then kept for 
30 minutes. Finally, the wells were rinsed by PBS with 0.05% Tween 20 and the 
reaction was developed using tetramethylbenzidine substrate solution. The optical 
density was detected at 450 nm by microplate reader. The content of IL-1β in the cell 
culture supernatants was computed based on the standard curve. All samples were run 
in duplicate. 

Flow cytometry analysis
Cells were collected and quickly cleaned with cold PBS. Cells were frozen with 70% 
ethanol at -20°C for 24 hours, stained with propidium iodide (PI), and left in the dark 
for 30 minutes to analyze the cell cycle. For apoptosis analysis, the manufacturer's 
recommendations were followed while staining by Annexin V-FITC/PI apoptosis 
detection kit. Then, cells were investigated by flow cytometer (BD FACS Calibur). The 
proportion of cells that underwent apoptosis in each group was used to display the 
results. After data collection, we performed detailed data analysis and graph generation 
using FlowJo software (version 10.6.1, FlowJo, LLC, USA).

Statistical analysis
Various bioinformatics and statistical analysis packages of R language were employed, 
such as edgeR, limma, survival, ggplot2, etc. We preprocessed each dataset, including 
normalization of gene expression levels and correction for batch effects. For the 
screening of DEGs, we applied the edgeR and limma packages to screen for 
differentially expressed genes, and set the significance level as FDR<0.05 and log2 fold 
change >1 or <-1.

Results
Identification of DEGs and key module in WGCNA
We performed a comprehensive analysis of liver cancer using a multi-database 
integration. Totally, we found 8977 up- and 1001 down-regulated DEGs from the 
TCGA dataset (Figure 1A), 4717 up- and 2343 down-regulated DEGs from the 
GSE45267 dataset (Figure 1B), and 3442 up and 1682 down-regulated DEGs (Figure 
1C). The Venn diagram revealed 1163 upregulated genes and 76 downregulated genes 
at the intersection (Figures 1D and 1E). By using WGCNA analysis, we determined a 
soft threshold power of 1 (Figure 1F). Two modules were identified based on the 
clustering dendrogram (Figure 1G), and measured the relation between module 
eigengenes (ME) and clinical characteristics, the turquoise module was the key module 
for subsequent analysis (Figure 1H).

The functional enrichment analysis and PPI networks of the turquoise module 
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The genes in turquoise module were related to DNA metabolic process, Mitotic spindle 
organization, and DNA repair (Figure 2A). Furthermore, enriched pathways included 
RNA transport, Herpes simplex virus 1 infection, Cell cycle, and DNA replication 
(Figure 2B). Additionally, we utilized the MCODE algorithm to analyze the PPI 
network of the turquoise module genes. Figures 2C and 2D, respectively, display the 
mcode1 cluster (30 nodes and 379 edges) and the mcode2 cluster (45 nodes and 247 
edges). In summary, our findings suggested that the turquoise module genes are 
associated with crucial biological processes and pathways involved in HCC 
tumorigenesis. 

Identification of prognostic genes through construction of risk model for HCC
In this study, we conducted LASSO regression analysis on nodal genes and determined 
an optimal lambda.min value of 0.0166 (Figures 3A and 3B). Based on this value, we 
developed a risk model for liver cancer and identified 26 prognostic genes that exhibited 
statistical significance. The 26 gene level in HCC samples was shown in Figure 3C, 
with higher risk scores linking to higher mortality. In addition, the OS analysis revealed 
the high-risk group's survival prognosis was poorer (Figure 3D). Besides, ROC analysis 
showed AUC values of 0.858, 0.79, and 0.749 for the first, third, and fifth years, 
respectively (Figure 3E). These findings provided valuable insights into HCC prognosis 
and highlighted the potential clinical utility of the identified prognostic genes and risk 
models.

19 prognostic genes associated with survival in HCC patients
We investigated the expressions of 26 prognostic genes in TCGA, GSE45267, and 
GSE49515 datasets (Figures 4A-4C). Our results demonstrated these genes were 
upregulated in tumor samples. Kaplan-Meier survival analysis indicated 19 genes were 
significantly linked to poor prognosis, and high expressions demonstrated lower 
survival (Figures 4D-4V). Taken together, these 19 genes have potential as prognostic 
biomarkers for cancer patients and can be used to develop personalized treatment 
strategies.

PAK1IP1 is an individual prognostic gene for HCC patients
In this study, we used Cox regression analysis, both univariate and multivariate, and 
discovered that PAK1IP1 and pTNM stage were individual predictive variables for 
HCC (Figures 5A-5B). We then integrated PAK1IP1 and pTNM stage to build a 
nomogram for more accurate prognosis prediction in HCC patients (Figure 5C). The 
calibration plot revealed that the projected and actual survival rates were well-aligned 
(Figure 5D). These emphasized the value of these two factors in HCC prognosis and 
the potential of integrating them in a nomogram for clinical use.

PAK1IP1 expression correlates with immune cell infiltration in HCC
Next, we studied the level and clinical significance of PAK1IP1 in LIHC. According to 
data from the UALCAN database, PAK1IP1 level was considerably greater in tumor 
samples (Figure 6A). Furthermore, PAK1IP1 level was higher in HCC patients with 
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older age, male gender, and TP53 mutation (Figures 6B, C, E). In addition, as tumor 
stage and grade increased, PAK1IP1 expression also increased (Figures 6D, F). Next, 
we identified most immune cells were downregulated in the low PAK1IP1 expression 
group, and Myeloid dendritic cells had the highest infiltration percentage in tumor 
samples (Figures 6G-6H). Our findings suggested that PAK1IP1 may be a predictive 
biomarker and be connected to immune cell infiltration.

PAK1IP1 is up-regulated in HCC cells
We discovered through qRT-PCR analysis that HCC cells (especially Hep3B and 
HepG2) have higher levels of PAK1IP1 expression than normal liver cells (Figure 7A). 
Our results demonstrated that si-PAK1IP1#1 and si-PAK1IP1#2 were more efficient in 
reducing PAK1IP1 expression in HCC cells (Figure 7B). Moreover, protein analysis by 
western blotting confirmed that si-PAK1IP1#1 and si-PAK1IP1#2 significantly 
reduced PAK1IP1 expression in HCC cells (Figure 7C). We then applied CCK-8 assays 
to examine the influence of PAK1IP1 knockdown on HCC cell growth. As expected, 
PAK1IP1 knockdown inhibited HCC cell growth (Figures 7D-7E). Additionally, 
Transwell assays showed that PAK1IP1 knockdown significantly suppressed HCC cell 
invasion and migration (Figures 7F-7I). 

PAK1IP1 knockdown could activate lipopolysaccharide (LPS)-induced pyroptosis
We constructed a physical interaction network between PAK1IP1 and 33 pyroptosis-
related genes from previous research[15] (Figure 8A). To investigate whether PAK1IP1 
was related to the regulation of pyroptosis, we measured the production of IL-1β, a key 
marker of pyroptosis, in HCC cells after LPS treatment and PAK1IP1 knockdown using 
ELISA. According to our findings, IL-1 levels considerably increased following LPS 
treatment and PAK1IP1 knockdown (Figures 8B-8C). Flow cytometry also 
demonstrated an up-regulation in the apoptosis rate of HCC cells following LPS 
treatment and PAK1IP1 knockdown (Figures 8D-8E).  

PAK1IP1 promotes HCC proliferation, invasion and migration through 
suppressing the CASP-3-dependent pyroptosis
Moreover, we found that PAK1IP1 inhibition significantly increased the protein levels 
of CASP-3, as detected by WB (Figure 9A). We then assessed the effects of si-
PAK1IP1 #1 and Z-DEVD-FMK treatment, a CASP-3 inhibitor, on liver cancer cell 
proliferation. The data showed that PAK1IP1 knockdown significantly reduced HCC 
cell proliferation, while Z-DEVD-FMK treatment increased cell proliferation (Figures 
9B-9C). Transwell assays demonstrated that PAK1IP1 knockdown suppressed liver 
cancer cell invasion and migration after LPS treatment, while Z-DEVD-FMK treatment 
promoted cell invasion and migration (Figures 9D-9G). These findings indicate 
PAK1IP1 is a vital part in HCC cell proliferation, invasion, and migration through the 
CASP-3 pathway.

Discussion
Biomarkers are a crucial part in the diagnosis, therapy, and prognosis of cancer[16]. 
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Currently, the diagnosis of liver cancer heavily relies on CT, MRI and others[17, 18]. 
However, these methods have limitations in detecting early-stage tumors. To address 
this challenge, targeted gene therapy has become a new therapy for HCC[19]. 
Nevertheless, its efficiency is hindered by tumor heterogeneity and the development of 
acquired resistance[20]. Furthermore, the five-year survival rate for liver cancer 
remains low because of high recurrence and metastasis. Consequently, exploring new 
efficient biomarkers for the detection, management, and prognosis of liver cancer is 
urgently needed. These biomarkers could facilitate early detection, guide personalized 
treatment strategies, and predict patient outcomes. Ultimately, the identification of such 
biomarkers would significantly improve the survival of HCC patients.

In our study, we identified the turquoise module as an important module associated 
with liver cancer. The genes in the turquoise module were primarily related to DNA 
metabolic processes, mRNA processing, nuclear chromosome function, RNA 
methyltransferase activity, methylated histone binding, Fanconi Anemia Pathway, and 
mRNA Surveillance Pathway. These enriched pathways and terms have been 
extensively studied in HCC and have shown promising results in improving our 
understanding of the disease. One of the pathways enriched in the turquoise module is 
the DNA metabolic process, which plays a crucial role in DNA replication, 
recombination, and repair[21]. Dysregulation of this pathway has been linked to various 
cancers, including liver cancer[22]. For example, a study found that the expression of 
the DNA polymerase kappa (POLK) gene involved in DNA metabolism was 
upregulated in liver cancer tissues[23]. Another enriched pathway in the turquoise 
module is the cell cycle. A study reported that when compared to nearby normal tissues, 
cell cycle pathway gene CDKN2A was considerably downregulated in liver cancer 
tissues[24]. Furthermore, low CDKN2A level is linked with a poor prognosis in HCC 
patients[25]. The mismatch repair pathway, involved in correcting errors during DNA 
replication, is also enriched in the turquoise module. Defects in this pathway have been 
related to the progression of various cancers. For instance, a study reported that the 
expression of the MutS homolog 2 (MSH2) gene involved in the mismatch repair 
pathway was downregulated in liver cancer tissues[26]. Additionally, patients with 
HCC who have low MSH2 expression have a bad prognosis[27]. Overall, the enriched 
pathways and terms in the HCC turquoise module give insightful information on the 
molecular pathways underlying the genesis and progression of diseases. Further 
research on these pathways may help identify potential targets for new therapies in HCC.

Based on the above results and a series of bioinformatics analysis, the key gene 
PAK1IP1 was determined in this study. PAK1IP1 exerted crucial regulatory functions 
in various biological processes[28]. Aberrant expression of PAK1IP1 has been 
implicated in human diseases[29]. PAK1IP1 interacts with β-catenin and facilitates its 
nuclear translocation, resulting in the activation of Wnt target genes[30]. Similarly, in 
gastric cancer, PAK1IP1 enhances cell invasiveness by regulating actin cytoskeleton 
dynamics[31]. Furthermore, PAK1IP1 has been implicated in cancer cell survival and 
chemotherapy resistance[32]. In ovarian cancer, PAK1IP1 promotes cell survival under 
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hypoxic conditions by regulating the AMPK signaling pathway. PAK1IP1 binds to and 
inhibits the activity of AMPK, thereby reducing cell death and promoting cell 
survival[28]. In our research, we found that HCC tumor tissue samples had a high 
expression of PAK1IP1. Moreover, clinical tissue samples from liver cancer patients 
exhibited upregulated expression of PAK1IP1. The PAK1IP1 high-expression group 
had a poorer OS rate, according to the Kaplan-Meier survival analysis, compared to the 
low-expression group. Overall, PAK1IP1 acts as a proto-oncogene in liver cancer 
patients, and its overexpression adversely affects patient outcomes. Understanding the 
molecular processes that underlie PAK1IP1-mediated cancer growth may offer fresh 
perspectives for the creation of fresh treatment approaches.

Myeloid dendritic cells (mDCs) have been identified as crucial players in the immune 
response against cancer[33]. Herein, we found a significant increase in mDC infiltration 
in HCC patients. These mDCs function as antigen-presenting cells, initiating the 
activation of T cells to recognize and eliminate cancer cells[34]. Additionally, they 
contribute to the activation of natural killer (NK) cells, which are essential for tumor 
surveillance[35]. Moreover, mDCs can generate cytokines that facilitate the 
recruitment and activation of other immune cells like macrophages and neutrophils, 
further bolstering the antitumor immune response[36]. In liver cancer, mDCs have been 
found to be a critical part in initiating and enhancing antitumor immune responses[37]. 
Notably, mDCs promote the differentiation and activation of CD8+ T cells, which are 
instrumental in eliminating tumor cells[38]. Furthermore, mDCs produce interleukin 
12 (IL-12), which augments the antitumor activity of NK cells[39]. However, it should 
be noted that the role of mDCs in tumor growth promotion and immune evasion has 
also been reported in certain types of cancer, necessitating further investigations to fully 
comprehend their intricate and multifaceted functions in cancer biology. In conclusion, 
our study underscores the potential significance of mDCs in liver cancer and indicates 
targeting mDCs could be a promising method to enhance antitumor immune responses. 
Subsequent studies are imperative to unravel the mechanisms underlying mDC function 
in cancer and to develop novel immunotherapeutic approaches aimed at harnessing the 
potential of these cells.

Furthermore, we conducted experiments to elucidate the mechanism of PAK1IP1 and 
pyroptosis-related genes in liver cancer. To assess pyroptosis, we utilized ELISA to 
measure the production of IL-1β, a key pyroptosis marker, in HCC cells following LPS 
treatment and PAK1IP1 knockdown. Remarkably, PAK1IP1 knockdown led to 
increased IL-1β expression in HCC cells. Flow cytometry demonstrated an elevated 
apoptosis rate in LPS-treated HCC cells with PAK1IP1 knockdown. Additionally, WB 
revealed a significant upregulation of CASP-3 in response to PAK1IP1 inhibition. 
Subsequent experiments involved si-PAK1IP1 knockdown and treatment with Z-
DEVD-FMK, a CASP-3 inhibitor, to evaluate the influence on the proliferation, 
invasion, and migration of HCC cells. Notably, PAK1IP1 knockdown inhibited the 
activities of LPS-treated HCC cells, while Z-DEVD-FMK treatment promoted these 
cellular processes. Collectively, our experimental findings demonstrate PAK1IP1 
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regulated the level of pyroptosis-related genes via the CASP-3-dependent pyroptosis.

In this study, we proposed a potential role for PAK1IP1 in hepatocellular carcinoma 
and explored its correlation with prognosis and immune cell infiltration. However, we 
must recognize that some aspects of this study have limitations. First, although we 
validated the function of PAK1IP1 by qRT-PCR, WB and cellular experiments, these 
experiments were mainly limited to cell lines. We have not yet assessed the relevance 
of these findings in the in vivo tumor microenvironment, which may limit the clinical 
applicability of our conclusions. Second, regarding apoptosis studies, we focused on 
CASP-1/CASP-4 and GSDMD cleavage, but failed to examine GSDME cleavage, 
which may play a role in CASP-3-dependent inflammatory apoptosis. Furthermore, 
although our study proposed a risk model containing 26 prognostic genes, external 
validation in an independent dataset is needed to assess the generalizability and 
reliability of the model. Regarding functional enrichment analysis and pathway 
identification, we recognized that only limited experimental validation has been 
performed on the turquoise module. Future studies will require more comprehensive 
experimental validation of the functional roles of these genes in liver cancer biology. 
More extensive in vivo studies, including additional markers of inflammatory apoptosis, 
as well as external validation of our prognostic models would be valuable next steps 
when considering future research directions. In addition, in-depth studies of the broader 
role of PAK1IP1 in hepatocellular carcinoma biology are essential. This study revealed 
a possible important role of PAK1IP1 and other factors in hepatocellular carcinoma 
progression and patient prognosis, but further experimental and clinical studies are 
needed to deepen our understanding and confirm these preliminary findings.

Conclusions
To sum up, PAK1IP1 functions as a proto-oncogene in HCC. Additionally, the 
increased infiltration of myeloid dendritic cells observed in HCC samples highlights 
their potential as immunological targets. Furthermore, our in vitro experiments 
elucidated the mechanism of PAK1IP1, revealing that PAK1IP1 knockdown induced 
CASP-3-dependent pyroptosis in HCC cells to inhibit HCC progression. These findings 
laid the groundwork for future research endeavors for developing new clinical 
biomarkers. 
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Figure Legends
Figure 1 Identification and WGCNA analysis of DEGs in liver cancer.
(A-C) Volcano plots showing identified DEGs from the TCGA dataset (A), GSE45267 
dataset (B) and GSE36376 dataset (C). Orange and green dots represent up-regulated 
and down-regulated genes, respectively.
(D) Venn diagram showing the intersection of upregulated DEGs from the three 
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datasets.
(E) Venn diagram showing the intersection of downregulated DEGs from the three 
datasets.
(F) Determination of soft threshold power using WGCNA analysis.
(G) Dendrogram of gene clustering in WGCNA analysis, with modules indicated by 
color.
(H) Correlation heatmap showing correlations between modular eigengenes (MEs) and 
clinical features. The Turquoise module was identified as a key module related to 
clinical features.

Figure 2 GO, KEGG pathway enrichment analysis and MCODE networks of 
turquoise module genes.
(A) GO analysis of turquoise module gene enrichment. The abscissa is the Gene ratio, 
and the ordinate is the enriched term.
(B) KEGG pathway enrichment analysis of turquoise module genes. The abscissa is the 
Gene ratio, and the ordinate is the enriched pathway.
(C) PPI network of the mcode1 cluster within the turquoise module gene.
(D) PPI network of the mcode2 cluster within the turquoise module gene. Nodes in the 
network represent genes and edges represent protein-protein interactions. The size of 
the nodes reflects the degree of connectivity of the corresponding genes.

Figure 3 LASSO regression analysis and construction of liver cancer risk model
(A) Distribution plot of LASSO coefficients for nodal genes.
(B) Optimal lambda.min value selected by 10-fold cross-validation.
(C) Patient characteristics ordered by their risk score. From top to bottom are the risk 
scores of 26 genes, the distribution of patient survival status, and the heat map of 
patients in the low-risk group and high-risk group.
(D) Kaplan-Meier curves of overall survival in high-risk and low-risk groups.
(E) ROC curves of the liver cancer risk model at 1, 3, and 5 years.

Figure 4 Expression and prognostic analysis of 26 identified genes in liver cancer
(A-C) Expression levels of 26 genes from TCGA, GSE45267 and GSE49515 datasets 
in normal and tumor tissues. Red and green represent tumor and normal samples, 
respectively.
(D-V) Kaplan-Meier survival analysis of 26 genes in HCC patients in the TCGA dataset. 
The X-axis represents the survival time, and the Y-axis represents the survival rate. Red 
and green curves represent high and low expression groups, respectively. P-values and 
hazard ratios (HR) with 95% confidence intervals (CI) are shown.
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

Figure 5 Construction of the prognostic nomogram.
(A) Forest plot of univariate Cox regression analysis of PAK1IP1 and 
clinicopathological variables. 
(B) Forest plot of multivariate Cox regression analysis of PAK1IP1 and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.02.24308341doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.02.24308341
http://creativecommons.org/licenses/by/4.0/


clinicopathological variables. 
(C) Nomogram for HCC prognosis prediction constructed by integrating PAK1IP1 and 
pTNM staging.
(D) Calibration plot of the nomogram showing the agreement between predicted and 
observed survival. The x-axis represents predicted survival probabilities and the y-axis 
represents actual survival probabilities. Diagonal lines represent perfect predictions.

Figure 6 Clinical feature and immune analysis of PAK1IP1 in liver cancer.
(A) PAK1IP1 expression levels in normal and tumor samples according to the 
UALCAN database.
(B-F) Boxplot displaying PAK1IP1 expression levels in individuals with liver cancer, 
stratified by (B) age, (C) sex, (D) tumor stage, (E) TP53 mutation status, and (F) tumor 
grade.
(G) Heat map of immune cell scores, where different colors represent expression trends 
in different samples. 
(H) The percentage abundance of tumor-infiltrating immune cells in each sample. 
Different colors represent different immune cell types, the abscissa represents the 
sample, and the ordinate represents the percentage of immune cell content in a single 
sample. 
*P<0.05, **P<0.01, ****P<0.0001. 

Figure 7 Knockdown of PAK1IP1 inhibits growth, invasion and migration of HCC 
cells.
(A) qRT-PCR analysis of PAK1IP1 expression in normal hepatocytes and HCC cells.
(B-C) Efficiency of si-PAK1IP1 #1, #2 and #3 in HCC cells detected by PCR and WB 
in HCC cells. GAPDH was used as a loading control.
(D-E) CCK-8 assay showed the effect of PAK1IP1 knockdown on the proliferation of 
HCC cells.
(F-I) Transwell assay for the effect of PAK1IP1 knockdown on the invasion and 
migration of HCC cells. Scale: 50 µm.
*P<0.05, **P<0.01.

Figure 8 PAK1IP1 regulates gene expression associated with pyroptosis in HCC 
cells.
(A) Physical interaction network between PAK1IP1 and 33 pyroptosis-related genes. 
Nodes represent genes, and edges represent connectivity between genes.
(B-C) ELISA assay to detect the effect of LPS treatment and knockdown of PAK1IP1 
hepatocellular carcinoma cells on pyroptosis-related markers (IL-1β).
(D-E) The effect of LPS treatment and PAK1IP1 knockdown on the apoptosis rate of 
HCC cells was determined by flow cytometry. Quantitative results were shown on the 
right side of the graph.
*P<0.05, **P<0.01, ***P<0.001. 

Figure 9 PAK1IP1 knockdown suppresses proliferation, invasion and migration 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.02.24308341doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.02.24308341
http://creativecommons.org/licenses/by/4.0/


of HCC cells through the CASP-3 pathway.
(A) Western blot analysis of CASP-3 protein expression in HCC cells after PAK1IP1 
knockdown.
(B-C) CCK-8 assay showing the effect of si-PAK1IP1 knockdown and Z-DEVD-FMK 
treatment on the proliferation of HCC cells.
(D-E) Transwell assay showing the effect of PAK1IP1 knockdown on the invasion and 
migration of HCC cells after LPS treatment.
(F-G) Transwell analysis showing the effect of Z-DEVD-FMK treatment on the 
invasion and migration of HCC cells. Scale: 50 µm.
*P<0.05. 
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