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Abstract 
Genetic variants have been associated with multiple traits through genome-wide 
association studies (GWASs), but pinpointing causal variants and their mechanisms 
remains challenging. Molecular phenotypes, such as eQTLs, are routinely used to 
interpret GWAS results. However, much concern has recently been raised about their 
weak overlap. Taking the opposite approach with PRISM (Pleiotropic Relationships to 
Infer the SNP Model), we leverage pleiotropy to pinpoint direct effects and build variant 
causal networks. PRISM clusters variant-trait effects into trait-mediated, confounder-
mediated, and direct effects, and builds individual variant causal networks by cross-
referencing results from all traits. In simulations, PRISM demonstrated high precision in 
identifying direct effects and reconstructing causal networks. Applying PRISM to 61 traits 
and diseases from UK Biobank, we found that direct effects accounted for less than 13% 
of significant effects, yet were highly enriched in heritability. Multiple lines of evidence 
showed that PRISM causal networks are consistent with established biological 
mechanisms. 

Introduction 
Over the past 20 years, Genome Wide Association Studies (GWASs) have established a 
myriad of associations between genetic variants and human traits1,2. A GWAS measures 
and statistically tests the association between several million genetic variants and one 
trait of interest. According to the GWAS catalog inventory3, 6,960 publications and 
668,514 unique genetic variant-trait associations have been reported as of August 2024. 
However, GWASs suffer from multiple limitations and biases. First, a major issue is 
pleiotropy, i.e. a single genetic element affecting more than one trait, known to be 
pervasive throughout the human genome4–6. Because of pleiotropy, genetic variants are 
often associated with multiple traits in GWASs7. Second, it has been shown that most 
identified genetic variants are intergenic and involved in the regulation of the expression8. 
Consequently, the link between genetic variants and genes, and the underlying biological 
mechanisms, remain largely unresolved. A systematic review from 2022 reported only 309 
experimentally validated non-coding GWAS variants9. Third, Linkage Disequilibrium (LD), 
referring to the non-random association of alleles at different loci on a chromosome, make 
GWAS results challenging to interpret since LD makes candidate causal variants in a 
genomic locus indistinguishable10. Therefore, precisely pinpointing true causal genetic 
variants to the complex traits they affect proves to be a tremendous challenge11, hence 
the need for computational approaches complementary to GWASs. 
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The most prominent method to pinpoint causal variants is fine-mapping which aims at 
distinguishing between causal genetic variants and non-causal variants, using LD 
reference panels and genomic annotations11. Simply put, the objective is to attribute the 
real effect to a minimal subset of top variants in LD within a locus (at best, 1), and 
disqualify the other variants as LD effects. However, fine-mapping heavily relies on 
annotations to discriminate between causal and LD effects12–14. And yet recently, much 
concern has been raised about the fact that genetic variants overlap very little with 
annotations like molecular quantitative trait loci (QTL), particularly expression QTL 
(eQTL)15,16. To the point that GWAS and cis-eQTL variants show systematic structural 
differences17. Likewise, GWAS and EWAS (epigenome-wide association studies) do not 
find the same causal genes18. 

Here, we take the opposite view to traditional fine-mapping methods, to completely sever 
our approach from annotations. Instead, the idea is to take advantage of the 
omnipresence of pleiotropy to disentangle variant-trait associations obtained from GWAS. 
Apart from LD, we hypothesize that these associations can be explained by 3 distinct 
underlying biological mechanisms: 1) direct effect when the association is caused by a 
true causal direct effect from variant to trait; 2) vertical pleiotropy when the association 
can be explained by a variant-trait effect on another trait, which in turn affects the primary 
trait; 3) confounder pleiotropy when the association can be explained by a confounder 
between traits. Therefore, to disentangle the variant-trait associations, we propose to 
leverage pleiotropic relationships between traits by rerouting an integrative Mendelian 
randomization (MR) method. 

MR aims to infer the causality of an exposure trait 𝑋 on an outcome trait 𝑌. MR uses 
genetic variants as instrumental variables that are robustly associated with the exposure 
of interest and tests whether the effects of the variants on the exposure result in 
proportional effects on the outcome. Classical MR relies on three assumptions: 1) the 
genetic variants must be strongly associated with the exposure 𝑋; 2) the genetic variants 
cannot directly affect the outcome 𝑌; 3) the genetic variants must not affect the confounder 
𝑈 of the exposure-outcome relationship. It has been shown that traditional MR massively 
suffers from pleiotropy, which violates the assumptions and biases the results19. This led 
to the development of multiple integrative MR methods that takes into account pleiotropy, 
notably by modelling a latent confounder (e.g. LHC-MR20, CAUSE21, MR-CUE22). 
However, MR only uses genetic variants as instrumental variables, and no conclusions 
are drawn on individual variant-trait associations. Therefore, we chose to reroute MR to 
focus on the relationships between variants and traits. 

Here, we propose PRISM, which stands for Pleiotropic Relationships to Infer the SNP 
model, a genome-wide method to disentangle variant-trait associations from GWASs, into 
vertical, confounder, or direct effects. The rationale behind PRISM is to re-examine 
variant-trait associations from GWAS through the prism of all other traits. Concretely, 
PRISM runs a pairwise MR model that integrates a confounder, across all studied traits. 
Then, by aggregating results from all pairwise iterations, PRISM predicts significant 
variant-trait effects, that are consistent regardless of the pleiotropic trait context. Finally, 
PRISM reconstructs the causal network for each variant, assigning labels to all significant 
variant-trait effects. To assess the performances of PRISM, we simulated GWAS 
summary statistics for a complex network of traits. Then we processed 61 heritable traits 
from UK Biobank23 through PRISM and disentangled the effects of ~4 million variants to 
infer causal networks. 
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Results 

PRISM disentangles the associations of genetic variants from GWASs by 
leveraging pleiotropy. 
PRISM inputs GWAS summary statistics for multiple traits to infer a causal network for 
each genetic variant (Fig. 1). Each significant variant-trait effect is predicted and labeled 
as a direct or pleiotropic effect. We hypothesize that the observed associations in GWAS 
can be attributed to 3 distinct underlying biological mechanisms: 1) confounder pleiotropy 
occurs when the variant has an effect on the confounder of the relationship between traits; 
2) vertical pleiotropy arises from the variant-trait effect caused by another trait; 3) a direct 
effect occurs when the association is due to a true causal direct effect from the variant on 
the trait. Therefore, variant-trait associations in GWASs are induced by true causal direct 
effects and their pleiotropic ripple effects. To comprehensively disentangle these 
associations, PRISM analyzes each single variant-trait effect across multiple contexts. 
Specifically, PRISM evaluates the effect of a genetic variant on a trait 𝑋 relative to all other 
traits. It systematically assesses the variant effect on 𝑋 relative to trait 𝐴, then to trait 𝐵, 
and so forth. By aggregating information through the prism of all other traits, PRISM 
identifies and predicts whether the variant-trait effect is consistent between the different 
contexts, and subsequently labels the effect as direct or pleiotropic. Concretely, the 
“confounder pleiotropy” label indicates that the variant was identified as having an effect 
on trait 𝑋 only through a confounder shared with another trait. In contrast, the “vertical 
pleiotropy” label denotes that the variant effect on trait 𝑋 is only mediated through another 
trait causally related to 𝑋. Conversely, a “direct effect” means that the variant is not flagged 
for pleiotropy, indicating that its effect on 𝑋 is not mediated by any other factor. Once this 
procedure is completed for all traits, the obtained direct and pleiotropic labels are used to 
construct a causal network for each variant and the traits it impacts. 
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Figure 1: Overview of PRISM | A) 3 distinct mechanisms underlying GWAS associations: 1) confounder pleiotropy, 
i.e. effect mediated by a confounder; 2) vertical pleiotropy, i.e. effect mediated by a causal relationship between two 
traits; 3) direct effect. B) PRISM aims at disentangling GWAS associations into direct effects, hypothesized to convey 
true causal effects, from pleiotropic effects (vertical and confounder). C) Each variant-trait association is evaluated in a 
model of trait 𝑋 in different contexts relative to trait 𝐴, then to trait 𝐵, and so on. Each model takes into account a unique 
latent confounder 𝑈 (Supplementary Fig. 1). D) PRISM assesses the effects of all studied genetic variants on a trait 𝑋, 
through the prism of multiple trait contexts. Then, by cross-referencing the information and combining all traits, a full 
causal network can be built for each variant. 

PRISM accurately distinguishes direct from pleiotropic effects in 
simulations. 
We constructed a complex pleiotropic network consisting of 18 simulated traits and 
100,000 variants to generate GWAS summary statistics (See Fig. 6 and Online Methods). 
In a nutshell, the simulated network consisted of different groups of traits 𝐴, 𝐵, 𝐶, 𝐷 and 
𝐸. 𝐴 connected directly to 𝐵3 and 𝐵4, and 𝐵1 and 𝐵2 had mutual causal influences while 
𝐷 was causal to 𝐴. 𝐵4 also connected to traits from the 𝐶 group, which made 𝐵4 the most 
pivotal trait in our network. Traits from group 𝐸 had no causal relationships with any other 
traits. Finally, all traits shared a unique confounder with every other trait. This structure 
emphasized the complex interplay of direct, vertical, and confounder relationships among 
traits. In addition, this network encompassed a wide array of scenarios consisting in 
modulating the polygenicity and the heritability of traits, the strength of causal effects 
between traits, and the strength of the confounders (Supplementary Table 1). Then, we 
processed the simulated data through PRISM, and compared the true variant-trait effects 
with those predicted by PRISM. We calculated the precision and recall to assess the 
performance of predicting each type of pleiotropy. As shown in Fig. 2 and Supplementary 
Fig. 2, PRISM achieved very high precision and recall in scenarios characterized by highly 
heritable traits with low polygenicity and low pervasive confounder effects, regardless of 
causal relationships between traits. Importantly, we chose to prioritize precision over 
recall, even in scenarios featuring high polygenicity and high targeted confounder effects. 
Therefore, for highly polygenic traits and pervasive confounders, PRISM detected only a 
subset of all true variant-trait effects but stringently controlled for false positives. 
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Figure 2: A) Precision and B) Recall of PRISM predictions for significant variant-trait effects, on simulations. The x-axis 
represents the simulated traits in the network (See Fig. 6 and Online Methods). Significant effects are defined with 𝑃 <
5 × 10#$/17 , the recommended threshold from PRISM (See Online Methods). Bars are colored according to predicted 
direct and pleiotropic labels. By convention, when variants neither exist nor were predicted for a given label, the accuracy 
or the recall equals 1, such cases are indicated with ND. Eight scenarios are represented across facets, with varying 
parameters. Polygenicity represents the proportion of variants with a direct effect on each trait. Effect on 𝐵4, the most 
pivotal trait, represents the proportion of effect passed to 𝐵4, for all traits with a non-zero vertical effect on 𝐵4. High 
targeted confounder means that few variants (0.01%) have an effect on the confounder U, but with magnitude of effect 
rivaling direct effects. Low pervasive confounder means that a large proportion (5%) of variants have an effect on the 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.06.01.24308193doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.01.24308193


confounder, but with low magnitude. A) The y-axis represents the precision which is the proportion of well-predicted 
variants among all predicted variants for a given label. B) The y-axis represents the recall, which is the proportion of 
well-predicted variants among all true variants for a given label. NB: results for traits 𝐸1-𝐸8 can be found in 
Supplementary Fig. 2 

PRISM accurately reconstructs variant causal networks in simulations. 
The end goal of PRISM is to use predicted and labeled variant-trait effects to construct a 
causal network for each variant. A network consists of nodes that represent the variant 
and the traits it significantly affects, and edges that represent the variant-trait and trait-
trait effects labeled as direct or pleiotropic. In our simulations, we applied a weighted 
Simple Matching Coefficient (SMC) to individually compare the variant networks predicted 
by PRISM with their true simulated counterparts. First, we measured the accuracy of the 
predicted networks by matching their edges with those of the true networks. As illustrated 
in Supplementary Fig. 3, the predicted edges from PRISM are either identical or very 
similar to those of the true networks. Second, we measured the power of detecting true 
networks by matching their edges with those of the predicted networks. As shown in 
Supplementary Fig. 4, PRISM-predicted networks are often incomplete, especially in 
scenarios with high polygenicity, as the method lacks sufficient power to detect all variant-
trait effects. However, this is a deliberate methodological choice to stringently control for 
false positives. In other words, although the networks built by PRISM might be incomplete, 
the inferred edges are very likely to represent true effects. 

PRISM complements traditional fine-mapping methods. 
PRISM adopts a fundamentally different approach compared to traditional fine-mapping. 
Instead of distinguishing between variants in LD, PRISM predicts whether variant-trait 
effects are direct or caused by pleiotropy. Still, we evaluated the compatibility of PRISM 
with standard fine-mapping methods, such as SuSiE24,25, CARMA13, and FINEMAP26. 
Since fine-mapping must be conducted on a single trait, we chose to focus on the most 
pivotal trait in our simulated network (𝐵4, Fig. 6) in a highly heritable and polygenic 
scenario (scenario 24, Supplementary Table 1) and focused on true causal variants. 
Firstly, we assessed PRISM precision in identifying true causal variants as direct effects. 
Then we compared it to the precision of the fine-mapping methods in prioritizing true 
causal variants within the fine-mapped set. In this scenario, PRISM achieved a precision 
of 95%, outperforming the fine-mapping methods which had precision rates ranging from 
86% to 89%. It is worth mentioning that both PRISM and traditional fine-mapping methods 
were mainly misled by high targeted confounder variant-trait effects. However, PRISM 
exhibited a recall of 51%, significantly higher than the below 1% recall observed for the 
fine-mapping methods. Indeed, fine-mapping methods are designed to identify a limited 
number of variants within a locus, whereas PRISM operates on a genome-wide scale. 
These findings indicate that for highly polygenic traits, PRISM is more efficient in 
identifying causal variants at the genome scale compared to fine-mapping methods that 
focus on specific loci. 

PRISM reassesses GWAS variant-trait associations and distinguishes 
between direct and pleiotropic effects. 
PRISM tests and labels variants for direct and pleiotropic (i.e. vertical and confounder) 
effects on a panel of traits. Contrary to GWAS, an effect is considered as PRISM 
significant if it remains consistent across multiple assessments in different contexts. We 
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processed 61 heritable traits with GWAS summary statistics from UK Biobank23 through 
PRISM (Supplementary Table 2) and compared p-values from GWAS and PRISM. To 
illustrate how PRISM processed GWAS associations, let us take the concrete and 
representative example of coronary heart disease (CHD) (Supplementary Fig. 5). First, 
the majority of the 947 significant variants were classified as having vertical or confounder 
effects by PRISM, with 441 and 497 variants respectively. Only 6 variants were identified 
as having direct effects, all mapping to the non-coding gene CDKN2B-AS1. A recent 
study27 highlighted its potential role in CHD by acting as an RNA-sponge regulating 
microRNA miR-92a-3p, a known therapeutic target of CHD28–30. This explains why PRISM 
did not trace the effect to any other trait in the framework. Second, the vast majority of 
highly significant GWAS variants were labeled with confounder effects. Third, closely 
examining the causal networks of pleiotropic (vertical and confounder) variants revealed 
that most variant effects on CHD are mediated by lipids. In summary, PRISM tests and 
evaluates genetic variant effects, offering deeper insights into the biological mechanisms 
underlying associations observed in GWAS. 

PRISM reveals that most observed associations in GWAS summary statistics 
are caused by relationships between traits. 
Generalizing to all variant-trait effects, we observed that direct effects represent less than 
13% of all PRISM significant effects, while confounder and vertical pleiotropy represent 
44% and 43% respectively. Since PRISM leverages pleiotropy, we aimed to characterize 
the pleiotropic nature of the associations discovered in GWASs. Indeed, GWASs often 
reveal numerous observed pleiotropic associations, where a genetic variant demonstrates 
significant associations with at least two traits. Specifically, we identified 170,433 variants 
exhibiting observed pleiotropic effects from GWASs. Therefore, we assessed the nature 
of this pleiotropy using PRISM. Naturally, confounder and vertical effects provide us with 
straightforward pleiotropic effects. However for direct effects, we defined the horizontal 
pleiotropic effect (also denoted true pleiotropy or uncorrelated pleiotropy) when a genetic 
variant has a direct effect on two traits. Using PRISM on the 61 highly heritable traits, we 
found that confounder and vertical pleiotropies were responsible for respectively 66.8% 
and 33% of the observed pleiotropy in GWAS across all traits (Fig. 3 and Supplementary 
Fig. 6). Thus, horizontal pleiotropy, true multiple direct causal effects from a genetic 
variant, was found extremely rare and represented 0.2%. This finding underscores the 
complexity of genetic effects on multiple traits and highlights the effectiveness of PRISM 
in elucidating the underlying mechanisms of pleiotropic associations in GWAS findings. 
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Figure 3: Heatmap of variant effects shared between traits. The bottom-right triangle represents the proportion of GWAS 
significant variants shared between traits. The grey tile gradient represents the observed pleiotropy from GWAS (scaled 
proportions). The top-left triangle represents the largest proportion of PRISM significant variants classified in one of the 
three categories of pleiotropy between the pair of traits (confounder, vertical, or horizontal). The red, green and blue tile 
gradients represent confounder, vertical and horizontal pleiotropy respectively (scaled proportions). The diagonal 
represents the proportion of individual direct effects for each trait. 

PRISM Direct variants are significantly enriched in per-variant heritability 
compared to GWAS variants and pleiotropic variants. 
In GWAS, variant heritability measures the proportion of the trait variance explained by all 
measured variant associations. Thus, the per-variant heritability is the contribution of a 
specific genetic variant to the overall heritability. We applied stratified LD score 
regression31 (s-LDSC) to calculate per-variant heritability enrichments across labeled 
variant-trait effects grouped into four categories: three categories for PRISM significant 
variant effects (direct, vertical, confounder), and a category for GWAS significant 
associations. Across most traits, we observed a consistent order in the enrichment (Fig. 
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4). Indeed, direct variants demonstrated higher enrichment in per-variant heritability 
compared to GWAS variants, which in turn exhibited higher enrichment than vertical 
variants, followed by confounder variants. This highlights the hypothesis that indirect 
pleiotropic effects on traits are weaker compared to direct effects. 

 
Figure 4: Enrichment in per-variant heritability of genetic variants, according to PRISM categories (direct, vertical, 
confounder) and GWAS. The x-axis represents the traits colored by broad categories. The y-axis represents enrichment 
in per-variant heritability, calculated with stratified LD score regression. The enrichment is represented in a log scale. 

PRISM produces coherent results on a panel of literature-validated variants. 
The final aim of PRISM is to infer causal networks for genetic variants. To confirm the 
reliability of PRISM, we aimed to compare its predicted networks to what the scientific 
literature suggests. For some networks of interest, we therefore examined whether the 
variant-trait effects identified and labeled by PRISM had already been previously 
identified. For example, variant rs7528419, residing in the SORT1 gene locus32 coding for 
the sortilin protein, were strongly associated with coronary heart disease (CHD) in 
GWAS32. According to PRISM (Fig. 5A), this variant displayed a vertical effect on CHD 
but a direct effect on apolipoprotein B (apoB). Essentially, PRISM suggested that this 
variant affects CHD only through its direct effect on apoB, which has a causal effect on 
CHD. Recent studies have indeed demonstrated that sortilin restricts the secretion of 
apoB33, and that apoB is one of the most accurate markers of lipid-induced cardiovascular 
risk34. Another example of validated network is rs2282679, mapped to gene GC35, which 
is validated for vitamin D levels. Kew et al.36 also highlighted that this gene is involved in 
white blood cells and neutrophil accumulation. Remarkably, these findings align with the 
3 direct effects identified by PRISM coming from these variants (Fig. 5B). Additional 
validated networks can be found in the Supplementary Results. 
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Figure 5: PRISM inferred causal network for variants rs7528419 (A) and rs2282679 (B). Genetic variants are 
represented as black triangles. Red arrows are effects of the variant through a confounder meaning confounder 
pleiotropy. Green arrows are effects of variant through a causal trait meaning vertical pleiotropy. Blue arrows are direct 
causal effects from the variant to traits. Confounders are represented as red squares and traits are represented as 
circles colored according to trait categories. 

PRISM variants mapped to eGenes are found in relevant tissues. 
Standard follow-up analysis in GWAS involves checking whether the associated variants 
are eQTL in tissues linked to the studied trait. We expect to identify more interpretable 
and relevant eGenes using PRISM direct and pleiotropic categories. A concrete example 
of interpretability is provided for coronary heart disease (CHD), where we investigated the 
enrichment of relevant tissues in the expression of genes associated with eQTL variants 
identified by PRISM. We retrieved eQTLs and their corresponding eGenes through 
GTEx37 (Supplementary Fig. 7). Overall, enrichments were more pronounced for PRISM 
than GWAS, and we observed 3 enrichment peaks above 2 for PRISM and none for 
GWAS, each providing valuable insights. The liver was enriched in vertical pleiotropy, 
suggesting a lipid-mediated effect from the liver. The brain anterior cortex was enriched 
in confounder pleiotropy, which hinted at CHD comorbidity with obesity, hence linked to 
brain functions. Similarly, lymphocyte cells were enriched in confounder pleiotropy, which 
hinted at a potential association between CHD, obesity and chronic inflammation. These 
examples showed that PRISM direct and pleiotropic categories reflect specific underlying 
biological mechanisms. 

PRISM pinpoints direct variants that are mapped to more trait-specific genes 
than GWAS. 
Traditional pipelines for GWAS analysis typically involve examining genes mapped to 
significant variants, and their associated pathways. In our study, we notably performed 
annotation analysis to map functionally annotated variants to genes based on their 
physical positions in the genome and expression Quantitative Trait Locus (eQTL) 
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mapping. To provide a comprehensive view across all traits, we utilized FUMA38, a 
powerful tool for conducting extensive functional annotation analyses. Supplementary Fig. 
8 illustrates the strong connectivity of traits through GWAS mapped genes. Upon 
examining genes mapped to PRISM direct variants, we observed a much smaller number 
of common genes among traits. Supplementary Fig. 9 illustrates that most genes shared 
between traits were involved in vertical or confounding pleiotropy. These observations 
suggest that genes mapped to direct variants may be more relevant, resulting in a simpler 
and more biologically interpretable variant-gene-trait network from PRISM. To further 
investigate the biological significance of our results, we conducted an enrichment analysis 
based on DisGeNET39 pathways using genes mapped to PRISM direct and GWAS 
variants. The goal was to identify enriched pathways and compare their significance 
between PRISM direct- and GWAS-mapped pathways. As shown in Supplementary Fig. 
10, PRISM direct pathways exhibited significantly greater enrichment compared to GWAS 
pathways in more than two-thirds of the traits with significant differences. Next, we 
employed bipartite network analysis to compare the centrality measures of gene-trait 
networks constructed from PRISM direct and GWAS variants. In Supplementary Fig. 11, 
PRISM network demonstrated lower degree and closeness, indicating fewer links 
between traits, but higher betweenness, suggesting the presence of more central traits. 
To ensure a fair comparison despite the fewer PRISM direct genes compared to GWAS 
genes, we conducted two distinct methodologies. First, we randomly removed genes from 
the GWAS network while retaining the edges linked to the selected genes. This resulted 
in centrality measures similar to those of the full GWAS network (black dots). Second, we 
removed both genes and edges to create GWAS sub-networks with the same number of 
nodes and edges as the PRISM direct network. Remarkably, with networks of the same 
dimension as PRISM, the centrality measures were equivalent for all the traits (red dots), 
and PRISM network still demonstrated lower degree and closeness. This suggests that 
the network inferred from PRISM direct variants was denoised and untangled, discarding 
redundant and biased relations induced by pleiotropy. 

Discussion 
We developed PRISM (Pleiotropic Relationships to Infer the SNP model) that aims at 
reassessing the associations between genetic variants and traits from GWAS, by 
distinguishing between direct effects and pleiotropic effects. In fine, PRISM infers a causal 
network for each genetic variant. PRISM takes the opposite view to current methods such 
as fine-mapping, and does not resort to any annotation but instead leverages pleiotropy 
which is pervasive throughout the human genome. We assessed the performances of 
PRISM on a simulated complex pleiotropic network of traits and compared it with several 
other fine-mapping methods. We fine-tuned PRISM to achieve high precision in predicting 
direct and pleiotropic variant-trait effects, which resulted in limited power to detect 
significant variant-trait effects in highly polygenic traits. Consequently, causal variant 
networks predicted by PRISM, although often incomplete, demonstrated a high level of 
accuracy. We applied PRISM to a set of 61 heritable traits and diseases from UK Biobank. 
PRISM was able to build a causal network for 371,551 unique variants. PRISM showed 
that most GWAS associations were caused by pleiotropy, as only 13% of variant-trait 
effects were direct. Direct variants predicted by PRISM were significantly enriched in per-
variant heritability compared to GWAS significant variants and pleiotropic variants. 
Comparing biological pathways derived from PRISM direct variants and GWAS variants, 
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the enrichment was stronger for PRISM. PRISM was able to pinpoint direct variants 
mapped to more trait-specific genes than GWAS, and the PRISM gene-trait network 
appeared disentangled and more pertinent compared to the GWAS gene-trait network. 
PRISM inferred relevant variant causal networks; we could show the concordance 
between the causal networks inferred by PRISM and the networks from the literature for 
a panel of validated variants. Importantly, each causal network constructed by PRISM is 
specific to its corresponding variant. All significant edges in these networks are computed 
by PRISM, which is different from integrating variants into pre-existing trait networks. 

However, the proposed method has a number of limitations. First, PRISM is highly 
dependent on the set of processed traits. Indeed, pleiotropy is relative to the traits in the 
network, and so are the direct and pleiotropic labels. Depending on the shape of the 
network, some effects can be justifiably classified as vertical or confounder pleiotropy. 
Adding or removing traits, especially central traits, can have an impact on whether or not 
the variants are significant, and their type of pleiotropy (See Supplementary Results for 
details). Second, PRISM heavily relies on parameters computed by LHC-MR to assess 
the relationships between traits and to infer direct and pleiotropic labels. We tested PRISM 
performances with noisy parameters, and concluded that PRISM precision and recall are 
robust to reasonable parameter estimation errors (See Supplementary Results for 
details). Third, PRISM is geared towards precision to identify direct variant-trait effects. 
Hence confounder and vertical precision are more limited, as is the overall power of 
PRISM. This is a deliberate choice since we aim to favor precision in the identification of 
direct effects. Fourth, the precision and recall were calculated from summary statistics 
simulated from a pleiotropic network of heritable traits. Similarly on real data, we only 
included heritable traits. Traits that are not heritable might disrupt the inferred causal 
network. Interpreting results that include low heritability traits, which will be mechanically 
disadvantaged in comparison with highly heritable traits, must be performed with caution. 
However, we did simulate networks without any pleiotropy, and PRISM was still able to 
identify direct effects correctly (See Supplementary Results for details). Traits with very 
simple genetic architecture (e.g. monogenic diseases) can seemingly be processed 
without any issue. Fifth, as far as computational time is concerned, PRISM is limited by 
the pairwise step, where every possible pair of traits must be analyzed by LHC-MR. The 
number of such pairwise computations increases exponentially as the number of traits 
increases. 

PRISM takes an orthogonal approach to traditional fine-mapping methods, and aims not 
to distinguish between variants in linkage disequilibrium (LD), but to assess whether the 
observed effect of a variant on a trait can be explained by pleiotropy, i.e. by another trait 
or a confounder. This has two main implications. First, we did not clump genetic variants 
when presenting biological results, to avoid eliminating the true causal variant effect in 
favor of an LD effect. Nevertheless, LD is taken into consideration when calculating the 
probabilities of genetic variants to have causal effects. Variants with high LD scores are 
penalized because they are expected to mechanically exhibit larger effect sizes40. 
Second, comparing PRISM with other fine-mapping methods is debatable since they differ 
in aim and approach. Fine-mapping methods primarily focus on functional genetics and, 
apart from LD, do not challenge the underlying biological mechanisms of associations, 
whereas PRISM leverages these mechanisms. Despite these differences, we undertook 
the comparison for two key reasons: to demonstrate that PRISM has comparable 
precision in identifying causal variant-trait effects, and to highlight the compatibility of 
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these orthogonal approaches. Fine-mapping methods, such as SuSiE24,25, can 
complement PRISM by deciding between multiple candidate direct causal variants in LD. 
Combining these methods could enhance the identification of true causal variants within 
a locus and provide insights into the pleiotropy of the variants, which is crucial for future 
research on putative causal variants. 

On a different note, direct effects and vertical pleiotropy are straightforward concepts, 
while confounder pleiotropy presents a greater complexity. When a variant-trait effect is 
attributed to confounder pleiotropy, it indicates that the effect is mediated by an 
unidentified factor that PRISM could not precisely determine. This factor might be missing 
from the analysis, or the signal could be too entangled or underpowered to distinctly 
identify its origin. We hypothesize that, biologically, all instances of confounder pleiotropy 
could actually be vertical pleiotropy, where the mediating factor has yet to be clearly 
identified. 

PRISM underlying model implies that direct effects result in stronger effect sizes in GWAS 
summary statistics. It would be a legitimate question to ask if direct variants are simply 
the most significant variants with the strongest effect sizes, while confounder and vertical 
variants are weaker significant variants. But although direct variants tend to have higher 
initial Z-scores from GWAS, PRISM results show much more intertwined results when 
looking at the original Z-scores of the different pleiotropies (Supplementary Fig. 12). For 
simple molecular traits like lipids or biomarkers, direct variants do tend to have higher Z-
scores. However, complex traits like respiratory or metabolic traits do not follow this trend. 
In conclusion, we are confident that PRISM can effectively distinguish between subtle 
biological mechanisms. 

We concluded that the gene network inferred from PRISM direct variants is denoised and 
disentangled compared to the network inferred from GWAS variants. This observation 
raises the question of whether the reduced complexity of the PRISM-inferred network is 
due to PRISM limited power, potentially resulting in the detection of fewer significant 
variant effects and, consequently, a simpler network. However, our analysis suggests 
otherwise. We demonstrated that, even when reduced to the same number of nodes and 
edges as the PRISM network, the GWAS network still exhibited the tangled characteristics 
of the full GWAS network. 

To develop the method, we prioritized statistical power by selecting a cohort with a large 
sample size, specifically the UK Biobank, and could suffer from issues related to sample 
overlap. However, the bias from sample overlap is expected to be small when using a 
large sample size20,41. Another consequence of using UK Biobank, is that all the GWAS 
associations were obtained on individuals from “white British” ancestry23. Therefore, it 
would be valuable to apply PRISM to other ancestries and compare the inferred variant 
networks across different populations. Additionally, these results only cover common 
variants, as associations with rare variants are underpowered in GWAS42. Finally, these 
results are restricted to HapMap3 variants, but PRISM could be extended to more 
common variants. 

Horizontal pleiotropy, defined as true multiple direct causal effects from a single genetic 
variant, is surprisingly rare, accounting for only 0.2% of the observed pleiotropy in GWAS. 
In simulations, PRISM reliably detected horizontal variant-trait effects across a wide range 
of scenarios (See Supplementary Results for details). Therefore, we strongly believe that 
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genetic variants with completely independent effects on multiple traits are extremely rare 
in the human genome, as we have previously shown7. 

To conclude, at the trait level, PRISM can be used to better apprehend the genetic 
architecture of complex traits and the relationships between traits. At the variant level, 
PRISM can help understanding the specific genetic effect of a variant on multiple traits. 
We strongly believe that building the causal network of genetic variants is a priority to 
guide in vitro and in vivo follow-up studies as well as for medical applications, like genomic 
medicine or genome editing. 

Online Methods 

General principle of the PRISM - Pleiotropic Relationships to Infer the SNP 
Model - method. 

General aim: PRISM infers causal networks for genetic variants. 

The general objective of PRISM is to infer causal networks for genetic variants from 
GWAS summary statistics, distinguishing between direct and pleiotropic effects. 
Essentially, PRISM evaluates variant-trait effects across multiple contexts, systematically 
assessing the impact of all genetic variants on a trait 𝑋 in relation to other traits. By 
aggregating information from these contexts, PRISM identifies consistent variant-trait 
effects and classifies them as direct or pleiotropic. “Confounder pleiotropy” indicates a 
variant that affects trait 𝑋 solely through a shared confounder with another trait. “Vertical 
pleiotropy” indicates a variant that affects trait 𝑋 through another trait that causally affects 
𝑋. “Direct effect” indicates that the variant affects 𝑋 without any mediation by any other 
trait or confounder. Upon completing this analysis for all variant-trait effects, the results 
are combined to construct a comprehensive causal network for each variant disentangling 
the effect of the variant on all the traits. 

Pairwise step: PRISM models variant-trait associations in a pairwise trait context. 

Let 𝑋 and 𝑌 denote two traits, and 𝑈 a latent confounder with causal effects on both 𝑋 and 
𝑌 (Supplementary Fig. 1). 𝑋 and 𝑌 may have direct causal effects on each other. Let 𝐆 
represent the genome-wide genotype data for 𝑚 genetic variants. Let 𝛽0$% and 𝛽0$

& denote 
the standardized effects of a genetic variant 𝑘 on traits 𝑋 and 𝑌 respectively, observed 
from GWAS summary statistics. We model an 8-component bivariate Gaussian Mixture 
Model. Each component corresponds to the expected distribution of standardized effects 
from variants in that particular component. The eight components are: (0) No association; 
(1) Associated with 𝑋; (2) Associated with 𝑈; (3) Associated with 𝑌; (4) Associated with 𝑋 
and 𝑈; (5) Associated with 𝑋 and 𝑌; (6) Associated with 𝑈 and 𝑌; (7) Associated with 𝑋, 𝑌 
and 𝑈. 

Each variant effect is hypothesized to be drawn from one of these components. The 
probability that a given variant 𝑘 belongs to Gaussian component 𝑗 is determined by the 
following posterior probability: 

𝑃45𝑘 ∈ 𝑗|𝛽0$% , 𝛽0$
&9 =

𝜙5𝛽0$% , 𝛽0$
&|0, 𝛀> 𝐣9𝑃4(𝑘 ∈ 𝑗)

∑ 𝜙(
)*+ 5𝛽0$% , 𝛽0$

&|0, 𝛀> 𝐣9𝑃4(𝑘 ∈ 𝑗)
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Here, 𝛀> 𝐣 denotes the variance-covariance matrix of Gaussian component 𝑗. The function 
𝜙 represents the joint probability density function of the bivariate normal distribution, and 
𝑃4(𝑘 ∈ 𝑗) is the prior probability of variant 𝑘 belonging to component 𝑗. 

For each variant 𝑘, we compute the probability of belonging to each component. Then, we 
translate these probabilities into three scores corresponding to the variant having no 
effect, or an effect on 𝑋, or on 𝑌. No Effect: the score indicating no effect of variant 𝑘 on 
neither 𝑋 nor 𝑌 corresponds to the probability of belonging to component (0). Effect on 𝑋: 
the score indicating an effect of variant 𝑘 on 𝑋 corresponds to the highest probability 
among the components that include an effect on 𝑋, specifically components (1), (4), (5) 
and (7). Effect on 𝑌: the score indicating an effect of variant 𝑘 on 𝑌 corresponds to the 
highest probability among components indicating an effect on 𝑌, specifically components 
(3), (5), (6) and (7). 

Parameter estimation: PRISM uses global trait pleiotropic relationships parameters. 

To apply PRISM pairwise step to a pair of traits, we need to estimate 𝛀> 𝐣 and 𝑃4(𝑘 ∈ 𝑗). As 
described in the Supplementary Methods, 𝛀> 𝐣 and 𝑃4(𝑘 ∈ 𝑗) can be expressed using the 
number of genetic variants 𝑚, the sample size of each trait, and a set of global parameters 
𝜃 that quantifies the bidirectional causal effects between 𝑋 and 𝑌, the effects of the 
confounder, both trait heritabilities, and both trait polygenicities, as well as their respective 
LD score intercepts. The estimation of 𝜃 is performed using LHC-MR20, an integrative 
Mendelian Randomization method that accounts for a latent heritable confounder. LHC-
MR takes as inputs the GWAS summary statistics for a pair of traits and outputs a set of 
𝜃 parameters. Since LHC-MR and PRISM share a similar underlying mathematical model, 
the 𝜃 parameters estimated by LHC-MR can be used as input for PRISM. 

Analysis pipeline: PRISM tests and classifies variant-trait associations. 

Supplementary Fig. 13 provided an overview of PRISM full analysis pipeline. Consider a 
set of 𝑇 traits processed through the PRISM pipeline. The PRISM pairwise step evaluates 
all ,(,.!)

#
 possible pairwise combinations of these traits. This step generates scores 

describing the effects of each variant on each trait, measured across 𝑇 − 1 pairings (each 
trait paired with every other trait). By aggregating these scores for each trait, we test the 
significance of all possible variant-trait associations and classify all significant 
associations in our framework. 

For example, let us consider the variant-trait association of variant 𝑘 on trait 𝑋. First, we 
aggregate all scores indicating of an effect on trait 𝑋 involving 𝑘. We define 𝜇$0 as the 
average of these scores. Similarly, we aggregate all scores indicating of the absence of 
effect on trait 𝑋 involving 𝑘. We define 𝜇$1 as the average of these scores. Second, we 
compare both average scores using a paired Student test (𝐻+: 𝜇$0 = 𝜇$1 and 𝐻!: 𝜇$0 > 𝜇$1) 
to determine significant effects. Third, we apply a Bonferroni correction to identify a 
significant variant-trait effects, in addition to the usual GWAS threshold of p < 5 × 10.2. 
Thus, the effect of variant 𝑘 on trait 𝑋 is considered significant at p-value$

0 < 3×!+!"

,.!
. 
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Significant variant-trait effects are classified as confounder pleiotropy, vertical pleiotropy, 
or direct effect, based on the previously calculated probabilities in the different Gaussian 
Mixture Models (See Supplementary Methods for details). 

Finally, for each variant, we construct the causal network model by creating a graph where 
nodes represent the variant and traits, and edges represent the relationships inferred from 
PRISM (direct, vertical, or confounder effects). We refine the causal network for each 
variant by removing vertical edges between the variant and specific traits, conditioned on 
other traits involved in vertical relationships43. This process ensures that the causal 
pathways are accurately represented. Additionally, when a variant shows vertical effects 
on multiple traits through a common causal trait, we average the effect on the causal trait 
and eliminate redundant edges. 
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Simulation framework. 

Simulating GWAS summary statistics data for a complex pleiotropic network of 
traits. 

 
Figure 6: Architecture of the network of simulated traits. The simulated traits are represented as circles. Green arrows 
depict vertical relationships between traits. Striped green and red arrows depict vertical relationships between traits that 
can also be seen as confounder pleiotropy. For all pairs of traits, a confounder 𝑈 of the relationship between a given 
pair of traits is added. 

We started by creating an intricate network of 18 traits (Fig. 6). We created 32 different 
scenarios, with various parameters for heritability, polygenicity, and causal relationships, 
as detailed in Supplementary Table 1. To approximate a genome-wide model while 
maintaining computational feasibility, we opted for sets of 100,000 simulated variants. The 
standardized effects of all these variants on all the traits were simulated, taking into 
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account the relationships between the traits. First, for each trait 𝑋, we randomly selected 
genetic variants to have a true direct effect on trait 𝑋 and on the confounders of the 
relationships between trait 𝑋 and the other traits. For the selected genetic variants, the 
true direct effects were drawn from a Gaussian distribution with parameters depending on 
the trait and the scenario. Then, the true effects were propagated to the other traits 
through vertical and confounder pleiotropy. Additionally, the effects were propagated 
according to the LD structure of each variant. Finally, an error term was added. This 
produced standardized effects on all traits and LD scores for all genetic variants. The LD 
score of a given variant is the sum of its LD with all variants (including itself). The LD 
structure that we used is derived from 1000 Genomes44 LD data from chromosome 1. 

Calculating PRISM precision and recall. 

For each scenario independently, we processed the simulated data through PRISM to 
identify and label significant variant-trait effects. The objective was to compare the true 
labels used during data generation against the labels inferred by PRISM. Therefore, to 
facilitate this comparison, the predicted label of a given LD block was determined by the 
label of the most significant variant. Next, the true label for each LD block was determined 
as follows: 1) “direct effect” if at least one variant within the block had a true direct effect; 
2) “vertical effect” if at least one variant had a true vertical effect and no variants had direct 
effects; 3) “confounder effect” if at least one variant had a true confounder effect and no 
variants had direct or vertical effects; 4) “no effect” otherwise. Then, we confronted the 
predicted labels to the true labels by calculating the precision and recall to assess the 
prediction performances of each type of pleiotropy. These metrics were computed as 
follows for each one of the 4 labels: Precision = Number of true positive

Number of predictions
 and Recall =

Number of true positive
Total number of variant-trait effects

. 

Comparing PRISM predicted variant networks and true variant networks. 

A PRISM variant network consists of nodes, representing the variant and the traits, and 
edges, representing the variant-trait and trait-trait effects labeled with direct and 
pleiotropic labels. To compare predicted variant networks with true variant networks, we 
regrouped edges from variants within the same LD block. Then, we applied a weighted 
Simple Matching Coefficient (SMC), defined as follows: SMC = Number of matching edges

Total number of edges
. We 

implemented stringent criteria, requiring edges to be identical in terms of nodes, direction, 
and type of pleiotropy to be considered a match. Confounder pleiotropy inherently 
produces more edges than vertical pleiotropy, which in turn produces more edges than 
direct effects. Consequently, direct edges were assigned a weight of 1, vertical edges a 
weight of !

#
, and confounder edges a weight of !

5
. 

Comparing PRISM to other fine-mapping methods. 

In a scenario with high heritability, high polygenicity, and high targeted confounder effects 
(scenario 24, Supplementary Table 1), we evaluated the precision and recall for several 
fine-mapping methods CARMA13, FINEMAP26, and SuSiE24,25 for trait 𝐵4, the most pivotal 
trait in our simulated network. High polygenicity combined with high confounder effects 
create an unfavorable and highly pleiotropic scenario, where the effects of genetic variants 
are complex and intertwined, with confounder effects comparable in magnitude to direct 
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effects. For computational reasons, Z-scores and the LD matrix were divided into 10 
chunks, each containing approximately 10,000 variants independent from the others. 
None of the methods were provided with annotations. 

Application to 61 traits from UK Biobank. 
We selected 61 heritable traits and diseases with publicly available GWAS summary 
statistics data from UK Biobank23 (Supplementary Table 2). Variants from the human 
leukocyte antigen (HLA) region on chromosome 6 were excluded due to the high density 
of variants associated with autoimmune and infectious diseases, and the complex LD 
structure in this region20. Variants from sex chromosomes were excluded due to the 
complexity of their unique inheritance patterns and gene expression differences between 
sexes. Low-confidence variants and rare variants with a minor allele frequency (MAF) 
below 0.05 were also excluded due to their insufficient statistical power. Only variants 
present in the HapMap3 framework were analyzed, because LHC-MR is limited to these 
variants. We then processed these 61 traits through PRISM. 

Computing per-variant heritability enrichments. 

To interpret PRISM results, we employed stratified LD score regression (s-LDSC)31. We 
calculated per-variant heritability enrichments across labeled variant-trait effects, 
separately for each trait. Variants were grouped into four categories: three categories 
(direct, vertical, confounder) for PRISM significant variant effects, and a category for 
GWAS significant associations. We used the same threshold for both PRISM and GWAS 
of p-value$

0 < 3×!+!"

6+
 corresponding to the traditional GWAS threshold divided by the 

number of traits -1. These categories were not mutually exclusive, as most PRISM 
significant variants were also GWAS significant. Only 45 traits among the 61 traits had 
enough variants in all four categories to be processed by s-LDSC. 

eQTL and eGenes retrieval from GTEx. 

We retrieved the eQTL and correspondent eGenes from GTEx37 version 8. We converted 
the genomic coordinates from Hg38 to Hg19 using the liftOver R package. We identified 
significant variant-eGene pairs under the following threshold p-value < +.+3

6+
 in each tissue. 

Variants were grouped into four categories: three categories (direct, vertical, confounder) 
for PRISM significant variant effects, and a category for GWAS significant associations. 
For each tissue, we then determined the number of unique eGenes significantly paired 
with variants separately in each one of the four categories. Finally, for each tissue, we 
calculated the enrichment in unique genes of each category as: 

Number of eGenes in category within tissue
Number of eGenes in category across all tissues

/ Number of eGenes within tissue across all categories
Total number of eGenes across all tissues and categories

 

Gene networks and pathways analysis 

We configured FUMA with specific parameters to ensure accurate and reliable results. 
We used Ensembl version 110 as the reference, and the UK Biobank release 2b 
population dataset “WBrits10k” was chosen as the reference panel. A physical mapping 
window of 10 kb was employed to precisely map variants to nearby genes. We set the 
significance threshold p-value < 5 × 10.2 for GWAS and p-value < 3×!+!"

6+
 for PRISM 

direct variants. Additionally, we incorporated eQTL mapping into our analysis using GTEx 
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data version 6, including all available tissue types. Next, using FUMA results, we 
conducted pathway enrichment analyses with Metascape45 on DisGeNET39 pathways for 
genes mapped to GWAS and PRISM direct variants. These analyses were performed 
separately for 48 traits with identified gene sets. We performed a paired Student test to 
assess the significance of differences in pathway enrichments between PRISM and 
GWAS, with significance threshold p-value < 1 × 10.5. Finally, we constructed bipartite 
networks, which consist of two distinct sets of nodes (here, genes and traits) where edges 
only exist between nodes of different sets. Edges were added between traits and their 
associated genes. The degree centrality of a trait, indicating the number of associated 
genes, was calculated as: Number of edges incident to trait

Total number of traits in the network
. Betweenness centrality, measuring 

the extent to which a trait lies on the shortest paths between other traits, was calculated 
as: Number of shortest paths passing through the trait

Total number of shortest paths
. Closeness centrality, assessing the proximity of 

a trait to all other traits in the network, was calculated as 
!

Sum of shortest distances from the trait to all other traits
. 

Availability of the method and results. 
PRISM is implemented in R and a user-friendly tutorial is available on github. As long as 
GWAS summary statistics are available and the studied variants are mapped in HapMap3, 
PRISM can compute any network of traits of interest to distinguish direct variant-trait 
effects from vertical and confounder variant-trait effects. To fulfill the assumptions of the 
paired Student test used by PRISM, we recommend to include at least 31 traits. PRISM 
results are available on Zenodo or easily accessible through an online user-friendly 
interface. Indeed, we developed a ShinyR interface, freely available online, to display 
PRISM results on our network of 61 highly heritable traits. Results can be visualized at 
the trait level and also to display the causal network of any genetic variant of interest. 
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