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Abstract  

Schizophrenia and other psychiatric disorders can greatly benefit from objective 

decision support in diagnosis and therapy. Machine learning approaches based on 

neuroimaging, e.g. magnetic resonance imaging (MRI), have the potential to serve this 

purpose. However, the medical data sets these algorithms can be trained on are often 

rather small, leading to overfit, and the resulting models can therewith not be 

transferred into a clinical setting. The generation of synthetic images from real data is a 

promising approach to overcome this shortcoming. Due to the small data set size and 

the size and complexity of medical images, i.e. their three-dimensional nature, those 

algorithms are challenged on several levels. We develop four generative adversarial 

network (GAN) architectures that tackle these challenges and evaluate them 

systematically with a data set of 193 MR images of schizophrenia patients and healthy 

controls. The best architecture, a GAN with spectral normalization regulation and an 

additional encoder (α-SN-GAN), is then extended with an auxiliary classifier into an 

ensemble of networks capable of generating distinct image sets for the two diagnostic 

categories. The synthetic images increase the accuracy of a diagnostic classifier from a 

baseline accuracy of around 61% to 79%. This novel end-to-end pipeline for 

schizophrenia diagnosis demonstrates a data and memory efficient approach to 

support clinical decision-making that can also be transferred to support other 

psychiatric disorders. 
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Introduction  

Schizophrenia (SCZ) is a heterogeneous neurological disease characterized by a 

broad spectrum of symptoms including delusions, hallucinations, and disorganized 

thinking [1]. Due to a lack of reliable diagnostic biomarkers [1, 2], psychiatrists currently 

diagnose SCZ based on the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-V) [3]. The disorder is connected to a variety of genetic and environmental 

factors and genetic, blood, as well as brain alterations have been linked to it [1, 4].  

Brain imaging with structural magnetic resonance imaging (sMRI) has been explored 

for supporting the objective diagnosis of SCZ. Due to the widespread but subtle 

changes in brain matter of SCZ patients [5], multivariate approaches such as machine 

learning (ML) algorithms are prominently explored for automated support of objective 

SCZ diagnoses. ML considers a diagnosis as classification problem sorting images into 

the classes „healthy“ or „patient“. Approaches include feature extraction combined with 

traditional ML algorithms [5] as well as deep learning (DL) algorithms, which allow 

automatic feature extraction [6, 7]. The latter enables SCZ classification without a priori 

hypotheses about specific brain regions being discriminatory for the task at hand. 3D 

convolutional neural networks (3D-CNNs), a type of DL algorithms for three-

dimensional inputs, achieve state-of-the-art performance up to 95% accuracy for SCZ 

“diagnosis” based on sMRI images [7-9]. However, DL algorithms tend to overfit on 

small data sets [10]. 

Training robust and reliable DL classifiers requires large training data sets, which is 

challenging for medical image data. Image acquisition is expensive and expert 

knowledge is required to label the data. Therefore, an effort is made to assemble such 

images in publicly available data sets to further research. However, publicly available 

MRI data sets from SCZ patients and healthy controls (HC) are still rather small, 

ranging from 50 to 600 images per class [8]. To increase the robustness of 

classification, data augmentation techniques have been employed to bolster small data 
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sets for training the classifier [11]. Traditional approaches from image classification, 

e.g. affine transformations or similar distortions, are less suitable for MRI images. 

However, generative ML methods like generative adversarial networks (GAN) provide 

promising new techniques for data augmentation [12]. An added bonus of these 

techniques is the generation of genuinely synthetic data, which does not underlie the 

strict regulations of patient data [12, 13]. The data generated with these models can 

therefore be published more easily and benefit a wide crowd of researchers. GAN 

architectures consist of at least two neural networks: a generator and a discriminator. 

The generator tries to produce images similar to those of a reference data set by using 

the feedback from the discriminator who learns to distinguish between real images and 

synthetic ones. GANs in various adaptions have shown the technical capability of 

synthesizing medical imaging data including the generation of brain images [13], mainly 

for 2D slices but also for 3D volumes [12, 14, 15]. They can also be conditioned to 

produce data of a given class affiliation [12, 16, 17], i.e. patients or HC. Medical images 

like sMRI volumes challenge GANs four-fold: 1) small data sets can lead to 

discriminator overfit, causing the vanishing gradients problem [18, 19]; 2) most 

algorithms for image processing were first, or only, implemented and optimized for 2D 

data; 3) complex, i.e. 3D, images tend to converge to a very small distribution of 

generated images causing mode collapse [14]; 4) 3D images and operations need 

exponentially more memory. End-to-end generation of synthetic data from a very small 

3D sMRI data set and downstream data-driven “diagnosis” classification has not yet 

been demonstrated, nor have MR images for SCZ classification been produced before.  

We address the previously mentioned challenges with a publicly available data set of 

sMRI data consisting of 102 SCZ patients and 91 HC, furthering the development of 

four 3D deep convolutional GAN (DC-GAN) architectures with various modifications, 

and systematically comparing the resulting architectures. The winning architecture is 

then extended by three conditional approaches to produce data from the two clinical 

groups and the best combined architecture is chosen to produce synthetic data for 
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training a 3D-CNN SCZ “diagnosis classifier”. This classifier is trained with different 

ratios of real and synthetic data and then tested with real data. An increase in 

classification accuracy when training with synthetic data demonstrates the added value 

of this generated data. In sum, this study contributes to the data and memory-efficient 

training of DL classifiers in medical imaging.   
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Methods  

Data 

The data set used in this study was obtained from the MCIC collection [20] in July 

2019. The collection contains structural T1-weighted MR images of 158 adult SCZ 

patients and 169 demographic, age, and sex-matched HC. Four research sites were 

involved in the data collection process from 2004 to 2006. All subjects provided 

informed consent to participate in the study that was approved by the human research 

committees at each of the sites. Patients had to be diagnosed with SCZ conforming to 

the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). A 

differentiation between distinct types and severities of SCZ was not conducted. We 

included only data from sites A, C, and D because the images originating from site B 

were not publically released due to IRB restrictions. Furthermore, the data from nine 

subjects failed transformation to BIDS format [21] due to missing meta-data, leaving a 

subset of 102 SCZ and 91 HC for this study. Sex distribution in the remaining data set 

was imbalanced with 61 female (A: 20; C: 21; D: 20) and 152 male (A: 70; C: 39; D: 43) 

subjects. Age of the subjects ranged from 18 to 60 years (A: 18-60; C: 18-60; D: 20-

57).  

Data were pre-processed using the nypipe toolbox [22] for Python. First, images were 

skull-stripped and registered to MNI space in 1mm3 isotropic resolution with nypipe 

wrapper functions for SPM12 [23]. To remove outliers, we capped voxel intensity at 

upper and lower 1% quantile of values and then rescaled the images to the range of -1 

to 1. Finally, slices containing only background were trimmed. 

In order to reduce the complexity of the classification and generation problem, we 

tested in a pre-study whether the reduction of image size from 1283 to 643 voxel 

compromised the information content usable for a diagnostic classifier. Using the same 

classification algorithm and training strategy as in the main study (cf. Diagnosis 

classifier), we found that classification accuracy did not suffer from down sampling 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.01.24308319doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.01.24308319


(59.1±7.1% for high resolution and 60.6±7.6% for low resolution; t8=0.29; p=.779). The 

number of parameters, however, decreased around 12-fold from 90,198,561 to 

7,361,057, analogously decreasing the computational resources for training the 

classifier. Therefore, we proceeded with images sampled down to around 2mm3 voxel 

size with 643 voxel for the main study. 

 

Experimental procedure 

Four GAN architectures based on a 3D DC-GAN are adapted to address our 

challenges, and evaluated for their image synthesis capabilities (Figure 1). Spectral 

normalization regularization (SN-GAN) [24] counteracts the vanishing gradients 

problem that often occurs for small sample sizes and is therefore applied for all 

architectures. Additionally incorporating an encoder (α-SN-GAN) [14] helps to alleviate 

mode collapse.  

To reduce the computational cost of the training, a hierarchical approach is adapted 

(HA-GAN) [15], which is also combined with the α-SN-GAN to join their advantages (α-

HA-GAN). Vanishing gradient and mode collapse are additionally addressed by 

applying data augmentation during training (DiffAugment) [19] to all four architectures, 

resulting in eight basic architectures being tested. The best architecture is selected for 

further processing based on qualitative and quantitative evaluation.  

Subsequently, three conditioning approaches are employed for creating images of the 

two clinical groups (SZC / HC): one classifier per class, an auxiliary classifier, and a 

projection discriminator. The winner architecture is then used to generate different sets 

of training data with different ratios of real and synthetic data and different set sizes. 

Finally, a diagnosis classifier is trained on these data sets to separate SCZ patients 

from HC in a test data set consisting of real data only. 
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Figure 1  Processing pipeline with architecture selection. Four basic architectures are designed to 

alleviate different problems during data synthesis and all four are tested with and without additional 

augmentation during training (DiffAugment). The best basic architecture is then expanded by three 

approaches for the generation of different clinical classes (schizophrenia patients vs. healthy controls). 

The best conditional architecture is then used to synthesize data for training a classifier that can be used 

for decision support in schizophrenia diagnosis. Abbreviations: SN (spectral normalization), GAN 

(generative adversarial network), α (with encoder), HA (hierarchical amortized) 

 

Diagnosis classifier 

The purpose of generating synthetic data in this study is to train a classifier that 

separates sMRI from SCZ and HC, henceforth called a diagnosis classifier. We 

employed a 3D-CNN since these types of networks have shown high performance in 

diagnosing schizophrenia from sMRI in previous studies [7-9, 25]. The architecture is 

based on the VGG16 architecture [26]. In brief, the model consists of multiple 3D 

convolution blocks and linear layers at the end. A 3D convolution block consists of a 
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convolution layer, a Rectified Linear Unit (ReLU) activation function, a batch 

normalization layer, and a max pooling layer. In between the linear layers, dropout is 

used. For details on the architecture, see Supplementary material Figure S1. 

For the training of each classifier, we chose a stratified 5-fold cross-validation approach 

with a batch size of 12. The training is executed with an AdamW optimizer [27] with a 

learning rate of 5e-6 and weight decay of 0.01. Hyperparameters are based on [26] and 

then tuned manually. To account for overfitting effects, all classifiers are trained past 

their convergence and the classifier at the minimum validation loss of each split is 

chosen. 

 

Basic architectures for image synthetization 

GAN architectures in this study are all based on the standard deep convolutional GAN 

(DC-GAN) [28] architecture, sometimes also referred to as CNN-GAN. This 

architecture consists of two networks. The generator network synthesizes images that 

resemble real sMRI images by projecting a randomly sampled latent space of a prior 

distribution z to the target distribution X. The discriminator network learns to distinguish 

real sMRI images from synthetic ones, produced by the generator. The adversarial loss 

consists of two different loss terms for updating the discriminator and the generator. 

Despite its success, the DC-GAN architecture suffers from two major problems: 

vanishing gradients [29, 30] and mode collapse [14, 24, 29, 30]. Vanishing gradients 

describes a phenomenon in which the discriminator network saturates quickly and in 

return fails to provide a meaningful gradient to the generator. This problem is magnified 

for small data sets since they are easily memorable for the discriminator. Mode 

collapse occurs when the generator succeeds in creating images that are classified as 

real by the discriminator but only produces a small variety of them. 

All GANs were trained using the Adam optimizer with a learning rate of 0.0002, β1=0.5, 

and β2=0.999 for all networks. We chose those training parameters and a latent space 
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size of 1000 since this size has shown to be effective in related works [14, 15]. Each 

GAN training was performed for 12,000 iterations with a batch size of four. 

 

SN-GAN 

A DC-GAN [23] with Spectral Normalization (SN) [24] applied (SN-GAN) is used to 

alleviate the vanishing gradients problem. Two changes regarding the discriminator 

regularization and the upsampling in the generator are applied to the DC-GAN 

architecture to form the SN-GAN (cf. Supplementary material Figures S2 and S3). The 

basic idea of regularization techniques is to avoid steep gradients and therefore fast 

changes in the discriminator’s weights, which lead to the vanishing gradients problem. 

Spectral normalization achieves this by renormalizing the weights of a layer according 

to 𝑊𝑆𝑁 =
𝑊

σ(W)
 , where σ denotes the spectral norm of the weight matrix 𝑊. This 

enforces a maximum Lipschitz constant of 1 for the discriminator which results in 

slower but more stable updates of the network. 

SN has achieved competitive results over the application of a gradient penalty (GP) 

[29], which is the successor to weight clipping in Wasserstein GANs (WGAN) [30]. 

Contrary to SN, GP only penalizes large gradients by adding a penalty term to the loss 

function instead of enforcing a hard constraint. Due to its lower computational cost 

compared to GP, SN is preferred over GP in this study for all models regardless of their 

original regularization technique. 

Another change compared to the original DC-GAN addresses the upsampling 

technique in the generator. Instead of transposed convolutions, we used pixel-shuffle 

[31] layers to increase the image size. This technique is chosen because it is 

computationally more efficient while increasing the number of parameters by shifting 

the upsampling process to the feature dimension. Contrary to interpolation approaches 

for upsampling, pixel-shuffle allows for learned upsampling filters and therefore leads to 

a higher flexibility of the network. To eliminate the occurrence of checkerboard 
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artefacts, we use an initialization scheme that resembles nearest-neighbour 

upsampling in the early stages of the training [32]. To further increase the flexibility of 

the model, the leaky ReLU activation function is used in the generator as well as the 

discriminator. The original DC-GAN implementation uses the ReLU activation function 

only in the generator. 

 

α-SN-GAN 

To combat mode collapse, an α-WGAN-GP [14] architecture, which has been used for 

medical 3D image generation on small medical data sets, is employed. We adapt the 

architecture of the α-WGAN-GP with SN and replace the Wasserstein Loss [30] with 

the Hinge Loss [24, 33], therefore naming the adapted architecture α-SN-GAN.  

To encourage the generator not to fall into the mode collapse, its goal is changed by 

introducing an encoder to the architecture [14, 34, 35] (cf. Supplementary material 

Figure S4). The encoder is used to produce a latent space representation of real 

images, which is used for training the generator along with the randomly sampled latent 

spaces. An additional reconstruction loss term like the L1 loss encourages the 

generator to produce images that cover the diversity of the whole data set [34, 35]. The 

loss function of the encoder is based on the Kullback-Leibler divergence [35] as 

distance metric, which leads the encoder to produce a distribution close to a randomly 

sampled latent space. 

To counteract a common drawback of GAN architectures with encoders, blurry images, 

we adapted the α-GAN approach [34] for all encoder models in this study. Our 

approach introduces a code discriminator (cf. Supplementary material Figure S5) 

discriminating between randomly sampled latent spaces and encoded latent spaces. 

The code discriminator considers the randomly sampled latent spaces as real and the 

encoded latent spaces as fake, therewith encouraging the encoder to generate latent 

spaces close to the random distribution. The code discriminator used in this study 
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consists of linear layers with spectral normalization. It is trained with the same loss 

function as the regular discriminator.  

 

HA-GAN 

To achieve resource efficiency, we leveraged the hierarchical HA-GAN [15], which was 

proposed to synthesize 3D medical images computationally effectively. It achieves 

shorter training times at a reduced memory consumption compared to the architectures 

previously introduced. 

The HA-GAN implements the hierarchical structure by splitting each of the GAN’s 

networks into a high-resolution and a low-resolution path (cf. Supplementary material 

Figure S6). A random image sub-volume of fixed size is used to train the high-

resolution path whereas the low-resolution path is trained using a down-sampled 

version of the image thus lowering the overall memory consumption. In addition to 

these models, both generators share a generator that synthesizes images up to the 

size of the low-resolution images, whose output is then used for the high- and low-

resolution generators. During inference mode, when no gradients need to be 

calculated, the high-resolution generator synthesizes full-sized images. 

We adapted the HA-GAN architecture to create 64³ images with a sub-volume size of 

8x64x64 and down-sampled images to one fourth of the original size (16³). The HA-

GAN has been introduced for larger data sets and larger image sizes (128³ and 256³) 

[15], on which it demonstrated improved quality compared to a WGAN and α-GAN. The 

models’ performance on a small data set as well as smaller image size has not yet 

been tested. 
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α-HA-GAN 

The combination of the α-SN-GAN’s training scheme and the HA-GAN architecture 

offers the possibility of performing a resource-efficient training of 3D GANs on small 

data sets (α-HA-GAN). The α-SN-GAN’s encoder is replaced with the memory-efficient 

encoder [15] and in the same way the discriminator and generator are split into a high- 

and low-resolution network. The high-resolution encoder produces a latent space of the 

same size as the high-resolution generator’s input and is trained by an L1 loss to 

minimize the difference between the input image and the high-resolution generator’s 

reconstruction of it. A concatenation of all high-resolution encoder outputs of all non-

overlapping sub-volumes Xc of the image is fed into the low-resolution encoder, which 

then is trained in the same fashion as the α-SN-GAN’s encoder. The resulting network 

combines all previously introduced techniques to leverage their improvements 

(Supplementary material Figure S6). 

Contrary to the SN-GAN and the α-SN-GAN architectures, the hierarchical ones are 

trained using the standard GAN loss since the Hinge Loss led to instability in the 

training. 

 

DiffAugment 

Additionally to the four architectures, we adapted DiffAugment [19] for 3D images and 

applied this technique to each architecture. DiffAugment describes the application of 

data augmentation in the training process of the GAN itself boosting the data set with 

augmented images to counteract mode collapse as well as the vanishing gradients 

problem. Augmentations are achieved with translation, masking, and colour or intensity 

range bias in the images. These augmentations are applied to each input of the 

discriminator. Since the generator is updated using the discriminator’s feedback, its 

gradients need to be able to flow through the discriminator as well as the 

augmentations during the backward pass of the generator. It is therefore necessary for 
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the applied augmentations to be differentiable. Differentiable augmentations are 

applicable for real and synthesized discriminator inputs contrary to regular 

augmentations. This is necessary to prevent augmentation artefacts in the synthesized 

images. 

 

Architectures for conditional image synthetization 

The purpose of data synthetization in this study is to generate training data for 

diagnosis classification; therefore, we need to generate data for two classes, i.e. two 

clinical groups: SCZ and HC. The most straightforward approach is to train two 

separate GANs with data from each group, respectively. A complementary approach is 

employed with conditional GANs (cGANs) [16] incorporating a class label in the 

synthetisation process. Different approaches exist for introducing this information in the 

generator and the discriminator. For the generator, we introduce the class information 

by concatenating an embedding of the label to the latent space for all conditional 

models. For the discriminator, we implement two different approaches.  

 

Projection discriminator 

Conditional discriminators incorporate the label in their architecture and output only the 

realism score or probability of being real for a given input [16, 36-38]. Three techniques 

have been proposed to introduce the class label y to the discriminator: Concatenation 

of the label to the input layer [16], to an intermediate layer [37, 38], or alternatively 

forming the inner product to include the label information instead of the concatenation, 

resulting in the projection discriminator [36]. The latter has previously demonstrated the 

highest performance [36] and will therefore be used in this study. 
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Auxiliary classifier 

Auxiliary Classifier GANs (AC-GANs) [39, 40] use an additional classification to provide 

feedback about the distinctness of the two data sets to the generator. They can be 

approached in two ways. The first one splits the discriminator at an intermediate layer 

to perform two different classifications: one for the realism of the image and one for the 

class affiliation [39]. The second approach involves a separate classifier [40]. In the 

latter, the original discriminator remains unaltered, thus its architecture is similar to a 

non-conditional discriminator. In theory, this method yields better results since the 

separated classifier is only trained on real images and is therefore not influenced by 

generated images. Additionally, unbalanced data sets are accounted for by the 

separated classifier contrary to the first approach [40]. These reasons lead to the use 

of only the second approach in this study. The auxiliary classifier is a 3D-CNN classifier 

using the same structure as the discriminator (cf. Supplementary material Figure S3). It 

was trained in advance to overfit on the real data set to ensure correct classification of 

synthetic images. During the GAN training it is only used in inference mode and not 

trained any further. 

 

Evaluation of synthetic data 

Quantitative evaluation 

Since the goal of GAN generators is the synthesize data with a distribution similar to 

the real data distribution, we utilize distance metrics to quantify the synthetization 

quality. Two commonly used distance metrics are the Maximum Mean Discrepancy 

(MMD) [41] and the Fréchet Inception Distance (FID) [41]. Both metrics combine the 

fidelity and diversity of generated images into one single score. To separate those 

performance measures, precision and recall metrics [42] are additionally calculated. 

Precision represents the proportion of generated images inside the target distribution 
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whereas recall represents the coverage of the target distribution by the generated 

images. 

In most image generation studies, GAN distance metrics are calculated based on 

features extracted with an Inception network architecture [43] pre-trained on the 

ImageNet data set [44] rather than whole images [41, 42, 45]. For medical 3D MR 

images, however, we could not use this pre-trained model because the Inception 

network cannot process 3D image data and a classifier trained on the ImageNet data 

set does not extract medically relevant features [46]. To alleviate both problems, a 

ResNet50 architecture pre-trained on 3D medical image data sets [47], was adapted to 

perform the extraction that were then used to calculate all the distance metrics. Note 

that this approach prevents the direct comparability of this study to others that use 

those distance metrics based on the Inception network trained on the ImageNet data 

set. 

For each of the trained architectures, we generate ten data sets each containing as 

many synthetic images as real images available for the respective generation model. 

 

Qualitative evaluation 

The synthetic data is evaluated qualitatively based on exemplary brain sections and the 

visualization of the distribution of the two first components from a principal component 

analysis (PCA) of the image features. For the PCA, the same features were extracted 

as for the quantitative evaluation. 

 

Evaluation with diagnosis classifier 

Since the synthetic data was generated to improve the training of the diagnosis 

classifier, the final test for the synthetic data was to serve as training data for the 

classifier. The classifier was trained with a stratified 5-fold cross validation approach, 
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using in each fold 60% of the data for training (61 SCZ and 55 HC images), and 20% of 

the real data for validation and test, respectively. Baseline classification accuracy was 

established training with real data only (Table 1). An additional baseline was 

constructed with an augmented data set of the same size as the real data training set. 

Here, we used the same augmentation techniques on the real images as for the 

DiffAugment step in the GAN evaluation: Random cropping of half the image size at 

most, translation of 1/8 maximum in each direction, and intensity randomization from 

0.7 to 1-times the original value. Each image distortion was applied with a probability of 

one third.  

In order to test the performance of training with synthetic data of the same size as the 

real training data, we constructed two training data sets containing synthetic images. 

For the mixed (small) data set, we replaced half of the real training data with synthetic 

data, for the synthetic (small) data, we replaced all real training data with synthetic 

images (Table 1).  

 

Table 1 Training data sets for the diagnosis classifier. 

Data set 
Schizophrenia Patients 

(real / synthetic) 

Healthy Controls 

(real / synthetic) 

Real (small) 61 / - 55 / - 

Augmented (small) 61 / - 55 / - 

Mixed (small) 31 / 30 28 / 27 

Mixed (large) 61 / 305 55 / 275 

Synthetic (small) - / 61 - / 55 

Synthetic (large) - / 367 - / 328 
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Synthetic (infinity) - / 65,400 - / 56,400 

 

Larger data sets are used for training to assess the effects of the data set size on the 

classifier’s performance. For the large mixed training data set, we boosted the real 

training data with five times the number of synthetic samples. This data set size is 

matched for the large synthetic training data set, containing synthetic images only 

(Table 1). Lastly, an “infinite” data set is trained, which is achieved by sampling a new 

random synthetic batch for each iteration. It reached its maximum performance after 

4700 iterations, which equals a data set of 56,400 samples. Note that the validation 

and test data always consists of real data only, i.e. we test the robustness of the 

classifier to correctly classify real unknown MR images.  

 

Statistical analyses 

For comparison of results produced by different generative models or for different data 

sets we use fixed-effects ANOVAs with between-subjects factors. Post-hoc tests are 

two-tailed unpaired t-tests with Bonferroni correction for all possible combinations of 

tests. Test results are reported as significant for α<.05. Reported values denote mean 

with distance to the upper and lower boundary of the 95% confidence interval. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.01.24308319doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.01.24308319


Results 

Basic architecture selection 

All four quantitative evaluation metrics (Figure 2) perform sign. better without 

DiffAugment than with (all F1,72>35.21; p<.001) and demonstrate sign. differences 

between the architectures (all F3,72>317.03; p<.001). The average values of the 

evaluation metrics consistently show an advantage of the α-SN-GAN architecture over 

the three other models (Figure 2). Indeed, 10/11 out of the 12 post-hoc tests comparing 

this architecture to the other ones confirm a sign. better performance (all 11 tests 

t38>2.73; p<.010; sign. on α<.05 with/without correction for multiple comparisons).  

 

Figure 2  Quantitative evaluation metrics for the four basic architectures. Note that lower values 

indicate a better performance for MMD (a) and FID (b) while higher values indicate a better performance 

for precision (c) and recall (d). Error bars denote 95% confidence intervals. Abbreviations: SN (spectral 

normalization), GAN (generative adversarial network), α (with encoder), HA (hierarchical amortized). 
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Visually, the quality of the images synthesized by the SN-GAN and the α-SN-GAN is 

high (Figure 3). However, there are still limitations to fully resembling the real samples, 

especially regarding fine-grained structures. A clear difference between samples with 

and without DiffAugment is not present. The collapse of the hierarchical architectures is 

also visible here. Artefacts and deformations can clearly be seen in their samples. 

These appear stronger in the HA-GAN, which is in line with the findings of the 

quantitative evaluation. The illustrations of the PCA confirm these findings as well 

(Supplementary material Figure S7). 

 

Figure 3  Exemplary synthetic images of the four architectures (rows) without and with 

DiffAugment applied (columns), two of each kind. Exemplary real images are presented in the bottom row 

for comparison. All sections show slice 32. 

 

To summarize, regularization combined with incorporating an encoder (α-SN-GAN) 

yields synthetic images of highest fidelity and diversity shown with both qualitative and 

quantitative evaluation. The α-SN-GAN architecture without DiffAugment is therefore 
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chosen as basis for the subsequent further architecture selection and data generation 

processes. 

 

Conditional architecture selection 

All four quantitative evaluation metrics (Figure 4) demonstrate sign. differences 

between the conditional architectures (F2,54>10.06; p<.001) as well as the clinical 

groups (F1,54>11.40; p=.001). For the clinical groups, we do not find a clear advantage 

of one over the other: MMD and recall achieve a better performance for the synthetic 

patient images while FID and precision favour the synthetic HC images. For the 

conditional architectures, however, we find a consistent advantage of the architecture 

with the auxiliary classifier across all four evaluation metrics (Figure 4). Indeed, 6/7 out 

of the 8 post-hoc tests comparing the average values of this conditional approach to 

the other two confirm a sign. better performance (all 7 tests t38>2.97; p<.006; sign. on 

α<.05 with/without correction for multiple comparisons).  
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Figure 4  Quantitative evaluation metrics for the three conditional architectures. Note that lower 

values indicate a better performance for MMD (a) and FID (b) while higher values indicate a better 

performance for precision (c) and recall (d). Error bars denote 95% confidence intervals. 

 

Visually, the quality of the generated images is high, rather independent of the 

conditional approach (Figure 5 and Supplementary material Figures S9 and S10). The 

illustrations of the PCA confirm the subtle differences found with the quantitative 

evaluation (Supplementary material Figure S8). 
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Figure 5  Exemplary synthetic images of the three differential conditional architectures based on 

the α-SN-GAN (rows) for the control and patient group (columns), two of each kind. Exemplary real images 

are presented in the bottom row for comparison. All sections show slice 32. 

 

To summarize, synthesizing the two clinical groups with the auxiliary α-SN-GAN yields 

images of highest fidelity and diversity shown with both qualitative and quantitative 

evaluation. This architecture yields precision and recall values above 95% for both 

clinical groups (Figure 4c & d). The α-SN-GAN architecture with auxiliary classifier is 

therefore chosen as basis for the subsequent data generation processes. 

 

Diagnosis classification 

Classification based on training with the real data achieves 60.6±7.6% diagnostic 

accuracy, a value well above chance level (t4=2.72; p=.026). However, this accuracy 

still leaves potential for improvement. Training the diagnosis classifier on the same 

amount of augmented, mixed, or synthetic data (Figure 6, small training data size) 

yields a comparable accuracy to training on the real data (F3,16=0.36; p=.786). 

Increasing the training data 6-fold yields sign. higher classification accuracy than 

training with the real data for both the mixed (t8=3.94; p=.002) and the synthetic 
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(t8=4.06; p=.002) training data (Figure 6, large training data). Note that the classifiers 

are always tested on real data only. The strategy of the classifier is not biased towards 

the one or the other class when artificial data is added or used for training (cf. 

additional performance metrics in Supplementary Figure S11). Training with the 6-fold 

amount of synthetic data increased the diagnostic accuracy to 78.9±4.4%, which 

corresponds to an average increase of 18.3% with respect to the original classification 

accuracy of the classifier trained with real data only. Note that this accuracy cannot be 

increased further as demonstrated with the synthetic infinity training data set (Figure 6, 

diamond). 

 

Figure 6  Classification accuracies for all training data sets. Note that the classifiers are always 

tested on real data only. Dotted line indicates chance level. Error bars denote 95% confidence intervals. * 

comparison to real data for training (Bonferroni corr. on α<.05).  
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Discussion  

This work demonstrates the synthesis of high-quality 3D brain sMRI data for two 

clinical groups from a very small data set. A diagnostic classifier separating real sMRI 

data from SCZ patients and HC can be trained with the synthetic data just as well as 

with the same amount of real data. Increasing the amount of synthetic training data 6-

fold increases the performance of the diagnosis classifier by nearly 20%. This increase 

suggests that the synthetic data is capable of making the algorithm more robust for 

classifying the real data.  

We demonstrate that regularized GANs produce high quality images even for small 3D 

sMRI data sets. Creating a high diversity of images instead of falling into mode 

collapse can be achieved by incorporating an encoder in the training process whereas 

applying DiffAugment to the GAN training did not improve image quality. Memory 

efficient processing with hierarchical architectures, however, was not successful in the 

case of the small data set used in this study. The study with the original implementation 

of the HA-GAN [14] used a larger data set of more than 3000 samples compared to the 

193 images in this study. Considering that the HA-GAN and α-HA-GAN consist of five 

and eight individual neural networks, respectively, that all need to work in an 

equilibrium during the training, the low number of training samples might contribute to 

an unstable training process.  

Comparing GAN metrics to related works is difficult due to multiple possible 

implementations of the MMD metric and additionally due to the use of a different 

feature extraction network. At least visually, however, the comparison can be made. 

The synthetic images in this study are on the same level as the ones of Kwon et al. [13] 

with the same image size but with a larger data set of around 500 images.  

The first work demonstrating the feasibility of generating 3D sMRI data with a true 3D 

GAN was based on a subset of nearly thousand images [14]. Since the data included 

HC only, the usefulness of the data for clinical application could not be assessed. The 
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first work conditioning the generated data for a clinical use case utilized a 3D 

architecture only for the discriminator but not for the generator, which constructed 

contingent 2D slices instead of volumes [17]. In the aforementioned study, the data 

quality was assessed thoroughly by statistical comparison of known disease 

biomarkers between the groups of generated data. A downstream diagnostic classifier, 

i.e. assessing the usefulness of the generated 3D data for training an algorithm that 

distinguishes between healthy and diseased persons, has not been tested yet. Indeed, 

differentiated MR images for SCZ patients and HC have not yet been synthesized 

either. The performance gain of the diagnosis classifier with the large synthetic data set 

is in the same range as found in a study using 2D MR images [48]. In that study, 

classification of Alzheimer’s patients and HC increased in accuracy from 63% to 83%. 

However, the data set consisted of slightly above 1000 samples compared to the 193 

samples in this work. Admittedly, the diagnosis classifier’s performance of this study 

starts at the lower end of the spectrum but rises to the middle to upper end by 

augmenting with synthetic samples [8]. The increase is mainly contributed to the 

increased data set size combined with the high fidelity and diversity of the synthetic 

images. This is especially remarkable because classifier based on large data sets often 

do not reach a classification accuracy compared to small, specialized sets [10]. 

The systematic comparison of GAN architectures for basic training as well as for 

conditioning the data on the clinical group demonstrates that the architectural choices 

for the GAN are essential and the resulting data always needs to be evaluated 

carefully. Even though the α-SN-GAN architecture with auxiliary classifier generated 

the best synthetic data for the data set used in this study, this architecture may not be 

the best one for every data set and every purpose. We therefore suggest that always 

several architectural variants that address potential problems arising from the specific 

data set at hand are compared and thoroughly evaluated for the purpose the data is 

needed. Techniques that work for one application are not necessarily successful in 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.01.24308319doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.01.24308319


another one despite their theoretical validity. Additionally, combinations of techniques 

may not be compatible.  

This approach can also be adapted to bolster other imaging modalities such as 

functional MRI for training multimodal classifiers that have shown promise for SCZ 

diagnosis. Furthermore, the auxiliary classifier approach has the potential to reveal the 

underlying structural differences between two clinical groups and might therefore aid in 

the research for SCZ biomarkers. GANs are only one kind of generative DL 

architecture for image synthetisation. Other DL architectures such as transformers [49] 

have risen the past years and demonstrated exceptional capabilities in various 

domains not only language understanding and synthesis but also in medical image 

synthesis [50]. However, the problem of small medical data sets is even graver with 

these architectures and pre-training on data of other domains might have its limitations 

in medical application [51]. 

To conclude, generating synthetic (neuro)imaging data is a promising approach, 

especially for clinical use cases with inherently small data set sizes. With this work, we 

demonstrate the ability to train GANs even on a complex, small data set for a 

psychiatric disorder such as SCZ that lacks objective diagnostic tools. Importantly, the 

generated data enables a more robust training of a downstream diagnostic classifier.  
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Summary 

Schizophrenia and other psychiatric disorders can greatly benefit from objective 

decision support in diagnosis and therapy. Machine learning approaches based on 

neuroimaging, e.g. magnetic resonance imaging (MRI), have the potential to serve this 

purpose. However, the medical data sets these algorithms can be trained on are often 

rather small, leading to overfit, and the resulting models can therewith not be 

transferred into a clinical setting. The generation of synthetic images from real data 

with generative adversarial networks (GAN) is a promising approach to overcome this 

shortcoming. Due to the small data set size and the size and complexity of medical 

images, those algorithms are challenged on several levels:  

1) small data sets can lead to discriminator overfit, causing the vanishing gradients 

problem 2) most algorithms for image processing were first, or only, implemented and 

optimized for 2D data; 3) complex, i.e. 3D, images tend to converge to a very small 

distribution of generated images causing mode collapse; 4) 3D images and operations 

need exponentially more memory.  

We addressed these challenges with the development and comparison of four GAN 

architectures and compared them systematically based on a data set of 193 MR 

images of schizophrenia patients and healthy controls. Spectral normalization 

regularization (SN-GAN) counteracts the vanishing gradients problem and is applied for 

all architectures. Additionally incorporating an encoder (α-SN-GAN) helps to alleviate 

mode collapse. To reduce the computational cost of the training, a hierarchical 

approach is adapted (HA-GAN), which is also combined with the α-SN-GAN to join 

their advantages (α-HA-GAN). Vanishing gradient and mode collapse are additionally 

addressed by applying data augmentation during training to all four architectures. The 

best architecture (α-SN-GAN without augmentation) is selected for further processing 

based on qualitative and quantitative evaluation of the generated images. 

Subsequently, three conditioning approaches are employed for creating images of the 
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two clinical groups: one classifier per class, an auxiliary classifier, and a projection 

discriminator. The winner architecture (α-SN-GAN with auxiliary classifier) is then used 

to generate different sets of training data with different ratios of real and synthetic data 

and different set sizes.  

Finally, a diagnosis classifier is trained on these data sets to separate patients from 

controls in a test data set consisting of real data only. The synthetic images increase 

the accuracy of the diagnostic classifier from a baseline accuracy of around 61% to 

79%. 

This study demonstrates for the first time the end-to-end generation of high-quality 

synthetic data from a very small 3D sMRI data set with a true 3D GAN and downstream 

data-driven diagnosis classification. Additionally, this is also the first time to produce 3D 

MR images for SCZ classification. 
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Supplementary material 

Architecture diagnosis classifier 

================================================================================================ 
Layer (type)                        Kernel Shape            Output Shape              Param # 
================================================================================================ 
3D-CNN                                       
├─Conv3d                            [3, 3, 3]               [12, 16, 62, 62, 62]      448 
├─ReLU                              --                      [12, 16, 62, 62, 62]      -- 
├─BatchNorm3d                       --                      [12, 16, 62, 62, 62]      32 
├─MaxPool3d                         2                       [12, 16, 31, 31, 31]      -- 
├─Conv3d                            [3, 3, 3]               [12, 64, 29, 29, 29]      27,712 
├─ReLU                              --                      [12, 64, 29, 29, 29]      -- 
├─BatchNorm3d                       --                      [12, 64, 29, 29, 29]      128 
├─MaxPool3d                         2                       [12, 64, 14, 14, 14]      -- 
├─Conv3d                            [3, 3, 3]               [12, 128, 12, 12, 12]     221,312 
├─ReLU                              --                      [12, 128, 12, 12, 12]     -- 
├─BatchNorm3d                       --                      [12, 128, 12, 12, 12]     256 
├─MaxPool3d                         2                       [12, 128, 6, 6, 6]        -- 
├─Flatten                           --                      [12, 27648]               -- 
├─Linear                            --                      [12, 256]                 7,078,144 
├─Dropout                           --                      [12, 256]                 -- 
├─ReLU                              --                      [12, 256]                 -- 
├─Linear                            --                      [12, 128]                 32,896 
├─Dropout                           --                      [12, 128]                 -- 
├─ReLU                              --                      [12, 128]                 -- 
├─Linear                            --                      [12, 1]                   129 
└─Sigmoid                           -                       [12, 1]                   -- 
================================================================================================ 
Total params: 7,361,057 
Trainable params: 7,361,057 
Non-trainable params: 0 
Total mult-adds (G): 14.07 
================================================================================================ 
Input size (MB): 12.58 
Forward/backward pass size (MB): 1074.34 
Params size (MB): 29.44 
Estimated Total Size (MB): 1116.37 
================================================================================================ 

Figure S1 Architecture of the 3D-CNN used for the diagnosis classifier.  
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GAN architectures 

================================================================================================ 
Layer (type)                        Kernel Shape            Output Shape              Param # 
================================================================================================ 
Generator 
├─ShuffleConv3d                     --                      [4, 256, 4, 4, 4]         -- 
│    └─Conv3d                       [1, 1, 1]               [4, 16384, 1, 1, 1]       16,384,000 
├─BatchNorm3d                       --                      [4, 256, 4, 4, 4]         512 
├─LeakyReLU                         --                      [4, 256, 4, 4, 4]         -- 
├─ShuffleConv3d                     --                      [4, 128, 8, 8, 8]         -- 
│    └─Conv3d                       [3, 3, 3]               [4, 1024, 4, 4, 4]        7,077,888 
├─BatchNorm3d                       --                      [4, 128, 8, 8, 8]         256 
├─LeakyReLU                         --                      [4, 128, 8, 8, 8]         -- 
├─ShuffleConv3d                     --                      [4, 64, 16, 16, 16]       -- 
│    └─Conv3d                       [3, 3, 3]               [4, 512, 8, 8, 8]         1,769,472 
├─BatchNorm3d                       --                      [4, 64, 16, 16, 16]       128 
├─LeakyReLU                         --                      [4, 64, 16, 16, 16]       -- 
├─ShuffleConv3d                     --                      [4, 32, 32, 32, 32]       -- 
│    └─Conv3d                       [3, 3, 3]               [4, 256, 16, 16, 16]      442,368 
├─BatchNorm3d                       --                      [4, 32, 32, 32, 32]       64 
├─LeakyReLU                         --                      [4, 32, 32, 32, 32]       -- 
├─ShuffleConv3d                     --                      [4, 1, 64, 64, 64]        -- 
│    └─Conv3d                       [3, 3, 3]               [4, 8, 32, 32, 32]        6,912 
└─Tanh                              --                      [4, 1, 64, 64, 64]        -- 
================================================================================================ 
Total params: 25,681,600 
Trainable params: 25,681,600 
Non-trainable params: 0 
Total mult-adds (G): 13.66 
================================================================================================ 
Input size (MB): 0.02 
Forward/backward pass size (MB): 97.52 
Params size (MB): 102.73 
Estimated Total Size (MB): 200.26 
================================================================================================ 

Figure S2 Generator architecture of the SN-GAN and α-SN-GAN. For the hierarchical approaches, 

the generator is split after the third convolution. 

 

================================================================================================ 
Layer (type)                        Kernel Shape            Output Shape              Param # 
================================================================================================ 
Discriminator                        
├─SpectralNorm                     --                      [4, 32, 32, 32, 32]       32 
│    └─Conv3d                       [4, 4, 4]               [4, 32, 32, 32, 32]       2,048 
├─LeakyReLU                         --                      [4, 32, 32, 32, 32]       -- 
├─SpectralNorm                     --                      [4, 64, 16, 16, 16]       64 
│    └─Conv3d                       [4, 4, 4]               [4, 64, 16, 16, 16]       131,072 
├─LeakyReLU                         --                      [4, 64, 16, 16, 16]       -- 
├─SpectralNorm                      --                      [4, 128, 8, 8, 8]         128 
│    └─Conv3d                       [4, 4, 4]               [4, 128, 8, 8, 8]         524,288 
├─LeakyReLU                         --                      [4, 128, 8, 8, 8]         -- 
├─SpectralNorm                      --                      [4, 256, 4, 4, 4]         256 
│    └─Conv3d                       [4, 4, 4]               [4, 256, 4, 4, 4]         2,097,152 
├─LeakyReLU                         --                      [4, 256, 4, 4, 4]         -- 
└─SpectralNorm                      --                      [4, 1, 1, 1, 1]           1 
     └─Conv3d                       [4, 4, 4]               [4, 1, 1, 1, 1]           16,384 
================================================================================================ 
Total params: 2,770,977 
Trainable params: 2,770,977 
Non-trainable params: 0 
Total mult-adds (M): 0.00 
================================================================================================ 
Input size (MB): 4.19 
Forward/backward pass size (MB): 0.00 
Params size (MB): 0.00 
Estimated Total Size (MB): 4.19 
================================================================================================ 

Figure S3 Discriminator architecture of the SN-GAN, the α-SN-GAN, and the auxiliary classifier. For 

the hierarchical approaches, the discriminator is split after the third convolution. 
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================================================================================================ 
Layer (type)                        Kernel Shape            Output Shape              Param # 
================================================================================================ 
Encoder                                                        
├─Conv3d                            [4, 4, 4]               [4, 32, 32, 32, 32]       2,080 
├─LeakyReLU                         --                      [4, 32, 32, 32, 32]       -- 
├─Conv3d                            [4, 4, 4]               [4, 64, 16, 16, 16]       131,136 
├─BatchNorm3d                       --                      [4, 64, 16, 16, 16]       128 
├─LeakyReLU                         --                      [4, 64, 16, 16, 16]       -- 
├─Conv3d                            [4, 4, 4]               [4, 128, 8, 8, 8]         524,416 
├─BatchNorm3d                       --                      [4, 128, 8, 8, 8]         256 
├─LeakyReLU                         --                      [4, 128, 8, 8, 8]         -- 
├─Conv3d                            [4, 4, 4]               [4, 256, 4, 4, 4]         2,097,408 
├─BatchNorm3d                       --                      [4, 256, 4, 4, 4]         512 
├─LeakyReLU                         --                      [4, 256, 4, 4, 4]         -- 
└─Conv3d                            [4, 4, 4]               [4, 1000, 1, 1, 1]        16,385,000 
================================================================================================ 
Total params: 19,140,936 
Trainable params: 19,140,936 
Non-trainable params: 0 
Total mult-adds (G): 4.10 
================================================================================================ 
Input size (MB): 4.19 
Forward/backward pass size (MB): 55.61 
Params size (MB): 76.56 
Estimated Total Size (MB): 136.36 
================================================================================================ 

Figure S4 Encoder architecture of the α-SN-GAN. For the hierarchical approaches, the encoder is 

split after the second convolution layer to match its output size with the input of the high-resolution 
generator.  

 

================================================================================================ 
Layer (type)                        Kernel Shape            Output Shape              Param # 
================================================================================================ 
CodeDiscriminator                         
├─SpectralNorm                      --                      [4, 2048]                 1 
│    └─Linear                       --                      [4, 2048]                 2,048,000 
├─LeakyReLU                         --                      [4, 2048]                 -- 
├─SpectralNorm                      --                      [4, 2048]                 1 
│    └─Linear                       --                      [4, 2048]                 4,194,304 
├─LeakyReLU                         --                      [4, 2048]                 -- 
└─SpectralNorm                      --                      [4, 1]                    1 
     └─Linear                       --                      [4, 1]                    2,048 
================================================================================================ 
Total params: 6,244,353 
Trainable params: 6,244,353 
Non-trainable params: 0 
Total mult-adds (M): 0.00 
================================================================================================ 
Input size (MB): 0.02 
Forward/backward pass size (MB): 0.00 
Params size (MB): 0.00 
Estimated Total Size (MB): 0.02 
================================================================================================ 

Figure S5 Code discriminator of the α-SN-GAN and the α-HA-GAN. 
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α-HA-GAN 

Eight neural networks are required for training the α-HA-GAN (Figure S6). The shared 

generator is defined as GA whereas the high- and low-resolution generators are defined 

as GH and GL. Discriminators and encoders are defined as DH, DL, EH and EL 

respectively. Finally, the code discriminator network is described as CD. Randomly 

sampled latent space are defined as zr, real images as X, low-resolution ones as XL, 

and sub-volumes as XH. Encoder outputs are labelled Xe for EH and ze for EL. Both GH 

and DH receive the sub-volumes position c as additional input. Discriminators are 

combined by averaging their outputs so that D(∗,  c)  =  {(𝐷}𝐻(∗,  c)  +  𝐷𝐿(∗)) / 2. 

During the training, the generator models GA, GL, and GH are also combined to form a 

single network G, which outputs both a synthetic small image X̂r
L and a synthetic sub-

volume X̂r
L for zr. Reconstructed image outputs when using ze are labelled X̂e

L and X̂e
H. 

Since EL and G can be treated as one network in the training their loss functions are 

combined (LEG), which results in four loss functions (Equations 1 - 4).  

 

𝐿𝐸𝐻 = ‖𝐺𝐻(𝐸𝐻(𝑋𝐻)) − 𝑋𝐻‖1     ( 1 ) 

LEG  =  λ(‖�̂�𝑒
𝐻 − 𝑋𝐻‖1  +  ‖�̂�𝑒

𝐿 − 𝑋𝐿‖1) + 𝔼𝑧𝑒
[log(𝐷(𝐺(𝑧𝑒 , 𝑐), 𝑐))]

+ 𝔼𝑧𝑟
[log(𝐷(𝐺(𝑧𝑟 , 𝑐), 𝑐))] − 

𝔼𝑧𝑒
[log(𝐶𝐷(𝑧𝑒))]     ( 2 ) 

𝐿𝐷   =  2𝐸𝑋𝐿,  𝑋𝐻[log(𝐷𝐿(𝑋𝐻 , 𝑋𝐿 , 𝑐))] + E𝑧𝑒
[log(1  −  𝐷(𝐺(𝑧𝑒 , 𝑐), 𝑐))] + E𝑧𝑟

[log(1  −

 𝐷(𝐺(𝑧𝑟, 𝑐), 𝑐))]     ( 3 ) 

LCD = Ezr
[log(CD(zr))] + 𝐸𝑧𝑒

[𝑙𝑜𝑔(1  −  𝐶𝐷(𝑧𝑒))]   ( 4 ) 
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Figure S6  α-HA-GAN architecture including the submodels of the combined discriminator and 

generator as well as inputs and outputs during training mode. Interestingly, all previously introduced 
architectures are included in the α-HA-GANs architecture as well (colour code according to Figure 1): 
Removing the Encoder E and the Code Discriminator CD produces the HA-GAN. Looking only at the 
combined networks E, CD, G, and D without the high-and low-resolution path, the α-SN-GAN architecture 

is formed. Removing E and CD from this subset results in the SN-GAN architecture. 
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Figure S7 PCA results with the two first components for the a) SN-GAN, b) α-SN-GAN, c) HA-GAN, 
and d) α-HA-GAN. The analyses are based on all 193 real samples and an equal number of synthetic 
samples. 
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Figure S8 PCA results with the two first components for the a) projection discriminator, b) auxiliary 
classifier, and c) separate data synthesis. The analyses are based on all 193 real samples (91 healthy 
controls and 102 schizophrenia patients) and an equal number of synthetic samples. 
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Figure S9 Exemplary synthetic (top rows) and real (bottom rows) images from healthy control 
subjects, or the respectively labelled group of synthetic data. The synthetic images are generated with the 
α-SN-GAN without DiffAugment and with the auxiliary classifier for generation of group-specific images. 
i.e. with the winning architecture used for synthetizing data for the diagnosis classifier. The horizontal 

sections show slices 16, 24, 32, 40, and 48. 
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Figure S10 Exemplary synthetic (top rows) and real (bottom rows) images from schizophrenia 
patients, or the respectively labelled group of synthetic data. The synthetic images are generated with the 
α-SN-GAN without DiffAugment and with the auxiliary classifier for generation of group-specific images. 
i.e. with the winning architecture used for synthetizing data for the diagnosis classifier. The horizontal 
sections show slices 16, 24, 32, 40, and 48. 
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Figure S11 Additional classification evaluation metrics for all training data sets. Note that the 

classifiers are always tested on real data only. Dotted lines indicate chance level. Error bars denote 95% 
confidence intervals.  
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