
Inferring genetic variant causal network by leveraging 
pleiotropy 

Martin	Tournaire!,	Asma	Nouira!,	Yves	Rozenholc!,	Marie	Verbanck!	
!UR 7537 BioSTM, Biostatistique, Traitement et Modélisation des données biologiques, Université Paris Cité. 

Abstract 
Genetic variants have robustly been associated with multiple traits through genome-wide 
association studies (GWAS) over the past two decades. However, pinpointing the true 
causal genetic variant and its biological mechanism is still a considerable challenge. 
Recently, much concerned has been raised about the weak overlap between expression 
quantitative trait loci or DNA methylation with GWAS variants, when these very same 
molecular phenotypes have been routinely used to interpret GWAS variants. Therefore, 
we propose to takes the opposite approach to conventional methods and to infer variant 
causal networks by leveraging pleiotropy. We introduce PRISM (Pleiotropic Relationships 
to Infer the SNP Model) that aims to distinguish between true direct effects and pleiotropic 
effects in order to infer a causal network for each genetic variant. The fundamental 
principle of PRISM is to reassess GWAS associations to test for the consistency of a given 
variant-trait effect in the pleiotropic context of the other traits. PRISM clusters significant 
genetic variant effects in 3 categories: trait-mediated, confounder-mediated, and direct 
effects. By cross-referencing the information on all traits, a causal network is built for each 
genetic variant. On simulations, PRISM was able to recover direct effects with high 
precision in complex networks of traits. Then, we applied PRISM to a set of 61 heritable 
traits and diseases, using GWAS summary statistics from the UK Biobank. Interestingly, 
direct effects represent less than 13% of total significant effects, while vertical and 
confounding effects represent 43% and 44% respectively. Direct variants were largely 
enriched in per-variant heritability compared to GWAS-significant variants and pleiotropic 
variants. Pathways from direct variants lead to higher enrichment than GWAS variants. 
PRISM was able to pinpoint direct variants mapped to more trait-specific genes than 
GWAS, and the PRISM gene-trait network appeared disentangled and more relevant 
compared to the GWAS gene-trait network. Finally, we could show the concordance of 
the causal networks inferred by PRISM with some networks for a panel of validated 
variants from the literature. 

Introduction 
Over the past 20 years, Genome Wide Association Studies (GWASs) have established a 
myriad of associations between genetic variants and human traits1 2. GWAS is a method 
that measures and statistically tests the association between several million genetic 
variants and one trait of interest. According to the GWAS catalog inventory3, 6,868 
publications and 619,964 unique genetic variant-trait associations have been reported as 
of May 2024. However, GWAS suffers from many limitations and biases. First, pleiotropy, 
i.e. a single genetic element affecting more than one trait, is pervasive in the human 
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genome4–6. Because of pleiotropy, genetic variants are often associated with multiple 
traits in GWAS7. Second, Linkage Disequilibrium (LD), referring to the non-random 
association of alleles at different loci on a chromosome, renders indistinguishable 
between candidate causal variants in a genomic locus8. Third, the biological mechanisms 
underlying the associations are rarely resolved, a systematic review reported only 309 
experimentally validated non-coding GWAS variants9. Therefore, precisely pinpointing 
true causal genetic variants to the complex traits they affect proves to be a tremendous 
challenge10, hence the need for computational approaches complementary to GWASs. 

The most prominent method to pinpoint causal variants is fine-mapping that aims at 
distinguishing between causal genetic variants and non-causal variants, using LD 
reference panels and genomic annotations10. Simply put, the objective is to attribute the 
real effect to a minimal subset of top variants in LD within a locus (at best, 1), and 
disqualify the other variants as LD effects. However, fine-mapping heavily relies on 
annotations to discriminate between causal and LD effects11–13. And yet recently much 
concern has been raised about the fact that genetic variants from GWASs associated with 
complex diseases overlap very little with annotations like molecular quantitative trait loci 
(QTL), particularly expression QTL (eQTL)14,15. GWAS and cis-eQTL variants even seem 
systematically and structurally different16. Likewise, GWAS and DNA methylation do not 
find the same causal genes17. 

Here, we take the opposite view to traditional fine-mapping methods, with the objective of 
severing our approach from annotations. Instead, the idea is to take advantage of the 
omnipresence of pleiotropy to disentangle the variant-trait associations obtained from 
GWAS. Apart from LD, we think that these associations can be explained by 3 distinct 
underlying biological mechanisms: 1) direct effect when the association is caused by a 
true causal direct effect from variant to trait 2) vertical pleiotropy when the association can 
be explained by the direct variant-trait effect from another trait, 3) confounding pleiotropy 
when it can be explained by a confounding factor between traits. Therefore, to disentangle 
the variant-trait associations, we propose to leverage pleiotropic relationships between 
traits by rerouting an integrative Mendelian randomization (MR) method. 

MR is used to infer the causality of an exposure trait X on an outcome trait Y. MR uses 
genetic variants as instrumental variables that are robustly associated with the exposure 
of interest and tests whether the effects of the variants on the exposure result in 
proportional effects on the outcome. Classical MR relies on three assumptions: 1) the 
genetic variants must be strongly associated with the exposure X, 2) the genetic variants 
cannot directly affect the outcome Y or 3) the confounder U of the exposure-outcome 
relationship. It has been shown that traditional MR massively suffers from pleiotropy, 
which violates the assumptions and biases the results17. This inspired multiple integrative 
MR methods (LHC-MR18, CAUSE19, MR-CUE20) that takes pleiotropy into account and 
infer relationships between traits. However, MR only use genetic variants as instrumental 
variables, and no conclusion are drawn on individual variant-trait associations. We choose 
to reroute MR to focus on the relationships between variants and traits. 

Here, we propose PRISM, which stands for Pleiotropic Relationships to Infer the SNP 
model, a genome-wide method to disentangle variant-trait effects from GWAS, into 
vertical, confounding, or direct effects. To do so, PRISM re-examines variant-trait effects 
from GWAS through the prism of other traits. Concretely, PRISM runs a pair-wise MR 
model that integrates confounding, across all studied traits. Then, PRISM predicts 
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significant variant-trait effects, that are consistent regardless of the trait context. Finally, 
PRISM reconstructs the network of variants and traits, and assigns a label to all significant 
variant-trait effects. To assess the performances of PRISM, we simulated GWAS 
summary statistics for a complex network of traits. We processed 61 heritable traits from 
UK Biobank through PRISM and disentangled the effects of ~4 million variants on these 
traits. 

Results 

PRISM disentangles the associations of genetic variants from GWASs by 
leveraging pleiotropy. 
For each genetic variant, PRISM inputs GWAS summary statistics for multiple traits to 
infer a causal network derived from predicted direct and pleiotropic effects for each genetic 
variant (Fig. 1). Each significant variant-trait effect is labeled. We hypothesize that the 
observed associations in GWAS can be attributed to 3 distinct underlying biological 
mechanisms: 1) confounding pleiotropy occurs when the association is explained by a 
confounding factor between traits 2) vertical pleiotropy arises from the causal variant-trait 
effect of another trait, 3) a direct effect occurs when the association is due to a true causal 
direct effect from the variant on the trait. Therefore, variant-trait associations in GWAS are 
induced by true causal direct effects and their pleiotropic ripple effects. To 
comprehensively disentangle these associations, PRISM analyzes variant-trait effects 
across multiple contexts. Specifically, PRISM evaluates the effect of all genetic variants 
on a trait X relative to all other traits. It systematically assesses each variant effect on X 
relative to trait A, then to trait B, and so forth. By aggregating information across these 
various contexts, PRISM identifies and predicts significant variant-trait effects, 
subsequently labeling them based on their nature. Therefore, the “confounding pleiotropy” 
label indicates that the variant was identified as having an effect on trait X only through a 
confounder shared with another trait. In contrast, the “vertical pleiotropy” label denotes 
that the variant effect on trait X is only mediated through another trait causally related to 
X. Conversely, A “direct effect” means that the variant is not flagged for pleiotropy, 
indicating that its effect on X is not mediated by any other factor. Once this procedure is 
completed for all traits, the obtained direct and pleiotropic labels are used to construct a 
comprehensive causal network for each variant and the traits it impacts. 
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Figure 1: Overview of PRISM | A) 3 distinct mechanisms underlying GWAS associations: 1) direct effect 2) vertical 
pleiotropy, i.e. effect mediated by a causal relationship between two traits, 3) confounding pleiotropy, i.e. effect mediated 
by a confounding factor. B) PRISM aims at disentangling GWAS associations into direct effects, hypothesized to convey 
true causal effects, from pleiotropic effects (vertical and confounding). C) Each variant-trait association is evaluated in 
a model of trait X in different contexts relative to A, then to trait B, and so on. Each model takes into account a unique 
latent confounder U. D) The main idea behind PRISM is to assess the effects of all studied genetic variants on a trait X, 
through the prism of multiple observations of these effects in multiple contexts. Then, by cross-referencing the 
information and combining all traits, a full causal network can be built for each variant. 
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PRISM accurately detects direct effects in simulations. 
We constructed a complex pleiotropic network consisting of 15 simulated traits and 
100,000 variants to generate GWAS summary statistics (See online methods and Fig. 8). 
This network was simulated under multiple scenarios, encompassing a wide array of 
parameters (Supplementary Table 1). We modulated the polygenicity and the heritability 
of traits, the strength of causal effects between traits, and the strength of the confounders 
across scenarios. Then, we processed the simulated data through PRISM, and compared 
the true variant-trait effects with those predicted by PRISM. We calculated the precision 
and recall to assess the performance of predicting each type of pleiotropy. These metrics 
were computed as follows: Precision = Number of true positive

Number of predictions
 and Recall =

Number of true positive
Total number of variant-trait effects

. As shown on Fig. 2 and Supplementary Fig. 1, we found that 
PRISM achieved very high precision and recall in scenarios characterized by highly 
heritable traits with low polygenicity and low pervasive confounding effects, regardless of 
causal relationships between traits. We prioritized precision over recall, even in scenarios 
featuring high polygenicity and high targeted confounding effects. 

 
Figure 2: Precision of PRISM predictions for significant variant-trait effects, on simulations. The y-axis represents 
precision in different conditions. the x-axis represents the set of 15 simulated traits (See Online Methods and Fig. 8). 
Significant effects are defined with 𝑃 < 5 × 10"#, which is slightly less strict than the PRISM recommended threshold. 
Bars are colored according to predicted direct and pleiotropic labels. A bar below zero means that PRISM predicted 0 
effect in this category. Eight scenarios are represented across facets, with varying parameters. Polygenicity represents 
the proportion of variants with a direct effect on each trait. Effect on B4 represents the proportion of effect passed to 
B4, for all traits with a non-zero vertical effect on B4. High targeted confounding means that few variants (0.01) have an 
effect on the confounder U, but with magnitude of effect rivaling direct effects. Low pervasive confounding means that 
a large proportion (5) of variants have an effect on the confounder, but with low magnitude. 
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PRISM complements traditionnal fine-mapping methods. 
PRISM adopts a fundementally different approach compared to traditional fine-mapping. 
Instead of distinguishing between variants in LD, PRISM predicts whether variant-trait 
effects are direct or caused by pleiotropy. We evaluated the compatibility of PRISM with 
standard fine-mapping methods, such as SuSiE21 22, CARMA12, and FINEMAP23. To 
compare PRISM and these fine-mapping methods, we focused on a specific trait, B4, 
which is the most central trait in our simulated network. We selected a highly heritable and 
polygenic scenario (scenario 25, Supplementary Table 1) and focused on true causal 
variants. Firstly, we assessed PRISM’s precision in indentifying true causal variants as 
direct effects, and compared this to the precision of the fine-mapping methods in 
prioritizing true causal variants within the fine-mapped set. In this scenario, PRISM 
achieved a precision of 95%, outperforming the fine-mapping methods which had 
precision rates ranging from 86% to 89%. Furthermore, both PRISM and traditional fine-
mapping methods were mainly misled by high targeted confounding variant-trait effects. 
However, fine-mapping methods are designed to identify a limited number of variants 
within a locus, whereas PRISM operates on genome-wide scale. Hence, PRISM exhibited 
a recall of 51%, significantly higher than the less than 1% recall observed for the fine-
mapping methods. These findings indicate that for highly polygenic traits, PRISM is more 
efficient in identifying across the genome compared to fine-mapping method that focus on 
specific loci. 

PRISM reassesses GWAS variant-trait associations and distinguishes 
between direct and pleiotropic effects. 
PRISM tests and labels variants for direct and pleiotropic effects, i.e. vertical and 
confounding, effects. Contrary to GWAS, an effect is considered PRISM significant if it 
remains consistent across multiple assessments in different contexts. Furthermore, 
comparing p-values from GWAS and PRISM provides insight into the specificity of PRISM, 
as PRISM significant variants are generally GWAS or sub-GWAS significant. We 
processed 61 heritable traits with GWAS summary statistics from UK Biobank using 
PRISM (Supplementary Table 2). In Fig. 3, p-values from both methods for all 947 
significant variants are represented, for coronary heart disease (CHD). Interestingly, most 
variants were labeled with vertical or confounding pleiotropy, generally related to lipids, 
indicating that the majority variant effects on CHD are mediated by lipids. Moreover, the 
most significant variants according to GWAS were labeled with confounding effects. 
Notably, the few variants labeled with direct effect map to the same non-coding gene 
CDKN2B-AS1. A recent study24 highlights its potential role in CHD by acting as an RNA 
sponge, which could explain why PRISM did not trace the effect to any other trait in the 
framework. Therefore, PRISM tests and assesses genetic variant effects, providing further 
insights into the underlying biological mechanisms leading to observed associations in 
GWAS. 
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Figure 3: P-values from the UK Biobank GWAS on coronary heart disease (CHD) (x-axis) and PRISM (y-axis) for 947 
genetic variants. Each dot represents a significant variant according to GWAS or PRISM, colored according to PRISM 
predicted labels: direct (blue), vertical (green) and confounding (red). 

PRISM reveals that most observed associations in GWAS summary statistics 
are caused by relationships between traits. 
Upon examining all variant-trait effects, we observed that direct effects represent less than 
13% of all PRISM significant effects, while confounding and vertical pleiotropy represent 
44% and 43% respectively. Since PRISM leverages pleiotropy, we aimed to characterize 
the pleiotropic nature of the associations discovered in GWAS. Indeed, GWASs often 
reveal numerous observed pleiotropic associations, where a genetic variant demonstrates 
significant associations with at least two traits. Specifically, we identified 170,433 variants 
exhibiting observed pleiotropic effects. Therefore, we assessed the number of variants 
with pleiotropic effects corresponding to a variant having an effect on two traits among 
GWAS variant-trait associations using PRISM. Naturally, confounding and vertical effects 
directly provides us with pleiotropic effects, however for the direct effects, we defined the 
horizontal pleiotropic effect (also called true pleiotropy or uncorrelated pleiotropy) when a 
genetic variant has a direct effect two traits. Using PRISM on the 61 highly heritable traits, 
we found that confounding and vertical pleiotropy are responsible for respectively 66.8% 
and 33% of the observed pleiotropy in GWAS (Supplementary Fig. 2). Thus, horizontal 
pleiotropy, true multiple direct causal effects from a genetic variant, is found extremely 
rare and represents 0.2%. This finding underscores the complexity of genetic effects on 
multiple traits and highlights the effectiveness of PRISM in elucidating the underlying 
mechanisms of pleiotropic associations in GWAS findings. 

PRISM Direct variants are significantly enriched in per-variant heritability 
compared to GWAS variants and vertical/confounding variants. 
In GWAS, variant heritability measures the proportion of phenotypic variance of a trait 
explained by all measured variant associations. Thus, the per-variant heritability is the 
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contribution of a specific genetic variant to the overall heritability. We applied stratified LD-
score regression25 to calculate per-variant heritability enrichment across labeled variant-
trait effects regrouped into four categories: Three categories (direct, vertical, confounding) 
for PRISM significant variant effects, and a category for GWAS significant associations 
under the same threshold as PRISM. It is worth mentioning that these categories are not 
mutually exclusive, since the majority of PRISM significant variant effects are also GWAS-
significant. Only 45 traits among the 61 traits had enough variants in all four categories to 
be processed by s-LDSC. Across most traits, we observe a consistent order in the 
enrichment (Fig. 4). Indeed, direct variants demonstrate higher enrichment in per-variant 
heritability compared to GWAS variants, which in turn exhibit higher enrichment than 
vertical variants, followed by confounding variants. This highlights the hypothesis that 
indirect effects on traits are diluted compared to direct effects. 

 
Figure 4: Enrichment in per-variant heritability for each category, calculated with LD-score regression. Enrichment was 
calculated for PRISM significant variants, specific to each trait, and for genome-wide significant variants in UK Biobank. 

PRISM mapped eGenes are found in relevant tissues 
Standard follow-up analysis in GWAS involves checking whether the variants identified 
are eQTL in tissues linked to the studied trait. We would expect eQTLs corresponding to 
direct variants to be present in tissues directly linked to the studied trait, while eQTLs 
corresponding to pleiotropic variants to be linked to tissues indirectly influencing this trait. 
For CHD, we investigated the enrichment of relevant tissues in the expression of genes 
associated with eQTL variants identified by PRISM. We retrieved eQTLs and their 
correspondent eGenes through GTEx (Fig. 5). We did not find any eQTL variant labeled 
as direct. However, we observed 3 enrichment peaks above 2, each providing valuable 
insight. The liver tissue is enriched in vertical pleiotropy, suggesting a lipid-mediated effect 
from the liver. The brain anterior cortex is enriched in confounding pleiotropy, which hints 
at CHD comorbidity with obesity, linked to brain functions. Similarly, lymphocyte cells are 
enriched in confounding pleiotropy, hinting at a potential association between CHD and 
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obesity within the inflammatory system. These examples show that PRISM categories 
correspond to more or less direct mechanisms influencing the studied traits. 

 
Figure 5: Enrichment of eGenes, from different tissues, mapped to genetic variants, according to the label of variants. 
The x-axis represents all tissues. The y-axis represents the enrichment of eGenes. The trait studied is I25 of UK 
Biobank, chronic ischaemic heart disease (CHD). The eGenes were retrieved from GTEx. 

PRISM produces coherent results on a panel of gold-standard variants. 
The finality of PRISM is to produce causal networks for genetic variants. To confirm the 
reliability of PRISM, we aimed to compare its generated networks to what the scientific 
literature suggests with methods completely distinct from GWAS. For some networks of 
interest, we therefore examined whether the trait-variant effects identified and labeled by 
PRISM had already been identified previously. For example, variants 
rs7528419/rs629301/rs646776, residing in the SORT1 locus coding for the sortilin protein, 
is strongly associated with coronary heart disease (CHD) in GWAS26. According to PRISM 
(Fig. 6), these variants display a vertical effect on CHD but a direct effect on apolipoprotein 
B (apoB). Essentially, PRISM suggests that these variants affect CHD only through their 
direct effect on apoB, which has a causal effect on CHD. Recent studies have indeed 
demonstrated that sortilin restricts secretion of apoB27 and that apoB is an excellent 
marker of cardiovascular risk28. Another example of validated network is 
rs2282679/rs2298850, mapped to gene GC, which is validated for vitamin D levels. Kew 
et al.29 also highlights that this gene involved in white blood cells and neutrophil 
accumulation. Remarkably, these findings align with the 3 direct effects identified by 
PRISM coming from these variants (Supplementary Fig. 3). 
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Figure 6: PRISM causal network of variants rs7528419/rs629301/rs646776. These variants are represented as a black 
triangle. Arrows represent causal effects. Red arrows are effects of variants through a confounder, represented as a 
red square, meaning confounding pleiotropy. Green arrows are effects of variants through traits, represented as circled 
colored by general category, meaning vertical pleiotropy. Blue arrows are direct causal effects from variants to traits. 
Variants rs7528419/rs629301/rs646776 are involved in multiple mechanisms, but the one we’re most interested in is 
the ApoB-mediated effect on CHD. 

PRISM pinpoint direct variants that are mapped to more trait-specific genes 
than GWAS. 
Traditional pipelines for GWAS analysis typically involve examining genes mapped to 
significant variants, and their associated pathways. In our study, we performed 
annotations analysis to map functionally annotated variants to genes based on their 
physical positions in the genome and employed expression Quantitative Trait Locus 
(eQTL) mapping. For this purpose, we utilized the FUMA platform30, a powerful tool for 
conducting comprehensive functional annotation analyses. Supplementary Fig. 4 
illustrates the strong connectivity of traits through GWAS-mapped gene. Upon examining 
genes mapped to PRISM direct variants, we observed far fewer common genes among 
traits. This observation suggests that genes mapped to direct variants may be more 
relevant, resulting in a simpler and more biologically realistic variant-gene-trait network 
obtained thanks to PRISM. To further investigate the biological significance of traits, we 
conducted an enrichment analysis based on DisGeNET31 pathways using genes mapped 
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to PRISM direct and GWAS variants. The goal was to identify enriched pathways and 
compare their significance between PRISM direct and GWAS mapped pathways. As 
shown in Supplementary Fig. 5, PRISM direct pathways are significantly more enriched 
than GWAS pathways for ten traits, while the opposite is true for only 4 traits. Next, we 
employed bipartite network analysis to compare the centrality measures of gene-trait 
networks constructed from PRISM direct and GWAS. In Fig. 7, PRISM network 
demonstrated lower degree and closeness, indicating fewer links between traits, but 
higher betweenness, suggesting the presence of more central traits. To ensure a fair 
comparison despite the fewer PRISM direct genes compared to GWAS genes, we 
conducted two distinct methodologies. First, we randomly removed genes from the GWAS 
network while retaining the edges linked to the selected genes, which resulted in similar 
centrality measurements of full GWAS network as seen in the black points on the graph. 
Second, we removed both genes and edges to create GWAS sub-networks with the same 
number of nodes and edges as the PRISM direct network, represented by the red points 
forming a plateau. Remarkably, our previous comparison still persisted even with similarly-
sized networks. This suggests that the network created from PRISM direct variants is 
denoised and untangled, discarding redundant and biased relations induced by pleiotropy. 

 
Figure 7: Centrality measures of PRISM direct bipartite gene-trait network and GWAS bipartite gene-trait network. The 
three sub-plots show respectively the degree, the betweeness, and the closeness metrics, represented on the y-axis. 
The x-axis represents the traits, colored by category, as the metrics are specific to a trait in the network. Green dots 
correspond to the PRISM direct network. Grey dots correspond to the GWAS network. Blue dots correpsond to the 
average of multiple networks with randomly removed genes, to have the same number of genes as PRISM. Red dots 
correspond to the average of multiple networks with randomly removed genes and edges, to have the same number of 
genes and edges as PRISM. 

Discussion 
We developed PRISM (Pleiotropic Relationships to Infer the SNP model) aims at 
reassessing the associations of genetic variants with traits from GWAS to distinguish 
between direct effects and pleiotropic effects. In fine, PRISM infers a causal network for 
each genetic variant. PRISM takes the opposite view to current methods such as fine-
mapping, and does not resort to any annotation but instead leverages pleiotropy which is 
pervasive in the human genome. We assessed the performances of PRISM on a 
simulated complex pleiotropic trait network and compared it with several other fine-
mapping methods. We found that PRISM has high precision to predict direct and 
pleiotropic variant-trait effects, but limited power to detect significant variant-trait effects 
for highly polygenic traits. We applied PRISM to a set of 61 heritable traits and diseases 
from UK Biobank. 
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PRISM was able to build a causal network for 371,551 unique variants. PRISM showed 
that most GWAS associations were caused by pleiotropy, only 13% of variant-trait effects 
were direct. Direct variants predicted by PRISM were significantly enriched in per-variant 
heritability compared to GWAS-significant variants and pleiotropic variants. Comparing 
pathways from PRISM direct variants and GWAS variants, the enrichment was stronger 
for PRISM. PRISM was able to pinpoint direct variants mapped to more trait-specific 
genes than GWAS, and the PRISM gene-trait network appeared disentangled and more 
pertinent compared to the GWAS gene-trait network. PRISM inferred relevant variant 
causal networks; we could show the concordance of the causal networks inferred by 
PRISM and validated in the literature for a panel of validated variants. 

However, the proposed method has a number of limitations. To begin with PRISM is highly 
dependent of the traits processed. Pleiotropy is relative to the traits in the network, and so 
are the pleiotropic labels. Depending on the shape of the network, some effects can be 
justifiably classified as vertical or confounding pleiotropy. Adding or removing traits, 
especially central traits, can have an impact on whether or not the variants are significant, 
and their type of pleiotropy. On simulations, we applied PRISM to the same complex 
network of traits and purposefully omitted a central trait from input data. We saw that 
vertical and confounding variants induced by this central trait were predicted as direct for 
the other traits, unable to establish the mediation link with the omitted central trait. 

In addition, PRISM predictions can be limited by three factors. First, PRISM heavily relies 
on LHC-MR calculated parameters to assess relationships between traits and to infer 
direct and pleiotropic labels. Second, PRISM is geared towards precision to identify direct 
variant-trait effects, so power to detect significant effects, as well as confounding and 
vertical precision, are more limited. This is a deliberate choice since we aim to favor the 
identification of direct effect. Third, the precision and recall were calculated from summary 
statistics simulated from a pleiotropic network of heritable traits. Similarly on real data, we 
only included heritable traits. Traits that are not heritable might disrupt the inferred causal 
network. Interpreting results that include low heritability traits, which will be mechanically 
disadvantaged in comparison with highly heritable traits, must be done with caution. That 
said, we did simulate networks without any pleiotropy, and PRISM was able to identify 
direct effects correctly. Traits with very simple genetic architecture (e.g. monogenic 
diseases), can probably be processed without any issue. 

PRISM takes an orthogonal approach to traditional fine-mapping methods, and aims not 
to distinguish between variants in linkage disequilibrium (LD), but to assess whether the 
observed effect of a variant on a trait can be explained by pleiotropy, i.e. by another trait 
or a confounding factor. We chose not to clump genetic variants when presenting the 
biological results, because we do not want a true causal variant effect to be eliminated for 
the benefit of a LD effect. We suggest to use another fine-mapping method, like SuSiE, 
to decide between multiple candidate causal variants in LD. However, LD is taken into 
account when calculating probabilities that genetic variants have causal effects. Variants 
with large LD scores will be penalized as they are expected to mechanically have larger 
effect sizes32. 

The comparison between PRISM and other fine-mapping methods is debatable, as they 
differ in aim and approach. We wanted to make this comparison for two reasons. First, to 
show that PRISM has comparable precision to identify causal variant-trait effects. Second, 
we wanted to highlight the compatibility of these orthogonal approaches. Using them 
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together, to try and find the true causal variant in a locus and get information about the 
pleiotropy of the variant, seems to be extremely pertinent knowledge for future 
investigation on this putative causal variant. 

PRISM mathematic model implies that direct effects result in stronger effect sizes in 
GWAS summary statistics. It would be a legitimate question to ask if direct variants are 
simply the most significant variants with the strongest effect sizes, while confounding and 
vertical variants are weaker significant variants. But although direct variants tend to have 
higher initial Z-scores from GWAS, PRISM results show much more intertwined results 
when looking at the original Z-scores of the different pleiotropies (Supplementary Fig. 6). 
For simple molecular traits like lipids or biomarkers, direct variants do tend to have higher 
Z-scores . However, complex traits like respiratory or metabolic traits do not follow this 
trend. In summary, undiluted direct effects should have stronger effect sizes than 
pleiotropic effects, but we believe that PRISM is capable of distinguishing between subtle 
biological mechanisms. 

To conclude, at the trait level, PRISM can be used to better apprehend the genetic 
architecture of a trait and the relationships between traits. At the variant level, PRISM can 
help understanding the specific genetic effect of a variant on multiple traits. We strongly 
believe that building the causal network of genetic variants is a priority to guide in vitro 
and in vivo follow-up studies as well as for medical applications, like genomic medicine or 
genome editing. 

Methods 

General principle of the Pleiotropic Relationships to Infer the SNP Model 
(PRISM) method 
The aim of PRISM is to infer the causal network of genetic variants, using GWAS summary 
statistics. To do so, PRISM reassesses variant-trait effects from GWASs and 
distinguishes between direct effects and pleiotropic effects. PRISM is based on an 
integrative pairwise Mendelian randomization (MR) model, extended to obtain pleiotropic 
information at the level of genetic variants. Many genetic variants are significantly 
associated with multiple traits in GWAS. PRISM is designed to check these associations 
and distinguish between direct effects and pleiotropic effects that leads to these observed 
associations. To do so, PRISM analyzes the pairwise causal relationship between traits 
using LHC-MR. Then, PRISM cross-references the information obtained for each trait 
individually, i.e. for a given trait all the pairs of traits that include the trait of interest, to 
describe the relationships between all the present variants and the trait. From a 
computational point of view, PRISM is divided in two pipelines, a pairwise pipeline and a 
traitwise pipeline, as described on Supplementary Fig. 7: 

• The pairwise pipeline processes traits two by two. Each unique pair of traits is first 
handled by LHC-MR to produce a set of trait-level 𝜃 parameters describing the trait 
relationships encompassing the pair of traits as well as a latent confounding factor. 
Then, the components of the Gaussian mixture model using the parameters 
estimated from LHC-MR are used to compute posterior probabilities describing the 
impact of the variants on these traits. 
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• The traitwise pipeline processes traits one by one. For one trait, the probabilities 
calculated previously are gathered and tested against each other, variant by 
variant. For significant variants, direct and pleiotropic labels stem from the 
probabilities and parameters obtained earlier. 

PRISM derives its robustness from the high number of observations of the effect of variant 
𝑘 on trait 𝐴 (i.e in all pairs containing 𝐴). As such, a high number 𝑇 of traits with available 
GWAS summary statistics must be selected. Each trait is processed 𝑇 − 1 times, paired 
with all the other traits. This represents "("$!)

&
 pairs of traits. To fulfill the assumptions of 

the paired student test used by PRISM, we recommend to include at least 31 traits. 

PRISM pairwise pipeline 

For 𝑚 genetics variants and for each pair of traits 𝑋 and 𝑌, the pairwise pipeline extracts 
a matrix 𝐒 using their summary statistics. 

𝐒 =

⎝

⎛
𝑆/!' 𝑆/!( 𝑆/!) 𝑆/!*

𝑆/&' 𝑆/&( 𝑆/&) 𝑆/&*
⋮ ⋮ ⋮ ⋮
𝑆/+' 𝑆/+( 𝑆/+) 𝑆/+*⎠

⎞ ∈ ℛ+×- 

Each row of the matrix corresponds to a variant. For variant 𝑘, 𝑆/.' is a score that 
corresponds to having no effect on anything in the 𝑋-𝑌 network, 𝑆/.(, 𝑆/.), 𝑆/.* are the scores 
that corresponds to having an effect on 𝑋, 𝑌, and 𝑈 respectively. This matrix is computed 
in 2 steps: 

• The pair of traits 𝑋 and 𝑌 is processed by LHC-MR, using their GWAS summary 
statistics. A standard effect is computed from the t-statistic and the sample size for 

each variant 𝑘, 6𝛽
/./

𝛽/./
8, with 𝛽/./ =

0!
"

1(	34+567	3897
 and 𝛽/.

: = 0!
#

1)	34+567	3897
. Only genetic 

variants with computable p-values and existing in the HapMap3 framework are 
taken into account, as this is also a limitation from LHC-MR. A set of trait-level 𝜃 
parameters is obtained. 

• From these parameters stem the bivariate Gaussian mixture model. The eight 
components are: 

(0) No association 
(1) Associated with X 
(2) Associated with U 
(3) Associated with Y 
(4) Associated with X and U 
(5) Associated with X and Y 
(6) Associated with U and Y 
(7) Associated with X, Y and U 

For a genetic variant 𝑘 in group 𝑖, we consider that 6𝛽
/./

𝛽/./
8 ∼ 𝒩6<00> , 𝛀

A 𝐢8, whose variance-

covariance matrix 𝛀A 𝐢 depends on the model parameters 𝜃. 
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The probability that any variant 𝑘 comes from the Gaussian component 𝑖 is (from Bayes’ 
theorem): 

𝑃CD𝑘 ∈ 𝑖|𝛽/./ , 𝛽/.
:F =

𝜙D𝛽/./ , 𝛽/.
:|0, 𝛀A 𝐢F𝑃C(𝑘 ∈ 𝑖)

∑ 𝜙<
8=> D𝛽/./ , 𝛽/.

:|0, 𝛀A 𝐢F𝑃C(𝑘 ∈ 𝑖)
 

with 𝛀A 𝐢 the variance-covariance matrix of the Gaussian distribution 𝑖, 𝜙 the joint probability 
density function for bivariate normal distribution, 𝑃C(𝑘 ∈ 𝑖) = 𝜔L8, the proportion of variants 
in each class a priori from 𝜃 parameters. These probabilities are stored and will be use to 
decide between direct and pleiotropic effects. 

• Then we translate the probabilities of variant 𝑘 to come from the Gaussian 
component 𝑖 into scores, to have no effect (denoted 𝑂), or an effect on 𝑋, 𝑌 or 𝑈: 

𝑆/.' = 𝑃CD𝑘 ∈ 𝑖>|𝛽/./ , 𝛽/.
:F 𝑆/.( = 𝑃CD𝑘 ∈ {𝑖!, 𝑖-, 𝑖?, 𝑖<}|𝛽/./ , 𝛽/.

:F 
𝑆/.) = 𝑃CD𝑘 ∈ {𝑖@, 𝑖?, 𝑖A, 𝑖<}|𝛽/./ , 𝛽/.

:F 𝑆/.* = 𝑃CD𝑘 ∈ {𝑖&, 𝑖-, 𝑖A, 𝑖<}|𝛽/./ , 𝛽/.
:F 

𝑆. = (𝑆/.' 𝑆/.( 𝑆/.) 𝑆/.*) ∈ ℛ- are 𝑚 vectors of dimension 4 that contain these scores, for 
each variant 𝑘. 

𝐒 =

⎝

⎛
𝑆/!' 𝑆/!( 𝑆/!) 𝑆/!*

𝑆/&' 𝑆/&( 𝑆/&) 𝑆/&*
⋮ ⋮ ⋮ ⋮
𝑆/+' 𝑆/+( 𝑆/+) 𝑆/+*⎠

⎞ ∈ ℛ+×- 

𝐒 is a matrix of 𝑚 × 4 dimensions stemming from the concatenation of all 𝑆. vectors. 

PRISM traitwise pipeline 

We detailed the process to obtain 𝐒 for two complex traits 𝑋 and 𝑌, using their GWAS 
summary statistics. The idea of PRISM is to apply this process to many traits, paired with 
each other exhaustively. Therefore, "("$!)

&
 different 𝐒 matrices were obtained from the 

pairwise pipeline. 

Then, for each variant 𝑘, we extract the 𝑆/ scores of each trait. For example, for trait 𝐴, we 
extract all 𝑆/.B from all 𝐒 matrices containing A. So we get 𝐸T⃗ .B = D𝑆/.

B$ 𝑆/.
B% ⋯ 𝑆/.

B&'$F ∈
ℛ"$! and 𝐸T⃗ .' = D𝑆/.

'$ 𝑆/.
'% ⋯ 𝑆/.

'&'$F ∈ ℛ"$!. These vectors 𝐸T⃗ .B and 𝐸T⃗.' are a collection 
of 𝑇 − 1 observations of the effect of 𝑘 on trait A and of having no effect respectively. 

Statistical test of the variant-trait effect consistency 

Next, we compare these values using a paired two-sample student t-test. We define 𝜇.B 
as the average of all 𝑆/.B and 𝜇.' as the average of all 𝑆/.'. The hypotheses of the test are 
𝐻>: 𝜇.B = 𝜇.' and 𝐻!: 𝜇.B > 𝜇.'. 

Applying that test to all 𝑘 variants, we obtain one p-value per variant. A variant 𝑘 is 
significant if p-value. <

?×!>'(

"$!
. This threshold corresponds to a Bonferroni correction. 
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Then, a significant variant is flagged with vertical pleiotropy on trait 𝐴 if any trait 𝐵 is causal 
to trait 𝐴, and 𝑃CD𝑘 ∈ 3|𝛽/./ , 𝛽/.

:F > 𝑃CD𝑘 ∈ 𝑖|𝛽/./ , 𝛽/.
:F in (𝐴, 𝐵) causal inference model. This 

means that the probability that the genetic variant 𝑘 has an effect only on trait 𝐵 is higher 
than all other possibilities. A significant variant is flagged with confounding pleiotropy on 
trait X if, in at least 1 causal inference model involving 𝐴, 𝑃CD𝑘 ∈ 2|𝛽/./ , 𝛽/.

:F >
𝑃CD𝑘 ∈ 𝑖|𝛽/./ , 𝛽/.

:F. This means that the probability that the genetic variant 𝑘 has an effect via 
a confounder is higher than all other possibilities. The rest of the significant variants are 
considered as having a direct effect on 𝐴. A significant variant having a direct effect on 
more than one trait will be considered horizontally pleiotropic. 

Inference and deconvolution of the variant causal network 

For each variant, we derive the causal model by representing a graph with the variant and 
the traits as nodes and the pleiotropic relations, i.e direct, vertical, or confounding effect, 
inferred from PRISM as edges. Therefore, we deconvolute the obtained causal graph by 
removing vertical edges between the variant and a given trait when conditioning on all the 
traits involved in other vertical edges. As a concrete example, let us consider three traits 
A, B, and C. The three following vertical effects are reported: 1) vertical effect of the variant 
on trait B through trait A, 2) vertical effect of the variant on trait C through trait B, 3) vertical 
effect of the variant on trait C through trait A. Thus, we deconvolute the causal graph by 
considering that the variant has an effect on trait A, which has an effect on trait B, which 
has an effect on trait C. In other words, we remove the arrows from variant to traits B and 
C, substituting them by arrows from trait A to trait B, and from trait B to trait C, respectively. 
In addition, when a variant has a vertical effect on different traits but mediated by the same 
causal trait, we average the effect of the variant on the causal vertical trait and remove all 
duplicated edges. 

Simulation framework 
We started by creating a realistic network of 15 traits (Fig. 8). We created 32 different 
scenarios, with various parameters for heritability, polygenicity, and causal relationships. 
We chose to simulate 100,000 variants, a number high enough to approach a genome-
wide model, but still computationally accessible in relation to the number of traits and 
scenarios. The standardized effects of all these variants on all the traits were simulated, 
taking into account the relationships between the traits. First, for each trait 𝑋, we randomly 
selected genetic variants to have a true direct effect on trait 𝑋 and on the confounders 
between trait 𝑋 and all the other traits 𝑌. For the selected genetic variants, the true direct 
effects were drawn from a Gaussian distribution whose parameters depend on the trait 
and the scenario. Then, the true effects were relayed to the other traits through vertical 
and confounding pleiotropy. Additionally, the effects are propagated according to the LD 
structure of each variant. The LD structure that we used is derived from 1000 Genomes33 
LD data from chromosome 1. Results from simulated data are always clumped, in order 
to enable interpretation and comparison between the true labels used in data generation 
and calculated labels from PRISM. The choice was made to simulate data with small 
independent LD-blocks. No Linkage Disequilibrium in simulated data would be a pitfall, as 
its presence is pervasive and a real challenge to interpret any genetic result. Large LD-
blocks comprised of hundred of variants would be more realistic, but computationally 
unaffordable for extensive simulations. Finally, an error term is added. To calculate the 
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LD score of a variant, we did 1 + ∑LD with all other variants. This gives us, for all genetic 
variants, standardized effects on all traits and LD scores to be processed by PRISM. 

In scenario 26, for trait B4, we computed precision and recall for CARMA, FINEMAP, and 
SuSiE. Z-scores and LD-matrix were separated in 10 segments of approximately 10 000 
variants independent from other segments, for computation reason. No annotation was 
supplied to any method. 

 
Figure 8: Architecture of the network of simulated traits. The simulated traits are represented as circles. Four horizontal 
variants are represented as triangles. Green arrows depict vertical relationships between traits. Green and red arrows 
depict vertical relationship between traits that can also be seen as confounding pleiotropy. Network pleiotropy is not 
showed here but all pairs of traits, are affected by a confounder U with effect on both of them. The only exception is E0, 
with no relationship with any other trait. 

Collection of genome-wide association summary statistics (GWAS) 
We retrieved publicly available GWAS summary statistics data for 61 heritable traits and 
diseases from UK Biobank round 2 (Supplementary Table 2). Only HapMap3 variants 
were selected for the analysis, as LHC-MR is limited to these variants. Low confidence 
variants and variants with a minor allele frequency below 0.05 were excluded. All analyses 
and results use genome build hg19. 
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Availability of the method and results 
PRISM is implemented in R and a user-friendly tutorial can be found on github. As long 
as GWAS summary statistics are available and the studied variants are mapped in 
HapMap3, it is possible to compute any network of traits of interest to distinguish direct 
variant-trait effects from vertical and network variant-trait effects. PRISM results are easily 
accessible through an online user-friendly interface. We developed a ShinyR interface, 
freely available online, to display PRISM results on our network of 61 highly heritable 
traits. Results can be visualized at the trait level. It is also possible to display the causal 
network of a genetic variant of interest. 
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