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Abstract: 16 

Background: 17 

Cell-free DNA (cfDNA), a broadly applicable biomarker commonly sourced from urine or blood, is 18 

extensively used for research and diagnostic applications. In various settings, genetic and epigenetic 19 

information is derived from cfDNA. However, a unified framework for its processing is lacking, limiting 20 

the universal application of innovative analysis strategies and the joining of data sets. 21 

Findings: 22 

Here, we describe cfDNA UniFlow, a unified, standardized, and ready-to-use workflow for processing 23 

cfDNA samples. The workflow is written in Snakemake and can be scaled from stand-alone computers 24 

to cluster environments. It includes methods for processing raw genome sequencing data as well as 25 

specialized approaches for correcting sequencing errors, filtering, and quality control. Sophisticated 26 

methods for detecting copy number alterations and estimating and correcting GC-related biases are 27 

readily incorporated. Furthermore, it includes methods for extracting, normalizing and visualizing 28 

coverage signals around user defined regions in case-control settings. Ultimately, all results and 29 

metrics are aggregated in a unified report, enabling easy access to a wide variety of information for 30 

further research and downstream analysis. 31 

Conclusions: 32 

We provide an automated pipeline for processing cell-free DNA sampled from liquid biopsies, including 33 

a wide variety of additional functionalities like bias correction and signal extraction. With our focus on 34 

scalability and extensibility, we provide a foundation for future cfDNA research and faster clinical 35 

applications. 36 

 37 
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 40 

Issue Section:  41 

Technical Note 42 

 43 

Availability and implementation: Source code and extensive documentation is available on our 44 

GitHub repository (https://github.com/kircherlab/cfDNA-UniFlow). 45 

 46 
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Introduction/Background  48 

Cell-free DNA (cfDNA) is found in many bodily fluids like blood plasma and urine  [1]. It is believed to 49 

be primarily derived from natural degradation processes during cell turnover [2]. However, the 50 

proportion of cell-types and tissues contributing to cfDNA changes in the context of certain 51 

physiological conditions or disease processes [3,4]. Thus, signals in cfDNA might serve as relevant 52 

biomarkers in health and disease. Collecting cfDNA in so-called liquid biopsies (Fig. 1) is considered 53 

non-invasive and led to an increased research interest in the biomedical field for using cfDNA in 54 

allograft (i.e., donor organ) rejection, prenatal testing and diagnostics, as well as disease detection and 55 

health monitoring [5] (especially for cancer). 56 

Over the last years, many approaches have been developed to extract information from cfDNA samples 57 

for various applications. Methods range from identifying allelic differences at known disease markers, 58 

detection and tracking of mutations[6] and copy number alterations (CNAs) in tumor cells [6], and DNA 59 

fragmentation differences [3,8,9] to measuring methylation state [10–12]. While these methods 60 

exploit different signals, all rely on the precise quantification of read distributions, and slight changes 61 

in read recovery affect their results (Fig. 1).  62 

Therefore, consistent data quality is the primary requirement for developing these new diagnostic 63 

methods (Fig. 1). Even though sample handling is constantly streamlined, individual differences of 64 

sample donors, and logistic factors like time of sample collection, duration, conditions of storage, and 65 

further preanalytical handling are challenging to fully control in a clinical context, but have been shown 66 

to affect the quality of cfDNA samples [13–16]. Additionally, detecting signals of interest (e.g., from 67 

circulating tumor DNA, ctDNA) in a background mainly derived from hematopoietic cells [16] is not 68 

trivial, emphasizing the need for optimal data quality. 69 

One way to mitigate some preanalytical effects and technical biases introduced during sequencing of 70 

cfDNA samples is to include specialized correction and sampling steps during computational processing 71 

of the data (Fig. 1). Even though the need has been identified previously in the field of cfDNA, 72 

community standards are still lacking for preprocessing genome sequencing data from cfDNA [7,8,18–73 

23]. 74 

 75 

Figure 1: Overview of cfDNA analysis. The leftmost panel depicts data generation by liquid biopsy sampling followed by library 76 
preparation and sequencing. The second panel shows the entry point of cfDNA Uniflow. It displays the core functionality of 77 
merging reads/removing adapters, length filtering, mapping to a reference genome and duplicate marking. Sample quality 78 
control is shown in the third panel and for example performed using FastQC, Mosdepth and SAMtools stats. The fourth panel 79 
shows optional steps of GC bias correction and estimation of copy number alterations and tumor proportion. Finally, results 80 
are aggregated, for example in a report and used for downstream analyses (fifth panel). Figure created with Biorender.  81 
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One reason for the lack of dedicated cfDNA pipelines, might be that many publications in the field are 82 

focused on the downstream analysis like the classification of disease samples, relying on unpublished 83 

in-house pipelines for data processing. Further, important correction steps are often tailored towards 84 

specific features and tightly integrated in downstream analysis pipelines, making it difficult to 85 

generalize and transfer them to new projects [7,8]. Nevertheless, there have been some approaches 86 

trying to address the need for community standards. A notable one is the FinaleDB project, which 87 

aggregates cfDNA samples from multiple sources, processes them in a uniform manner and provides 88 

fragment coordinates via a web portal [23]. To protect the privacy of patients, the data is anonymized 89 

during processing, removing all sequence information and making it unsuitable for analyses not 90 

focused on fragmentation patterns. Additionally, this pipeline does not address issues of batch and 91 

bias correction, which might be most relevant in such aggregation efforts. The project getting closest 92 

to setting a community standard for processing samples not just for fragmentomics applications, is 93 

called cfDNApipe. It combines many useful tools for basic processing of normal and bisulfite converted 94 

DNA sequences. The utility functions range from generation of summary statistics, GC-bias correction 95 

tailored towards CNV detection and extraction of a limited number of features [25]. However, the 96 

software seems to be designed for single computer use, lacking many of the features provided by a 97 

full-fledged workflow management system, making it hard to scale analysis in different environments, 98 

like compute clusters. Moreover, the design does not allow for easy integration of new functionalities, 99 

creating the need for either an additional workflow management system or extensive modification of 100 

the original code.  101 

Technical biases and missing community standards cause several drawbacks for the field. First, users 102 

rely on standard processing pipelines from other fields, which might not be suitable for specific 103 

analyses. They might also feel the need to develop their own pipelines by selecting appropriate tools 104 

and tuning parameters optimized on the available set of samples. Second, it adds additional overhead 105 

when comparing across multiple studies. Here, researchers are frequently required to work with the 106 

original processing of each site, potentially introducing technical biases in the analysis. Alternatively, 107 

reprocessing data from multiple sites can reduce technical biases between studies but creates an 108 

additional computational and organizational burden (incl. access to raw and protected genetic data). 109 

Third, it can be hard to keep track of all sample-level information when building analysis pipelines using 110 

many samples, mainly when information gets scattered across many samples and files.  111 

To jointly address several of these problems, we developed an easy-to-use unified preprocessing 112 

workflow for cell-free DNA written in Snakemake. It combines a curated list of tools for processing 113 

genomic cfDNA samples, custom tools for reducing technical biases, and tools for estimating additional 114 

characteristics like copy number states. Our pipeline is implemented with high configurability, 115 

scalability from single computers to high-performance compute clusters, and a sophisticated reporting 116 

system.  117 

  118 
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Overview and implementation 119 

Implementation 120 

We implemented the cfDNA UniFlow workflow in the popular workflow management system 121 

Snakemake [25]. This makes it easy to scale the workflow in different computing environments and 122 

allows for parallel processing of multiple samples. Further, most of the rules are implemented to 123 

enable multiprocessing and efficiently utilize multiple cores for each task. Conveniently, default 124 

resources like genome references or standard adapter files can be downloaded, if not configured to 125 

point to already available resources. A detailed overview of the workflow is available in Figure S1.  126 

Briefly, cfDNA UniFlow covers three parts between data generation and downstream analysis: data pre-127 

processing, quality control and utility functions (Figure 1). 128 

 129 

Figure 2: Overview of unified cfDNA preprocessing workflow. Functionalities are color coded by task. Blue boxes contain the 130 
core functionality of cfDNA Uniflow. Red boxes represent rules for the automatic download of public resources. Yellow boxes 131 
summarize the Quality Control and reporting steps. Finally, grey and green boxes are optional steps, with green boxes being 132 
highly recommended. 133 

 134 

Preprocessing 135 

The core preprocessing steps (Fig 2., components depicted in blue) expect FASTQ files as input. 136 

Alternatively, existing alignments (BAM files) can be provided for reprocessing. In the latter case, the 137 

workflow automatically converts these to FASTQ files using SAMtools [26]. Afterwards, reads can be 138 

merged with NGmerge [27], which also removes sequencing library adapters and corrects sequencing 139 

errors and ambiguous bases based on the read-overlap consensus. Reads that were not merged, can 140 
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be postprocessed using NGmerge adapter removal mode and can be included in the mapping process. 141 

Alternatively, the merging step can be skipped and reads will only be trimmed using Trimmomatic. 142 

Prior to mapping with bwa-mem2 [29], reads are further filtered based on their length, excluding reads 143 

that are shorter than a configurable threshold. Finally, duplicate reads are marked (SAMtools markdup) 144 

before the BAM files of the samples are passed to the next step. 145 

Quality Control  146 

In the Quality control (QC) step (Fig. 2, components depicted in yellow), general post-alignment 147 

statistics and graphs are calculated for each sample with SAMtools stats [26] and FastQC [30]. 148 

Additional information on sample-wide median coverage and coverage at different genomic regions is 149 

calculated via Mosdepth [31]. The QC results are aggregated in an HTML report via MultiQC [32] and 150 

an example is shown Figure S2. 151 

Signal Extraction 152 

In the last step, additional utility modules (Fig. 2, components depicted in green) can be configured 153 

and executed. This includes our in-house GC bias estimation and correction methods 154 

(https://github.com/kircherlab/cfDNA_GCcorrection), an extension of the method described by 155 

Benjamini & Speed [17]. As fragmentation in cfDNA is driven by natural degradation processes, libraries 156 

constructed from liquid biopsies tend to have fragments of a wide range of lengths  and do not follow 157 

the original assumption that length is well-approximated by the mean fragment length. Therefore, we 158 

estimate the expected fragment distribution by sampling regions along the reference genome, 159 

counting all possible fragments for a specified range of fragment lengths and sorting them in bins of 160 

their GC content. Afterwards, we measure the sample specific fragment distribution in the same 161 

regions, scale them and compare them to the theoretical distribution. Based on the ratio of observed 162 

and expected, we calculated correction values for each fragment length and GC content. The resulting 163 

weights are attached to the reads as tags, which can be used for a wide variety of downstream signal 164 

extraction methods, while preserving the original read coverage and fragmentation patterns. We 165 

provide specialized signal extraction routines to extract coverage derived signals using read weights. 166 

Further, we included the widely used tool ichorCNA [6], to identify copy number alterations and 167 

estimate tumor fraction. An example of the output is available in Figure S3. 168 

Reporting 169 

Finally, all information provided by the previous steps is aggregated in a comprehensive HTML report. 170 

This includes summary statistics on workflow execution provided by Snakemake, and plots and 171 

summary statistics produced in the quality control steps. Additional information from optional steps 172 

includes a general estimation of sample-specific GC bias parameters (Figure S4), the effects of GC bias 173 

correction in user defined regions (Figure S5) and plots on copy number alterations created by 174 

ichorCNA. Finally, case-control plots are generated and included, if more than one class of samples is 175 

provided (Figure S6).  176 

Results 177 

To test and showcase cfDNA Uniflow, we use three exemplary cfDNA samples (healthy H01, breast 178 

cancer B01, prostate cancer P01) with different conditions and average GC contents from the European 179 

Genome-Phenome Archive Study EGAS00001006963. Each sample was converted to FASTQ files and 180 

processed in our pipeline with standard parameters for human reference build GRCh38/hg38. As user-181 

defined regions of interest, we selected 10,000 binding sites of LYL1, a transcription factor (TF) 182 

associated with hematopoietic cells [33], and GRHL2, an important pioneer TF for epithelial cells [34–183 

36] playing a role in a wide variety of cancer types [37–41]. Both TFs are especially suited due to their 184 

association with expected tissue contributions in our samples and because they have high GC content 185 

binding sites. 186 
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This can be seen in Figure 3, which shows coverage overlays centered on LYL1 binding sites and 187 

illustrates the global and regional effects of GC biases in the respective samples.  The healthy sample 188 

H01, with an average GC content of 45%, shows a balanced global GC profile (Fig. 3a) and, accordingly, 189 

the GC bias correction shows almost no effects on the composite signal. We see the strongest drop of 190 

coverage at the TF binding site, expected for a sample of mainly hematopoietic origin where many 191 

LYL1 binding sites are expected to be accessible to the TF. B01, a breast cancer sample with an average 192 

GC content of 38%, shows an overrepresentation of fragments with GC content lower than the genome 193 

average and an underrepresentation of fragments with higher GC content (Fig. 3b). This leads to a 194 

distortion of the composite coverage signal around the LYL1 binding sites. Without GC correction, the 195 

drop in coverage would be overestimated. After correction, coverage at the site is closer to the 196 

coverage of the surrounding regions, consistent with an expected signal dilution compared to the 197 

healthy sample (Fig. 3a) due to a higher contribution of non-hematopoietic cell-types in this cancer 198 

sample (Fig. 3b). The same should be true for sample P01 (Fig. 3c), a prostate cancer sample with an 199 

average GC content of 45%. However, the global GC bias profile (right panels) show the inverse trend 200 

to sample B01, with a shift of fragment distribution towards a higher GC content. Unsurprisingly, the 201 

signal around the binding sites is distorted towards higher coverage prior to the GC correction (i.e., 202 

suggesting that the TF binding sites are not accessible). After GC correction, the signal looks similar to 203 

the one shown for B01, less open than the healthy sample and consistent with an increased 204 

contribution of non-hematopoietic cell-types. Global effects of GC bias correction on fragment 205 

distribution and a comparison to two other fragment-based are provided in the Supplement (Figure 206 

S7). 207 
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 208 

Figure 3: Effects of GC bias on regional and global scale. Composite coverage signals of 10,000 LYL1 transcription factor 209 
binding sites (left) and global bias profiles (right) for three cfDNA samples are shown. a) Signals and profile for a healthy 210 
sample (H01) with an average GC content of 41%. The GC profile (right) is relatively balanced between observed and expected 211 
fragments. Respectively, the GC bias corrections have only minor effects on the composite coverage signal (left). b) GC bias 212 
effects for a breast cancer sample with an average GC content of 38%. The global GC profile shows an overrepresentation of 213 
lower GC content fragments (brighter color) and an underrepresentation of higher GC content fragments (darker color). This 214 
results in an underestimation of coverage (overestimation of accessibility) at the LYL1 binding sites. After GC correction the 215 
signal is closer to the surrounding coverage, consistent with lower relative contributions of hematopoietic cells and fewer open 216 
sites. In contrast, c) shows the GC bias effects of a prostate cancer cell with an average GC content of 45%. The global GC 217 
profile is skewed towards a higher GC content, leading to an overestimation of coverage around the LYL1 binding sites. After 218 
GC correction, the signal is closer to the surrounding coverage, indicating lower contributions of hematopoietic cells with 219 
accessible LYL1 sites. 220 

In addition to the GC bias plots for individual samples, we provide case-control plots for comparing 221 

sample classes with a control in the same plot. In our example, the healthy sample H01 would be the 222 

control and we are comparing samples on the LYL1 and GRHL2 sites. As noted, the expected signal 223 

around LYL1 binding sites is a drop in coverage for samples mainly derived from hematopoietic cells. 224 

When the contribution of non-hematopoietic cell-types, in which LYL1 is not expressed, increases, we 225 

expect to see a relative increase in coverage around the binding sites. Accordingly, the signals shown 226 

for our three test samples (Fig. 4a) are in line with that expectation. For GRHL2, we expect the opposite 227 
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signal. As healthy samples should not include many contributions from tissues with high GRHL2 228 

activity, the expected coverage signal should be similar to the surrounding regions. In contrast, samples 229 

with high contributions of cancer-derived DNA should show a drop in coverage, indicative of higher 230 

accessibility of the TF binding sites (Fig. 4b).  231 

 232 

Figure 4: Case-control plots around GRHL2 and LYL1 binding sites. a) GC corrected composite coverage signals around 10,000 233 
centered LYL1 transcription factor binding sites. The healthy sample (H01) shows lower relative coverage (i.e., higher 234 
accessibility) at the center of the binding site overlay. This is consistent with higher LYL1 activity in hematopoietic cells. In 235 
contrast, both cancer samples show higher relative coverage in the central region, in line with a higher proportion of non-236 
hematopoietic cells contributing to the signal. b) Composite coverage signals around 10,000 GRHL2 binding sites after GC 237 
correction. Both cancer samples show a lower central coverage compared to surrounding regions  (i.e., higher accessibility), 238 
indicating higher activity than in the healthy sample. This is consistent with GRHL2 expression being associated with different 239 
cancers. 240 

As pointed out before, exemplary figures of the other report sections, like QC or ichorCNA, can be 241 

found in the supplement (Figures S2-S6). The full example report can be found in our GitHub 242 

repository. 243 

 244 

Conclusion 245 

Here we propose cfDNA UniFlow, a unified preprocessing pipeline specifically tailored for cfDNA 246 

samples. It is an easy-to-use, scalable, and configurable workflow, aiming to set a community standard 247 

for enabling accessible and easily sharable future research in the field. In designing our workflow, we 248 

aimed at providing a tool that can be used without much computer science background, but with the 249 

option to be easily extended by experienced users with their own custom modules , allowing its 250 

extension from a standard processing workflow to a full-featured analysis pipeline.  251 

Availability and Requirements 252 

Project name: cfDNA-UniFlow 253 
Project home page: https://github.com/kircherlab/cfDNA-UniFlow 254 
Operating system(s): Linux (64-bit) 255 
Programming language: Python  256 
Other requirements: Mamba or Conda  257 
License: MIT 258 
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 259 

Additional Files 260 

Supplementary Note: A general overview of the workflow including Supplementary Figures and a 261 

quick start guide. 262 

• Supplementary Figure 1: A detailed overview of the workflow components.  263 

• Supplementary Figure 2: Example section of a QC report. 264 

• Supplementary Figure 3: Example report for ichorCNA plot of copy number alterations. 265 

• Supplementary Figure 4: Example of a sample’s global GC bias estimate. 266 

• Supplementary Figure 5: Example report of regional effects of GC bias correction. 267 

• Supplementary Figure 6: Example of a case-control plot. 268 

• Supplementary Figure 7: Comparison of three fragment based GC correction methods. 269 

 270 

Abbreviations 271 

BAM: binary alignment map; cfDNA: cell-free DNA; CNA:  copy number alteration; ctDNA: circulating 272 

tumor DNA; TF: transcription factor; QC: quality control 273 

 274 

Data Availability 275 

The data used for generating plots included in this article are available in the European Genome-276 
Phenome Archive at https://ega-archive.org with accession EGAD00001010100. 277 
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