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Abstract 35 

 36 

Objective: Mutations in several genes have been associated with familial forms of pituitary 37 

adenomas. Sporadic pituitary adenomas (i.e. with no family history or coexistent endocrine 38 

tumours) are also occasionally found to result from germline mutations in these genes, 39 

especially in young patients with larger tumours. The aim of this study was to determine the 40 

frequency of germline mutations in patients with young-onset sporadic pituitary 41 

macroadenomas. 42 

Methods: A cohort of 225 Portuguese patients with sporadic pituitary macroadenomas 43 

diagnosed before the age of 40 years was studied by whole exome sequencing (WES) followed 44 

by the analysis of a virtual panel of 29 genes that have been associated with predisposition to 45 

pituitary adenomas. 46 

Results: Pathogenic and likely pathogenic variants were identified in 16 (7.1%) of patients. The 47 

affected genes were AIP (n=4), PMS2 (n=4), MEN1 (n=2), VHL (n=2), CDH23 (n=1), MSH2 (n=1), 48 

SDHB (n=1), and TP53 (n=1). In patients diagnosed under the ages of 30 and 18 years, the 49 

frequency of mutations increased to 9.0% and 12.0%, respectively. 50 

Conclusion: This is so far the largest multigene analysis of patients with young-onset sporadic 51 

pituitary macroadenomas. We confirmed the AIP as the most frequently involved gene, but also 52 

uncovered rarer genetic causes of pituitary adenomas, including the first independent 53 

confirmation of a role of the CDH23 gene. The results may contribute to a better understanding 54 

of the genetic landscape of these tumours and help to decide which genes to include in the 55 

genetic screening of patients with young-onset pituitary macroadenomas. 56 
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Introduction 58 

Most pituitary adenomas occur sporadically and are often attributed to acquired somatic and 59 

epigenetic mutations (1). However, a subset of cases arises within a familial context, either as 60 

part of syndromic diseases or as familial isolated pituitary adenomas (FIPA), which are caused 61 

by pathogenic germline mutations (2). Tumours within familial settings tend to be more 62 

aggressive, manifesting at a younger age, with larger sizes, increased invasiveness, and 63 

resistance to standard treatments (3). An expanding list of genes, including AIP, CABLES1, 64 

CDH23, CDKN1A, CDKN1B, CDKN2B, CDKN2C, DICER1, GNAS, GPR101, MAX, MEN1, MLH1, 65 

MSH2, MSH6, NF1, PMS2, PRKACA, PRKACB, PRKAR1A, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, 66 

TP53, USP8, and VHL, has been identified with germline or mosaic mutations predisposing 67 

individuals to pituitary adenomas (4-6) . Identifying these genetic alterations is not only crucial 68 

for accurate diagnosis and personalized treatment, but also provides valuable insights into the 69 

molecular pathways disrupted in these tumours (7). 70 

While sporadic cases traditionally lack a clear hereditary component, several studies have shown 71 

that a variable proportion of these cases harbour germline mutations (8). The most extensively 72 

studied gene is AIP, which was first associated with FIPA (9), but later found to be mutated in 73 

many apparently sporadic cases, particularly among patients of younger ages and with larger 74 

tumours (10). 75 

We recently screened a cohort of patients diagnosed with young‑onset sporadic pituitary 76 

macroadenomas for AIP mutations (11). This revealed the presence of AIP mutations in 1.8%, 77 

3.4% and 5.0% of patients diagnosed under the ages of 40, 30 and 18 years, respectively (11). 78 

Building upon this, we have now employed next-generation sequencing to expand the genetic 79 

screening to all genes with germline mutations that have so far been associated with familial 80 

isolated or syndromic pituitary adenomas. 81 
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Materials and Methods 83 

Subjects 84 

This was a follow-up study of a Portuguese multicentre cohort that had been previously studied 85 

by conventional (Sanger) sequencing of the AIP gene (11). A total of 225 patients were available 86 

for this study. Inclusion criteria were patients with macroadenomas (tumour greater diameter ≥ 87 

1 cm) diagnosed under the age of 40 years. Exclusion criteria were patients with a family history 88 

of pituitary adenomas (i.e. affected first or second degree family member) or with evidence of 89 

a syndromic form of pituitary adenoma. Mean age (± standard deviation) at diagnosis was 29.1 90 

± 7.3 years, 122 patients were under 30 years at diagnosis, and 25 patients were under 18 years 91 

at diagnosis. Gender distribution was 116 (51.6%) females and 109 (48.4%) males. Tumour 92 

classification was based on histological examination or, in the case of prolactinomas, by clinical, 93 

hormonal and radiological examination. Eighty-one (36.0%) patients had prolactinomas, 62 94 

(27.6%) had somatotrophinomas, 37 (16.4%) had non-functioning pituitary adenomas, 16 (7.1%) 95 

had mixed-secreting pituitary adenomas, 15 (6.7%) had corticotrophinomas, seven (3.1%) had 96 

gonadotrophinomas, one (0.4%) had a thyrotrophinoma, and six (2.7%) had adenomas with 97 

undetermined histology. The control population comprised 298 Portuguese individuals (50 98 

healthy blood donors and 248 patients with unrelated disorders). The study was approved by 99 

the Ethics Committee of the Faculty of Health Sciences, University of Beira Interior (Ref: CE-UBI-100 

Pj-2018-027 and CE-FCS-2011-003) and written informed consent was obtained from all 101 

subjects. 102 

 103 

Whole exome sequencing (WES) and virtual gene panel 104 

Genomic deoxyribonucleic acid (DNA) was extracted from the peripheral blood leukocytes of 105 

each patient and used for WES analysis according to previously described methods (12). A virtual 106 

gene panel was created, consisting of 29 genes in which germline or mosaic mutations have 107 

been reported in patients with familial isolated or syndromic pituitary adenomas (4-6), namely 108 

AIP (NM_003977.3), CABLES1 (NM_001100619.2), CDH23 (NM_022124.5), CDKN1A 109 

(NM_078467.3), CDKN1B (NM_004064.4), CDKN2B (NM_004936.4), CDKN2C (NM_001262.3), 110 

DICER1 (NM_177438.3), GNAS (NM_000516.7), GPR101 (NM_054021.1), MAX (NM_002382), 111 

MEN1 (NM_130799.2), MLH1 (NM_000249.4), MSH2 (NM_000251.3), MSH6 (NM_000179.3), 112 

NF1 (NM_000267.3), PMS2 (NM_000535.7), PRKACA (NM_002730.4), PRKACB (NM_182948.4), 113 

PRKAR1A (NM_002734.5), RET (NM_020975.4), SDHA (NM_004168.3), SDHAF2 (NM_017841.2), 114 
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SDHB (NM_003000.3), SDHC (NM_003001.5), SDHD (NM_003002.3), TP53 (NM_000546.6), 115 

USP8 (NM_005154.5), and VHL (NM_000551.3). 116 

 117 

Interpretation of genetic variants 118 

Genetic variants were filtered according to the following cumulative criteria: 1) Location in one 119 

of the 29 genes previously implicated in pituitary adenomas; 2) Location in coding transcripts 120 

used by the Human Genome Mutation Database (HGMD) (13); 3) Location in coding exons or up 121 

to ten nucleotides adjacent to the coding exons; and 4) Population allele frequency less than 122 

0.001 in the Genome Aggregation Database (gnomAD) and 1000 Genomes database (14). The 123 

variants selected by these criteria were classified as benign (B), likely benign (LB), variant of 124 

uncertain significance (VUS), likely pathogenic (LP) or pathogenic (P), according to American 125 

College of Medical Genetics and Genomics (ACMG) criteria (15) and ClinGen recommendations 126 

(16), using a web-based variant interpretation tool (Franklin by Genoox, reference hg19, 127 

https://franklin.genoox.com/, accessed on 30 March 2024). Filtered variants were screened in 128 

an in-house database of 298 Portuguese control individuals to assess the possibility of variants 129 

being population-specific common polymorphisms. 130 

 131 

Validation of genetic variants by Sanger sequencing 132 

Variants classified as pathogenic and likely pathogenic were confirmed by conventional Sanger 133 

sequencing using a semi-automated DNA sequencer (STAB VIDA, Caparica, Portugal; and ABI 134 

3730XL, Applied Biosystems; Thermo Fisher Scientific, Waltham, MA, USA). 135 
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Results 137 

Rare sequence variants identified in the 29 analysed genes 138 

A total of 154 (141 different) rare sequence variants (population allele frequency <0.001) were 139 

identified in 114 of the 225 patients. These variants were found in 25 of the 29 analysed genes 140 

and included three pathogenic, 13 likely pathogenic (11 different), 63 VUS (56 different), 64 141 

likely benign (61 different) and 11 benign (10 different) (Supplemental Data 1). All rare sequence 142 

variants were identified in the heterozygous state. 143 

 144 

Pathogenic and likely pathogenic variants 145 

Pathogenic and likely pathogenic variants were identified in 16 (7.1%) patients with young-onset 146 

sporadic pituitary macroadenomas. These consisted of four AIP gene mutations (previously 147 

reported by us (11)) (p.Ser53ThrfsTer36, p.Arg81Ter, p.Leu115TrpfsTer41, and p.Glu246Ter), 148 

four PMS2 mutations (three patients with p.Asn335Ser, and one with p.Asp486GlufsTer109), 149 

two MEN1 mutations (p.Trp183Ter, and p.Arg314_Asp315del), two VHL mutations 150 

(p.Lys196Glu, and p.Glu52Ter), one CDH23 mutation (p.Glu2520Lys), one MSH2 mutation 151 

(p.Arg524His), one SDHB mutation (p.Ile127Leu), and one TP53 mutation (p.Arg282Gln) (Table 152 

1 and Figure 1). 153 

 154 

Prevalence of mutations according to age of diagnosis 155 

The prevalence of mutations was higher in patients with younger ages at diagnosis. The 156 

prevalence of mutations in patients diagnosed up until the age of 40, 30 and 18 years was 7.1% 157 

(16/225), 9.0% (11/122), and 12.0% (3/25), respectively.  158 

 159 

Clinical characteristics of patients with mutations 160 

The clinical characteristics of the 16 patients with identified mutations are presented in Table 1. 161 

Patients had no personal history of additional tumours or other syndromic features at the time 162 

of inclusion in the study. However, two patients with MEN1 mutations were found to have 163 

hyperparathyroidism during or after undertaking the genetic studies. 164 
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Discussion 166 

Our analysis of 225 patients with young-onset sporadic pituitary macroadenomas showed that 167 

16 (7.1%) patients had germline mutations in genes that are associated with familial forms of 168 

pituitary adenomas. These mutations involved the AIP (1.8% of patients), PMS2 (1.8%), MEN1 169 

(0.9%), VHL (0.9%), CDH23 (0.4%), MSH2 (0.4%), SDHB (0.4%), and TP53 (0.4%) genes. 170 

The AIP gene is associated with FIPA (9), but has also been extensively studied in patients with 171 

sporadic pituitary adenomas. The prevalence of AIP germline mutations in patients with 172 

sporadic pituitary macroadenomas under the age of 40 has been reported to vary from 0% to 173 

18% (11), depending of the country of origin, clinical characteristics of the cohort, and criteria 174 

used for the classification of genetic variants. We found four (1.8%) patients with AIP mutations, 175 

which were frameshift (p.Ser53ThrfsTer36, and p.Leu115TrpfsTer41) and nonsense (p.Arg81Ter, 176 

and p.Glu246Ter) mutations expected to lead to a premature stop codon and to the formation 177 

of a shorter protein or to nonsense-mediated decay (17). These AIP mutations were all found in 178 

patients with GH-secreting adenomas, in agreement with the higher prevalence of AIP 179 

mutations in this tumour type (18). These results confirm the results of our previous Sanger 180 

sequencing of the AIP gene in this cohort of patients (11). 181 

The PMS2 gene is associated with Lynch syndrome (19), which is characterised by the occurrence 182 

of a variety of tumours that include colorectal, endometrial, ovarian and gastric cancers (20). 183 

Although some cases of aggressive pituitary tumours have been reported in patients with Lynch 184 

syndrome (21-23), the prevalence of PMS2 mutations in sporadic pituitary adenomas has never 185 

been reported before. We found four (1.8%) patients with PMS2 mutations, with no other 186 

apparent manifestations of Lynch syndrome. These consisted of a previously reported (24) 187 

missense (p.Asn335Ser) mutation that was identified in three unrelated patients, diagnosed 188 

with a somatotrophinoma, prolactinoma and non-functioning pituitary adenoma, and a novel 189 

frameshift (p.Asp486GlufsTer109) mutation in a patient with a prolactinoma. Thus, our study 190 

suggests that the PMS2 gene has a more important role in pituitary tumorigenesis than 191 

previously acknowledged. 192 

The MEN1 gene is associated with the multiple endocrine neoplasia type 1 (MEN1) syndrome, 193 

which is characterised by the occurrence of parathyroid, pancreatic and pituitary tumours (25, 194 

26). MEN1 mutations are occasionally found in patients with pituitary adenomas without other 195 

MEN1 manifestations. A previous study identified MEN1 mutations in 3.4% of patients with 196 

sporadic pituitary macroadenomas diagnosed before the age of 30 (27). Our study found two 197 

(0.9%) patients with MEN1 mutations, which consisted of a previously reported (26) nonsense 198 
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mutation (p.Trp183Ter) and a novel in-frame deletion (p.Arg314_Asp315del). Both patients had 199 

mixed GH-secreting adenomas. It is interesting to note that although there were no other 200 

apparent manifestations of the MEN1 syndrome at the time of the diagnosis of the pituitary 201 

adenoma, both patients were eventually found to have hyperparathyroidism during or after 202 

undertaking the genetic studies. 203 

The VHL gene is associated with the Von Hippel–Lindau (VHL) syndrome, which is characterised 204 

by tumours in several organs, such as retinal and central nervous system haemangioblastomas, 205 

pheochromocytomas and clear-cell renal carcinomas (28). Pituitary adenomas have also been 206 

described in patients with the VHL syndrome (29). However, the prevalence of VHL mutations 207 

in sporadic pituitary adenomas has not been reported. We found two (0.9%) patients with VHL 208 

mutations, with no other apparent manifestations of the VHL syndrome. These consisted of a 209 

previously reported (30) nonsense (p.Glu52Ter) mutation in a patient with a prolactinoma and 210 

a previously reported (31) missense (p.Lys196Glu) mutation in a patient with a 211 

thyrotrophinoma. The latter mutation was previously reported in homozygosity in a patient with 212 

autosomal recessive congenital erythrocytosis, but with no evidence of the VHL syndrome (31). 213 

Therefore, it remains to be clarified if heterozygosity for this particular mutation, as found in our 214 

patient, can cause the VHL syndrome. 215 

The CDH23 gene is associated with the autosomal recessive Usher syndrome, which is 216 

characterized by congenital deafness (32). However, a study by Zhang et al. (33) demonstrated 217 

the presence of CDH23 heterozygous mutations in 33% and 12% of familial and isolated pituitary 218 

adenomas, respectively. So far, these results have not been independently confirmed. 219 

Furthermore, there have been no reports of a higher incidence of pituitary adenomas in patients 220 

with Usher syndrome or in their heterozygous relatives. We found one (0.4%) patient with a GH-221 

secreting adenoma and a previously reported (34) CDH23 missense mutation (p.Glu2520Lys). 222 

Thus, our study represents the first independent confirmation of a role of CDH23 in the 223 

development of pituitary adenomas. 224 

The MSH2 gene is also associated with Lynch syndrome (35, 36) and some affected patients have 225 

been reported to have aggressive pituitary adenomas (21-23). We found one (0.4%) patient with 226 

a previously reported (37) MSH2 missense mutation (p.Arg524His), who had a prolactinoma with 227 

no other apparent manifestations of Lynch syndrome. 228 

The SDHB gene is associated with paragangliomas and pheochromocytomas (38). Pituitary 229 

adenomas occasionally occur in association with these (3PA, Phaeochromocytoma, 230 

Paraganglioma and Pituitary adenoma association) (39). However, the prevalence of SDHB 231 
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mutations in sporadic pituitary adenomas is unknown. A French study of 263 patients with 232 

sporadic pituitary adenomas revealed two mutations in the SDHA gene, one in the SDHC gene, 233 

but none in SDHB (40). We found one (0.4%) patient with a previously reported (41) SDHB 234 

missense mutation (p.Ile127Leu), who had a prolactinoma without any other syndromic 235 

manifestations. 236 

The TP53 gene is considered the most mutated tumour suppressor gene in human cancers (42). 237 

Germline mutations in this gene are associated with the Li-Fraumeni syndrome, which 238 

predisposes to soft tissue sarcomas, osteosarcoma, breast cancer, leukaemia, and 239 

adrenocortical carcinoma (43). The role of the TP53 gene in pituitary adenomas is less clear. The 240 

TP53 gene was included in our gene panel because a recent review (6) listed it as one of the 241 

genes in which germline mutations are implicated in pituitary adenomas. However, although 242 

somatic mutations in TP53 have been reported in pituitary adenomas (1), we found no reports 243 

of germline mutations in patients with these tumours. Nevertheless, in our study, we found one 244 

(0.4%) patient with a previously reported (44) TP53 germline missense mutation (p.Arg282Gln), 245 

who had a corticotrophinoma without any other syndromic manifestations. Thus, our study 246 

reports for the first time a TP53 germline pathogenic mutation in a patient with a pituitary 247 

adenoma. 248 

None of the patients included in our study had other coexistent tumours or syndromic features 249 

or family history that would raise the suspicion of a germline mutation. The unexpected 250 

identification of germline mutations in a subset of patients with sporadic tumours could have 251 

several explanations. First, family history was self-reported by the patients and may have been 252 

inaccurate or incomplete. Second, the lack of other affected family members could have been 253 

due to incomplete penetrance of the mutation or to a de novo mutation in the patient. Third, 254 

other syndromic manifestations could have been missed on clinical screening or absent due to 255 

variable expression of the mutation. Importantly, our identification of patients with germline 256 

mutations will improve their clinical management, allow the screening of additional syndromic 257 

manifestations, and allow the identification of additional affected family members that can be 258 

screened for the disorder (6). 259 

Previous studies of sporadic pituitary adenomas have mainly focused on the AIP gene, as this is 260 

the most commonly mutated gene in such cases (8). Only three other studies performed gene 261 

panel analyses in patients with sporadic pituitary adenomas, but with a limited number of genes 262 

(≤ 9) that did not include for example the VHL, PMS2 or CDH23 genes (40, 45, 46). Nevertheless, 263 

these studies were able to identify pathogenic variants in 3.8% to 10% of patients with young-264 

onset sporadic pituitary adenomas. 265 
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In our study, we analysed the largest panel of genes so far in patients with sporadic pituitary 266 

adenomas. We confirmed the AIP as the most frequently involved gene in these patients, but 267 

also uncovered rarer genetic causes of pituitary adenomas. Altogether, germline mutations 268 

were present in 7.1% of our patients diagnosed with sporadic macroadenomas under the age of 269 

40 years. However, this proportion increased to 9.0% and 12.0%, in patients diagnosed under 270 

the ages of 30 and 18 years, respectively. This is in agreement with the general observation that 271 

tumours arising in younger ages are more likely to have a genetic cause.  272 

The existence of subsets of patients at higher risk of harbouring germline mutations has led to 273 

recommendations for AIP and MEN1 mutation testing in patients with pituitary macroadenomas 274 

diagnosed under the age of 30 (10, 27) or 40 years (47). However, there are currently no 275 

recommendations for additional genetic testing of sporadic pituitary adenomas that have been 276 

shown to be AIP and MEN1 mutation-negative. Our study suggests that testing such patients for 277 

a wider gene panel may uncover further cases of genetically-determined pituitary adenomas. 278 

Our study has some limitations. First, we did not look for copy number variants or mutations in 279 

non-coding genomic regions. Second, we did not look for mutations in other genes beyond those 280 

that have so far been associated with pituitary adenomas. Third, we found a large number of 281 

VUS, for which there is currently insufficient evidence for an association with the disorder, but 282 

that may need reclassification over time (48). 283 

In conclusion, we found a prevalence of 7.1% germline mutations in patients with young-onset 284 

pituitary macroadenomas. These include mutations in the AIP, MEN1, MSH2, PMS2, SDHB, TP53 285 

and VHL genes and the first independent confirmation of a mutation in the CDH23 gene. Our 286 

results may contribute to a better understanding of the genetic landscape of these tumours and 287 

help to decide which genes to include in the genetic screening of patients with young-onset 288 

pituitary macroadenomas. 289 
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Table 1. Clinical and genetic characteristics of 16 patients with pathogenic (P) and likely pathogenic (LP) variants. 474 

Gene 
(transcript) 

Patient 
number 

(id) 

Sex Age at 
diagnosis 

(yr) 

Type of 
adenoma 

(hormones 
produced) 

Size of 
adenoma 

(mm) 

Variant (nucleotide change, 
protein change) (a) 

Effect Allele 
frequency in 

GnomAD 

Allele 
frequency in 
Portuguese 

controls 

ACMG 
classification 
(criteria) (b) 

Previous 
report 

AIP 
(NM_003977.3) 

1 (8215) F 19-30 GH 20 c.158_165delGCCGGGCT, 
p.Ser53ThrfsTer36 

Frameshift 
deletion 

0 0 LP (PVS1, PM2) (11)* 

 2 (7879) M 19-30 GH 26 c.241C>T, p.Arg81Ter Nonsense 0 0 P (PVS1, PM2, 
PS4) 

(49) (11)* 

 3 (7329) M ≤18 GH/PRL 14 c.343delC, 
p.Leu115TrpfsTer41 

Frameshift 
deletion 

0 0 LP (PVS1, PM2) (50) (11)* 

 4 (7632) F 19-30 GH 28 c.736G>T, p.Glu246Ter Nonsense 0 0 LP (PVS1, PM2) (11)* 

CDH23 
(NM_022124.5) 

5 (7791) M 19-30 GH 25 c.7558G>A, p.Glu2520Lys Missense 0 0 LP (PS4, PM2, 
PP3, PP5) 

(34) 

MEN1 
(NM_130799.2) 

6 (7850) M 31-40 GH/PRL 60 c.548G>A, p.Trp183Ter Nonsense 0 0 P (PVS1, PS4, 
PP5, PM2) 

(26) 

 7 (7971) F 19-30 GH/PRL/TSH 40 c.940_945delCGGGAT, 
p.Arg314_Asp315del 

In-frame 
deletion 

0 0 LP (PM1, PM2, 
PM4) 

None 

MSH2 
(NM_000251.3) 

8 (7642) F 19-30 PRL >10 c.1571G>A, p.Arg524His Missense 0.000011 0 LP (PM2, PM5, 
PP3) 

(37) 

PMS2 
(NM_000535.7) 

9 (8072) M 31-40 GH >10 c.1004A>G, p.Asn335Ser Missense 0.000273 0 LP (PP3, PM2, 
BP6) 

(24) 

 10 (8094) F 31-40 PRL 31 c.1004A>G, p.Asn335Ser Missense 0.000273 0 LP (PP3, PM2, 
BP6) 

(24) 

 11 (8095) F 31-40 Non-
functioning 

40 c.1004A>G, p.Asn335Ser Missense 0.000273 0 LP (PP3, PM2, 
BP6) 

(24) 

 12 (7648) M 19-30 PRL >20 c.1458delC, 
p.Asp486GlufsTer109 

Frameshift 
deletion 

0 0 LP (PVS1, PM2) None 

SDHB 
(NM_003000.3) 

13 (7887) F 19-30 PRL 20 c.379A>C, p.Ile127Leu Missense 0.000004 0 LP (PM1, PM2, 
PM5, PP2, PP3) 

(41) 
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TP53 
(NM_000546.6) 

14 (8079) F 31-40 ACTH 14 c.845G>A, p.Arg282Gln Missense 0.000004 0 LP (BS3, PM2, 
PM5, PM1, PP3, 

PP5) 

(44) 

VHL 
(NM_000551.3) 

15 (6906) F ≤18 PRL >10 c.154G>T, p.Glu52Ter Nonsense 0.000018 0 LP (PVS1, PM2) (30) 

 16 (7792) M ≤18 TSH 10 c.586A>G, p.Lys196Glu Missense 0 0 P (PM1, PM2, 
PM3, PP2, PP3, 

PP5) 

(31) 

id, identification (anonymization code not known to anyone outside the research group); F, female; M, male; yr, years (presented as age range to protect patient privacy); FSH, follicle stimulating hormone; GH, growth 475 
hormone; LH, luteinizing hormone; PRL, prolactin; TSH, thyroid stimulating hormone; mm, millimeters; GnomAD, Genome Aggregation Database (v2.1.1). (a) All variants were heterozygous. (b) American College of 476 
Medical Genetics and Genomics (ACMG) classification of variants (P, pathogenic; LP, likely pathogenic) was based on the evidence for pathogenicity (very strong (PVS1), moderate (PM1–6), or supporting (PP1–5)). 477 
ACMG classifications were based on the web-based variant interpretation tool Franklin (Genoox Ltd, https://franklin.genoox.com/), accessed on 30 March 2024. *Publication by the authors that included the same 478 
patient. 479 

 480 
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Figure legend 

 

Figure 1. Germline mutations identified in patients. The Sanger sequencing chromatograms are 

presented for each heterozygous mutation (indicated by an asterisk) and surrounding 

nucleotides. 
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