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Abstract (328 words) 

 

Background 

Identifying regional wall motion abnormalities (RWMAs) is critical for diagnosing and risk 

stratifying patients with cardiovascular disease, particularly ischemic heart disease. We 

hypothesized that a deep neural network could accurately identify patients with regional wall 

motion abnormalities from a readily available standard 12-lead electrocardiogram (ECG). 

 

Methods 

This observational, retrospective study included patients who were treated at Beth Israel 

Deaconess Medical Center and had an ECG and echocardiogram performed within 14 days of 

each other between 2008 and 2019. We trained a convolutional neural network to detect the 

presence of RWMAs, qualitative global right ventricular (RV) hypokinesis, and varying degrees 

of left ventricular dysfunction (left ventricular ejection fraction [LVEF] ≤50%, LVEF ≤40%, and 

LVEF ≤35%) identified by echocardiography, using ECG data alone. Patients were randomly split 

into development (80%) and test sets (20%). Model performance was assessed using area under 

the receiver operating characteristic curve (AUC). Cox proportional hazard models adjusted for 

age and sex were performed to estimate the risk of future acute coronary events. 

 

Results 

The development set consisted of 19,837 patients (mean age 66.7±16.4; 46.7% female) and the 

test set comprised of 4,953 patients (mean age 67.5±15.8 years; 46.5% female). On the test 

dataset, the model accurately identified the presence of RWMA, RV hypokinesis, LVEF ≤50%, 

LVEF ≤40%, and LVEF ≤35% with AUCs of 0.87 (95% CI 0.858-0.882), 0.888 (95% CI 0.878-

0.899), 0.923 (95% CI 0.914-0.933), 0.93 (95% CI 0.921-0.939), and 0.876 (95% CI 0.858-

0.896), respectively. Among patients with normal biventricular function at the time of the index 

ECG, those classified as having RMWA by the model were 3 times the risk (age- and sex-

adjusted hazard ratio, 2.8; 95% CI 1.9-3.9) for future acute coronary events compared to those 

classified as negative. 

 

Conclusions 

We demonstrate that a deep neural network can help identify regional wall motion abnormalities 

and reduced LV function from a 12-lead ECG and could potentially be used as a screening tool 

for triaging patients who need either initial or repeat echocardiographic imaging. 
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Introduction 

Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide
1,2

. IHD 

causes a wide spectrum of symptoms, and some patients with undiagnosed coronary artery 

disease may present with atypical or without obvious cardiac symptoms, which may delay 

diagnosis and intervention. Once identified, interventions such as medications and 

revascularization can be initiated to improve patient outcomes
3
. Echocardiography is an important 

non-invasive diagnostic tool for identifying patients with IHD through its ability to identify global 

ventricular dysfunction and regional wall motion abnormalities (RWMAs) that correlate with 

prior myocardial infarction or areas with hibernating myocardium due to inadequate blood flow. 

However, echocardiography is expensive, time consuming, and requires expert interpretation. 

Assessment of RWMA can help in the diagnosis of acute and chronic myocardial infarction
4
, as 

well as differentiating between ischemic and non-ischemic cardiomyopathy. 

 

Echocardiography is the most common diagnostic modality to determine RWMAs, however, it is 

unclear when initial or repeated imaging should be performed, as ischemic disease progresses at 

different rates. Furthermore, access to echocardiography is limited in many clinical settings due to 

lack of resources or expertise. The electrocardiogram (ECG), however, is a widely available and 

inexpensive diagnostic tool that is commonly used to evaluate patients with suspected acute 

coronary syndrome. Recent studies have demonstrated the ability of deep learning to detect left 

ventricular dysfunction, myocardial infarction, and many other cardiovascular diseases from the 

ECG
5–8

.  

 

In this observational, retrospective study we developed and validated a novel deep learning model 

to identify the presence of RWMA, global right ventricular (RV) hypokinesis and reduced left 

ventricular ejection fraction (LVEF) based on analysis of ECG alone. We leveraged two open-

access databases of matched patient ECG and echocardiography reports collected from the 

intensive care unit and emergency room
9,10

. In patients where our model detected RWMA, we 

explored the model’s ability to localize the abnormal regions of the myocardium. We also 

evaluated the model’s ability to identify patients with normal biventricular function at the time of 

initial screening, but at increased risk of future wall motion abnormalities, reduced LVEF, and 

acute coronary events. 

 

Methods 

Study design and participants  

Digitally stored 12-lead ECGs from patients aged 18 years or older that were captured within 14 

days of the patient having two-dimensional echocardiographic imaging performed at Beth Israel 

Deaconess Medical Center (BIDMC) between Jan 1, 2008, and Dec 31, 2019, were identified. In 
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the case of a patient having more than one echocardiogram performed during the study period, all 

were included for model development and only the first available exam was used for testing. If a 

patient had more than one ECG within 14 days of an echocardiogram during the study period, all 

were included for model development and the ECG performed closest to the time of 

echocardiography was used for testing. Patients without assessment of LV function reported in 

the echocardiography notes were excluded (Figure 1). 

 

Figure 1. Study flow chart. 

 

 

 

 

Data used for the study was collected from three public databases, Medical Information Mart for 

Intensive Care (MIMIC)-IV-ECG, MIMIC-IV-Note, and MIMIC-IV-ECHO
9–11

. Clinical data 

linked to patients included in the study was matched using the publicly available database, 

MIMIC-IV
12

. 

 

Ground truth  

ECGs were labeled using echocardiography reports collected from the MIMIC-IV-Note dataset. 

RWMAs and their severity (hypokinesis, akinesis, or dyskinesis) were assigned to a location on 

the standard AHA 17-segment model
13

. All echocardiograms were read by a BIDMC cardiologist 

who was board certified in echocardiography. In the present study, we divided the left ventricle 

into seven regions in accordance with the coronary perfusion territories as: anterior, anterolateral, 

anteroseptal, apical, inferior, inferolateral, and inferoseptal
14

 (Supplementary Figure 1). We 
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annotated the seven regions accordingly and included a composite RWMA endpoint for each 

patient defined as having ≥1 abnormal wall segment.  

 

To assess global LV function, we included three clinically relevant LVEF endpoints as: LVEF 

≤50%, LVEF ≤40%, and LVEF ≤35%
15

. Global RV hypokinesis was defined as qualitative global 

RV free wall hypokinesis.  

 

Data partition  

Patients were randomly split into development (80%) and test sets (20%). The development set 

was used to train and validate the model using fivefold cross-validation. The first four folds were 

used to assess model robustness and the fifth fold was used to select the highest performing model 

and optimal thresholds. The test set consisted of patients not included in the development set and 

was used to report the model performance. 

 

Model development 

We developed a multilabel convolutional neural network (CNN) to identify the presence of 

RWMAs, global RV hypokinesis, and reduced LVEF at various cut points from the 12-lead ECG. 

The model consisted of a feature-extraction component and classifier. For feature-extraction, we 

used a CNN encoder based on the resnet-101 architecture
16

 with lead-specific convolutions. The 

lead-specific convolutions allowed the network to extract temporal features from each lead in 

parallel. A final convolutional layer was used to aggregate the lead-specific features, which were 

passed to a global average pooling layer for classification. The classifier was composed of two 

fully connected layers with dropout before each layer, and a sigmoid activation applied to each 

output. The model takes as input a 10-second 12-channel ECG waveform with a sampling 

frequency of 500 Hz and outputs a probability score for the presence of RWMA with a score for 

each region (anterior, anterolateral, anteroseptal, apical, inferior, inferolateral, and inferoseptal), 

≥1 akinetic or dyskinetic wall, LVEF ≤50%, LVEF ≤40%, and LVEF ≤35%, and global RV 

hypokinesis. Detailed processes for model development and hyperparameter tuning are provided 

in the appendix.  

 

For comparison, a reference model was derived using patient demographics and ECG findings 

extracted from cardiologist reports available in MIMIC-IV-Note. We trained a random forest 

classifier using as input the patient age, sex, and presence of 41 different ECG findings 

(Supplementary Table 1). 

 

Furthermore, we pretrained the deep learning model on patients from the MIMIC-IV-ECG dataset 

without an associated echocardiography report available in MIMIC-IV-Note (Figure 1). The 
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model was pre-trained to detect the presence of 41 different ECG findings extracted from the 

ECG cardiologist overreads available in MIMIC-IV-Note. All findings were extracted from the 

reports using regular expressions. An overview of the ECG findings used for pre-training are 

provided in the appendix (Supplementary Table 1). No patients included in the study were used 

for pre-training (Figure 1). 

 

Model evaluation 

The primary objective of the study was to evaluate the ability of a deep neural network to identify 

any RWMA, reduced LVEF, and global RV hypokinesis from a 12-lead ECG using the MIMIC-

IV-ECG and MIMIC-IV-Note datasets. We additionally assessed performance of the model to 

localize RWMA classification to one or more of the seven regions of the left ventricular 

myocardium reflective of coronary perfusion territories. To measure potential bias from the model 

we performed subgroup analyses across patient age, sex, and self-reported race/ethnicity found in 

the MIMIC-IV dataset and cardiologist reported ECG findings. Diagnostic odds ratios (ORs) were 

computed for each subgroup.  

 

Our secondary objective was to assess the prognostic value of the model to identify patients with 

normal biventricular function at the time of their index ECG-echocardiogram, but at increased 

risk of developing future RWMAs, reduced LVEF, RV hypokinesis, and a composite label for 

any of the endpoints during 5-year follow-up. Subsequent echocardiograms following the index 

ECG-echocardiogram were used for analysis of follow-up. We also evaluated the model’s ability 

to identify patients with normal biventricular function and no history of ischemic heart disease 

diagnosed prior to or during their admission of screening, but at increased risk of acute coronary 

events during 5-year follow-up. Acute coronary events were defined as myocardial ischemia or its 

acute complications, or a coronary revascularization procedure such as percutaneous 

angioplasty/stent placement or coronary artery bypass graft surgery. Clinical outcomes and acute 

coronary events were identified by the presence of International Classification of Diseases (ICD)-

10 and ICD-9 codes available in MIMIC-IV
12

 (Supplementary Table 2). Cox proportional hazard 

models adjusted for age and sex were performed to estimate the risk of each endpoint. 

 

Statistical analysis 

The performance of the model was evaluated using the area under the receiver operating 

characteristic curve (AUC), sensitivity, specificity, positive and negative predictive values. To 

estimate 95% confidence intervals (CIs), we used non-parametric bootstrapping with 1,000 

samples. Sensitivity and specificity were calculated at binary decision thresholds. The optimal 

decision threshold for each class was calibrated using the receiver operating curve and Youden 

index analysis on the final cross-validation fold. Delong’s test was used to compare the AUC 
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between the deep learning model and reference model on the test set. Continuous variables were 

compared using Student’s t-test and categorical variables were compared with chi-Squared test. 

We considered two-sided p values <0.05 statistically significant. Kaplan-Meier analysis was used 

to compare the incidence of RWMA, global RV hypokinesis, reduced LVEF, and acute coronary 

event for true negatives versus false positives during follow-up. All models and statistics were 

computed using Python (v.3.8.12). Deep learning models were trained using the PyTorch (v1.7.0). 

Data analysis was performed using numpy (1.19.5), pandas (1.2.0), scipy (1.6.0), and scikit-learn 

(0.24.0). For data visualization and scientific plotting matplotlib (3.2.2) and seaborn (0.12.2) were 

used. Kaplan-Meier curves were computed using R (v 4.3.1) with the survival and survminer 

packages. 

 

Results 

A total of 109,060 ECGs associated with 39,144 echocardiograms from 24,790 patients were 

included in the study. The development set consisted of 19,837 patients (mean age 66.7±16.4 

years; 46.7% female) and the test set consisted of 4,953 patients (mean age 67.5±15.8 years; 

46.5% female). Median time between ECG and echocardiography of the training set and test sets 

were 1.8 days (IQR 0.7-4.7 days) and 0.77 days (IQR 0.2-1.8 days). A RWMA was observed in 

3856 (19.4%) and 1049 (21.2%) of patients in development and test sets and global RV 

hypokinesis in 1360 (6.9%) and 355 (7.2%), respectively (Table 1). Sample sizes for segment 

level wall motion abnormalities are provided in Supplementary Table 3 and baseline ECG 

findings in Supplementary Table 1. 
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Table 1. Patient baseline characteristics at the time of the index ECG-echocardiogram. Values are 

n (%) or mean SD. Student t-test and chi-squared test were used (BMI=body mass index, 

LVEF=left ventricular ejection fraction, RWMA=regional wall motion abnormality, RV=right 

ventricular) 

 

 Train Test P value 

Patients 19837 4953  

Age 67.5 ± 15.6 66.5 ± 16.6 <0.001 

Female 9067 (45.7) 2345 (47.3) 0.04 

White 13394 (67.5) 3260 (65.8) 0.024 

Black/African American 2316 (11.7) 655 (13.2) 0.003 

Hispanic 747 (3.8) 191 (3.9) 0.797 

Asian 492 (2.5) 161 (3.3) 0.003 

Other 26 (0.1) 7 (0.1) 0.968 

Unknown or choose not to disclose 2861 (14.4) 678 (13.7) 0.194 

BMI 33.5 ± 134.7 28.9 ± 55.3 0.062 

LVEF 54.0 ± 21.0 53.6 ± 12.9 0.361 

Heart Failure 2098 (10.6) 395 (8.0) <0.001 

Myocardial Infarction 1223 (6.2) 231 (4.7) <0.001 

Hypertension 6637 (33.5) 1464 (29.6) <0.001 

Coronary artery disease 2886 (14.5) 579 (11.7) <0.001 

Diabetes 3040 (15.3) 621 (12.5) <0.001 

RWMA 3856 (19.4) 1049 (21.2) 0.006 

Global RV hypokinesis 1360 (6.9) 355 (7.2) 0.744 

LVEF ≤50% 5511 (27.8) 1422 (28.7) 0.259 

LVEF ≤40% 3234 (16.3) 852 (17.2) 0.164 

LVEF ≤35% 2424 (12.2) 637 (12.9) 0.268 

 

 

On the test dataset, the deep learning model accurately identified the presence of any RWMA 

with an AUC of 0.87 (95% CI 0.858-0.882), a sensitivity of 74.6 (95% CI 72.1-77.4), and a 

specificity of 82.3 (95% CI 81.3-83.5) (Table 2). For comparison, the reference model yielded an 

AUC, sensitivity, and specificity of 0.70 (95% CI 0.682-0.724), 78.4 (95% CI 81.1-75.7), and 

48.4 (95% CI 45-51.8), respectively (Supplementary Table 4). The deep learning model 
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significantly outperformed the reference model to detect RWMA (P<0.001). The deep learning 

model identified abnormal wall motion in individual wall segments with an AUC ranging from 

0.853 to 0.913, sensitivity from 69.3 to 83.4%, and specificity from 76.7 to 83.8% (Table 2). The 

sensitivity of the model to identify RWMA was correlated with the number of abnormal wall 

segments (Supplementary Figure 2). 

 

Table 2. Model performance of the deep learning model on the test set (RWMA=regional wall 

motion abnormality, LVEF=left ventricular ejection fraction, RV=right ventricular, AUC=area 

under the receiver-operator curve, PPV=positive predictive value, NPV=negative predictive 

value, 95% CIs computed using bootstrapping with 1,000 samples) 
 

 AUC Sensitivity Specificity PPV NPV 

RWMA 0.87 (0.858-0.882) 74.6 (72.1-77.4) 82.3 (81.3-83.5) 53.2 (50.7-55.9) 92.4 (91.4-93.3) 

LVEF ≤50% 0.888 (0.878-0.899) 74.7 (72.4-76.8) 86.8 (85.7-87.9) 69.7 (67.4-71.9) 89.4 (88.4-90.4) 

LVEF ≤40% 0.923 (0.914-0.933) 86.7 (84.5-89.0) 83.5 (82.3-84.6) 52.3 (49.7-54.9) 96.8 (96.2-97.3) 

LVEF ≤35% 0.93 (0.921-0.939) 83.0 (80.0-86.0) 86.6 (85.6-87.6) 48.0 (45.0-50.9) 97.2 (96.7-97.7) 

Global RV hypokinesis 0.876 (0.858-0.896) 74.9 (70.2-79.1) 84.4 (83.3-85.4) 28.2 (25.6-31.1) 97.6 (97.1-98.1) 

Anterior wall 0.913 (0.9-0.926) 81.6 (77.5-85.6) 83.8 (82.7-84.9) 28.6 (26.0-31.3) 98.3 (97.9-98.7) 

Anterolateral wall 0.89 (0.874-0.908) 81.1 (76.0-86.5) 79.8 (78.8-81.0) 15.8 (13.8-18.1) 98.9 (98.6-99.2) 

Anteroseptal wall 0.896 (0.881-0.911) 82.2 (78.3-85.7) 82.1 (81.1-83.3) 29.4 (26.8-32.0) 98.1 (97.6-98.5) 

Apex 0.894 (0.882-0.906) 83.4 (80.2-86.1) 79.2 (78.1-80.5) 37.4 (35.0-39.9) 97.0 (96.4-97.5) 

Inferior wall 0.854 (0.838-0.869) 79.6 (76.4-82.5) 76.7 (75.5-77.9) 36.6 (34.1-39.1) 95.7 (94.9-96.4) 

Inferolateral wall 0.853 (0.836-0.869) 69.3 (65.5-73.2) 83.4 (82.5-84.5) 36.2 (33.5-39.3) 95.2 (94.5-96.0) 

Inferoseptal wall 0.878 (0.862-0.894) 82.6 (78.4-86.6) 77.5 (76.5-78.8) 22.4 (20.3-24.8) 98.3 (97.8-98.7) 

≥1 hypokinetic wall  0.833 (0.819-0.849) 72.2 (69.4-75.3) 78.8 (77.6-80.1) 41.4 (39.0-44.2) 93.2 (92.3-94.1) 

≥1 akinetic wall  0.905 (0.892-0.917) 85.2 (82.1-88.0) 80.4 (79.3-81.6) 34.7 (32.4-37.4) 97.8 (97.3-98.3) 

 

 

 

 

The deep learning model accurately detected global RV hypokinesis with an AUC of 0.876 

(0.858-0.896) (Table 2). The deep learning model also accurately identified LVEF ≤50%, LVEF 

≤40%, and LVEF ≤35% with AUCs of 0.888 (95% CI 0.878-0.899), 0.923 (95% CI 0.914-0.933), 

and 0.93 (95% CI 0.921-0.939), respectively. For the composite of any RMWA or LVEF ≤50% 

the model yielded a sensitivity of 82.7% with a positive predictive value of 64.6%. 
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We evaluated model performance across subgroups of patient age, sex, and race/ethnicity (Table 

3). The model showed consistent performance for both sexes. Performance was robust across all 

age groups for the detection of reduced LVEF and RV hypokinesis, however, model performance 

to identify RMWAs was comparatively lower in older patients compared to younger patients. We 

observed no significant difference in performance across patient race/ethnicity for each 

abnormality. Notably, we did not have sufficient data to test patients of Hispanic or Asian 

race/ethnicity independently, however, when grouped (Hispanic n=191, age 66.6 ± 16.6, 43.5% 

female; Asian n=161, age 66.6 ± 16.6, 43.5% female; American Indian n=7, age 61.6 ± 19.7, 

57.1% female) during analysis we observed favorable performance of the model. Additional 

subgroup analysis was performed across ECG findings (Supplementary Figure 3) with similar 

model performance regardless of ECG findings apart from paced rhythms or left bundle branch 

block where model performance was slightly reduced. 
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Among patients with normal biventricular function at the time of the index ECG, those classified 

as having a RWMA (false positive) by the model were 3 times the risk (age- and sex-adjusted 

hazard ratio, 3.2; 95% CI 2.2-4.6) of presenting with a future RWMA compared to those initially 

classified as negative (true negative) (Figure 2A). Similarly, the hazard ratios comparing false 

positives and true negatives for global RV hypokinesis and LVEF ≤40% were 6.2 (95% CI 3.6-

10.8) and 4.1 (95% CI 2.7-6.4), respectively (Figure 2B-C). Patients classified as positive for at 

least one abnormality by the model were 3 times the risk (3.0 HR; 95% CI 2.3-4.0) of presenting a 

future composite event (RWMA, global RV hypokinesis, or LVEF ≤50%). Among patients with 

normal biventricular function and no history of ischemic heart disease, patients classified as 

positive for RWMA had a 2.8-fold increased hazard for acute coronary events (95% CI 1.9-3.9) 

(Figure 3).  

 

Figure 2. Subgroup analysis of the deep learning model by patient age, sex, and race/ethnicity 

using diagnostic odds ratio (OR) with 95% confidence intervals (CIs). The vertical dashed lines 

represent the OR of the model across all patients in the test set. 
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Figure 3. Cumulative incidence of cardiovascular outcomes in patients with initially normal 

biventricular function at the time of the index ECG-echo stratified by model classification during 

a 5-year follow-up period. (A) Cumulative incidence curves for RWMA stratified by 

classification of RWMA (B) Cumulative incidence curves for global RV hypokinesis stratified by 

classification of global RV hypokinesis. (C) Cumulative incidence curves for LVEF ≤40% 

stratified by classification of LVEF ≤40% (D) Cumulative incidence curves for a composite 

endpoint (any RWMA, LVEF ≤50%, or global RV hypokinesis) stratified by any abnormal 

classification (E) Cumulative incidence curves for acute coronary events in patients with normal 

biventricular function and no history of ischemic heart disease prior to or during the index 

admission stratified by classification of RWMA. 

 

A) RWMA 
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B) Global RV hypokinesis 
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C) LVEF ≤40% 

 

 

 

D) Composite endpoint (any RWMA, LVEF ≤50%, or global RV hypokinesis) 
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E) Acute coronary event 

 

 

Discussion 

In summary, we developed and validated a novel deep learning model to identify and localize 

regional motion abnormalities from a 12-lead ECG alone. The added value of this study is 

twofold: First, we show that deep neural networks can accurately detect abnormal wall motion in 

individual wall segments (AUC: 0.85 to 0.91), global RV hypokinesis (AUC: 0.88), LVEF ≤50% 

(AUC: 0.89) LVEF ≤40% (AUC: 0.92), and LVEF ≤35% (AUC: 0.93). Second, we showed that 

our model may be able to detect subtle patterns in the ECG able to identify patients with normal 

biventricular function at the time of initial screening, but at increased risk of future ischemic heart 

disease (Figure 3). Early identification of high-risk patients may enable healthcare providers to 

intervene proactively, preventing the occurrence of detrimental events such as suffering a heart 

attack. 

 

This study is the first to accurately identify and localize regional wall motion abnormalities from 

the 12-lead ECG. While recent studies have demonstrated the potential of deep learning-enabled 

ECGs to detect severely reduced LVEF, a large proportion of these studies were developed and 

validated using closed or proprietary datasets
5–8

. Attia et al demonstrated that deep neural 

networks can detect LVEF ≤35% from the 12-lead ECG with an AUC of 0.94. Similarly, Vaid et 

al detected LVEF at cutoffs of 50%, 40%, and 35% with similar AUCs of 0.89, 0.94, and 0.95, 

respectively.  
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Our study adds to this previous work for the detection of reduced LVEF by introducing a model 

that explicitly identifies the presence of RWMAs, which may help differentiate if the reduced 

LVEF may be from a focal abnormality compared to a global disease, and which has important 

implications for further diagnosis and intervention. We are unable to compare the performance of 

our model to prior studies because the models and data are unavailable. 

 

Our choice of dividing the left ventricle into seven myocardial regions reflective of the coronary 

perfusion territories may provide value in identifying patients with single-vessel versus 

multivessel coronary artery disease. These seven regions are also in accordance with ASE 

segmentation guidelines
14

 and may complement RWMA assessment during echocardiography, 

especially when views are suboptimal. Additionally, our model could be used to detect which 

patients require repeat electrocardiography. For patients with suspected acute coronary syndrome, 

this model may help monitor both the onset of new RWMAs or changes in LVEF that require 

further evaluation or intervention. 

 

In addition to effectively identifying patients with RWMA or reduced LVEF, our secondary 

objective demonstrates that our deep learning model may also identify patients with seemingly 

normal biventricular function who are at increased risk of future RWMA. Notably, these patients 

predicted as positive by model (false positive) had a threefold increased risk of developing a new 

RWMA over the next 5 years. We repeated this analysis for global RV hypokinesis and LVEF 

≤40%, which revealed a sixfold and fourfold increased risk for each, respectively. In patients with 

normal biventricular function and no history of ischemic heart disease, the false positives of the 

model had a near threefold increased risk of acute coronary events. These findings suggest that 

the model may detect subtle or structural patterns in the ECG predictive of future ischemic events. 

 

Ischemic heart disease prevalence and outcomes are known to be highly variable across patient 

age, sex, and race/ethnicity
17

. Moreover, studies have demonstrated the need to assess potential 

bias of analyzing ECGs across diverse demographics
18

. To understand how our model performs 

across different patient profiles we performed subgroup analyses accordingly. We observed 

consistent performance across sex and race/ethnicity. Although the model was accurate in patients 

of all ages, we found performance was best in younger patients. Notably, the model was less 

accurate in patients with paced rhythms or left bundle branch block (Supplementary Figure 3). 

However, given the difficulty in identifying subtle ECG abnormalities in patients with paced 

ECGs and left bundle branch block, despite its reduced accuracy in these patients, the model still 

provided useful and actionable data. 
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This study has several limitations. First, this is a retrospective, single-center study that requires 

further external and prospective validation before translation to the clinical arena. Second, due to 

sample sizing, the RWMA endpoint defined in our study did not differentiate between the severity 

of wall motion, and hypokinesia, akinesia, and dyskinesia were treated similarly as “wall motion 

abnormalities”. Discriminating between patients with hypokinetic, akinetic, and dyskinetic wall 

motion abnormalities could have additional clinical utility. Third, the echocardiographic findings 

were dependent on the final read of the interpreting cardiologist, which is known to be subject to 

interobserver variability. Systematic reinterpretation was not performed due to the impracticality 

of reinterpreting the large number of studies included.  

 

In conclusion, deep neural networks models can accurately screen for regional wall motion 

abnormalities and identify patients at increased risk of future ischemic heart disease using a low 

cost and ubiquitous 12-lead ECG. Based on the observed performance from this study, this model 

may support and inform clinical decision making for patients with ischemic heart disease who 

could benefit from medical intervention. 
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Supplementary Figure 1. Left ventricular wall segme labeling convention for each of the seven 

ASE regions
14

. 

 

 

 

Label Convention 

Anteroseptal basal anteroseptal, mid anteroseptal 

Anterior basal anterior, mid anterior 

Anterolateral basal anterolateral, mid anterolateral, lateral 

Inferolateral basal inferolateral, mid inferolateral, posterior 

Inferior basal inferior, mid inferior 

Inferoseptal basal inferoseptal, mid inferoseptal, septal 

Apical  apex, septal apex, lateral apex, inferior apex, anterior apex 
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Supplementary Table 1. ECG findings from the entire cohort. Values are provided as n (%). 

Chi-squared test was used. 

 

 RWMA RV hypokinesis LVEF ≤40% 

 Control Case P value Control Case P value Control Case P value 

Primary rhythm 

Normal sinus rhythm 
37418 

(53.0) 

14810 

(58.6) 
<0.001 

43476 

(56.4) 

4007 

(41.4) 
<0.001 

39684 

(55.4) 

11853 

(51.7) 
<0.001 

Atrial fibrillation 
11699 

(16.6) 

3374 

(13.3) 
<0.001 

11107 

(14.4) 

2527 

(26.1) 
<0.001 

10650 

(14.9) 

4176 

(18.2) 
<0.001 

Sinus tachycardia 
9828 

(13.9) 

2539 

(10.0) 
<0.001 

9850 

(12.8) 

1205 

(12.5) 
0.401 

9363 

(13.1) 

2813 

(12.3) 
0.002 

Sinus bradycardia 5665 (8.0) 1906 (7.5) 0.016 6568 (8.5) 436 (4.5) <0.001 6447 (9.0) 1054 (4.6) <0.001 

Atrial flutter 1968 (2.8) 489 (1.9) <0.001 1726 (2.2) 460 (4.8) <0.001 1714 (2.4) 701 (3.1) <0.001 

Atrial tachycardia 937 (1.3) 251 (1.0) <0.001 849 (1.1) 193 (2.0) <0.001 806 (1.1) 361 (1.6) <0.001 

Ectopic atrial rhythm 801 (1.1) 334 (1.3) 0.02 900 (1.2) 102 (1.1) 0.357 847 (1.2) 274 (1.2) 0.906 

Junctional rhythm 709 (1.0) 284 (1.1) 0.115 702 (0.9) 181 (1.9) <0.001 735 (1.0) 235 (1.0) 0.982 

Supraventricular 

tachycardia 
572 (0.8) 160 (0.6) 0.006 509 (0.7) 127 (1.3) <0.001 516 (0.7) 208 (0.9) 0.005 

Ventricular rhythm 271 (0.4) 134 (0.5) 0.002 276 (0.4) 79 (0.8) <0.001 277 (0.4) 115 (0.5) 0.022 

Wide QRS tachycardia 160 (0.2) 120 (0.5) <0.001 169 (0.2) 70 (0.7) <0.001 101 (0.1) 173 (0.8) <0.001 

Ventricular 

tachycardia 
126 (0.2) 112 (0.4) <0.001 151 (0.2) 54 (0.6) <0.001 79 (0.1) 150 (0.7) <0.001 

Junctional ectopic 

rhythm 
146 (0.2) 63 (0.2) 0.244 160 (0.2) 31 (0.3) 0.034 161 (0.2) 45 (0.2) 0.469 

Secondary rhythm 

Premature ventricular 

complex(es) 
5634 (8.0) 

2923 

(11.6) 
<0.001 6134 (8.0) 

1544 

(16.0) 
<0.001 4980 (7.0) 

3406 

(14.9) 
<0.001 

Premature 

supraventricular 

complex(es) 

4356 (6.2) 1449 (5.7) 0.013 4615 (6.0) 538 (5.6) 0.105 4361 (6.1) 1365 (6.0) 0.466 

Axis deviation 

Left axis deviation 6551 (9.3) 
2877 

(11.4) 
<0.001 7291 (9.5) 

1142 

(11.8) 
<0.001 6376 (8.9) 

2933 

(12.8) 
<0.001 

Right axis deviation 1442 (2.0) 386 (1.5) <0.001 1135 (1.5) 512 (5.3) <0.001 1369 (1.9) 431 (1.9) 0.783 

Atrioventricular conduction delay 

First-degree AV block 5568 (7.9) 
2630 

(10.4) 
<0.001 6373 (8.3) 997 (10.3) <0.001 5653 (7.9) 

2437 

(10.6) 
<0.001 

High-grade AV block 252 (0.4) 84 (0.3) 0.615 226 (0.3) 65 (0.7) <0.001 222 (0.3) 111 (0.5) <0.001 

Complete heart block 135 (0.2) 48 (0.2) 0.964 141 (0.2) 24 (0.2) 0.205 140 (0.2) 42 (0.2) 0.778 

Ventricular hypertrophy 

Left ventricular 

hypertrophy 
6192 (8.8) 2496 (9.9) <0.001 7206 (9.3) 818 (8.5) 0.005 6099 (8.5) 

2473 

(10.8) 
<0.001 
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Right ventricular 

hypertrophy 
321 (0.5) 54 (0.2) <0.001 207 (0.3) 135 (1.4) <0.001 307 (0.4) 64 (0.3) 0.002 

Intraventricular conduction delay 

Right bundle branch 

block 
5676 (8.0) 2496 (9.9) <0.001 5905 (7.7) 

1344 

(13.9) 
<0.001 5839 (8.2) 2191 (9.6) <0.001 

Left anterior fascicular 

block 
4425 (6.3) 1985 (7.9) <0.001 4898 (6.3) 815 (8.4) <0.001 4445 (6.2) 1859 (8.1) <0.001 

Idioventricular rhythm 3569 (5.1) 2116 (8.4) <0.001 4116 (5.3) 935 (9.7) <0.001 3095 (4.3) 
2469 

(10.8) 
<0.001 

Left bundle branch 

block 
3316 (4.7) 2022 (8.0) <0.001 4056 (5.3) 715 (7.4) <0.001 2332 (3.3) 

2890 

(12.6) 
<0.001 

Left posterior 

fascicular block 
166 (0.2) 68 (0.3) 0.386 155 (0.2) 51 (0.5) <0.001 168 (0.2) 66 (0.3) 0.181 

Waveform abnormalities 

Non-specific ST-T 

abnormality 

17784 

(25.2) 

5192 

(20.5) 
<0.001 

18602 

(24.1) 

2260 

(23.4) 
0.109 

18094 

(25.3) 

4607 

(20.1) 
<0.001 

Artifact 
7733 

(10.9) 
2348 (9.3) <0.001 

8175 

(10.6) 
951 (9.8) 0.022 

7843 

(11.0) 
2099 (9.2) <0.001 

ST-T abnormality 
7112 

(10.1) 

2957 

(11.7) 
<0.001 

8252 

(10.7) 
881 (9.1) <0.001 

7641 

(10.7) 

2304 

(10.0) 
0.008 

P wave abnormality 5934 (8.4) 2442 (9.7) <0.001 6620 (8.6) 967 (10.0) <0.001 5798 (8.1) 
2431 

(10.6) 
<0.001 

QTc prolongation 4314 (6.1) 1838 (7.3) <0.001 4929 (6.4) 663 (6.9) 0.082 4491 (6.3) 1587 (6.9) <0.001 

ST elevation 1543 (2.2) 2062 (8.2) <0.001 2833 (3.7) 329 (3.4) 0.191 2172 (3.0) 1363 (5.9) <0.001 

Myocardial ischemia 

MI of indeterminate 

age 
6205 (8.8) 

4897 

(19.4) 
<0.001 

8442 

(10.9) 

1396 

(14.4) 
<0.001 7009 (9.8) 

3867 

(16.9) 
<0.001 

Ischemia pattern 4679 (6.6) 
3018 

(11.9) 
<0.001 6019 (7.8) 927 (9.6) <0.001 5132 (7.2) 

2469 

(10.8) 
<0.001 

Old myocardial 

infarction 
4488 (6.4) 

2819 

(11.2) 
<0.001 5588 (7.2) 949 (9.8) <0.001 4742 (6.6) 

2416 

(10.5) 
<0.001 

Subacute myocardial 

infarction 
3535 (5.0) 

2693 

(10.7) 
<0.001 4797 (6.2) 775 (8.0) <0.001 3906 (5.5) 2194 (9.6) <0.001 

Pacemaker 

Ventricular pacemaker 2530 (3.6) 1521 (6.0) <0.001 2750 (3.6) 836 (8.6) <0.001 1943 (2.7) 1985 (8.7) <0.001 

Atrial pacemaker 736 (1.0) 390 (1.5) <0.001 857 (1.1) 138 (1.4) 0.007 709 (1.0) 402 (1.8) <0.001 
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Supplementary Table 2. ICD-9 and ICD-10 codes used for MIMIC-IV. 

Comorbidity ICD-9 ICD-10 

Congestive heart failure 398.91, 402.01, 402.11, 

402.91, 404.01, 404.03, 

404.11, 404.13, 404.91, 

404.93, 425.4-425.9, 428 

I11.0, I13.0, I13.2, I25.5, 

I42.0, I42.5-I42.9, I50 

Myocardial infarction 410, 412 I21, I22, I25.2 

Hypertension 401, 402, 403, 404, 405, 642 I10, I11, I12, I13, I14, I15 

Coronary artery disease 410, 411, 412, 414 I21, I22, I23, I24, 125 

Diabetes 250, 357.2, 362.0, 366.41 E10.0–E14.91 
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Supplementary Table 3. Number of wall motion findings by left ventricular region across the 

entire cohort. 

 Normal Hypokinesis Akinesis Dyskinesis 

Anterior wall 23192 (93.6%) 954 (3.8%) 580 (2.3%) 64 (0.3%) 

Anteroseptal wall 22944 (92.6%) 1214 (4.9%) 594 (2.4%) 38 (0.2%) 

Inferoseptal wall 23114 (93.2%) 1304 (5.3%) 355 (1.4%) 17 (0.1%) 

Anterolateral wall 23790 (96.0%) 881 (3.6%) 118 (0.5%) 1 (0.0%) 

Inferolateral wall 22096 (89.1%) 1622 (6.5%) 1003 (4.0%) 69 (0.3%) 

Inferior wall 21455 (86.5%) 1886 (7.6%) 1336 (5.4%) 113 (0.5%) 

Apex 21931 (88.5%) 1528 (6.2%) 966 (3.9%) 365 (1.5%) 
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Supplementary Table 4. Performance of the reference model on the test set to identify the 

presence of RWMA.  

 AUC Sensitivity Specificity PPV NPV 

ECG reports 0.696 76.4 47.9 35.6 47.9 

ECG reports + age + sex 0.703 78.4 48.4 36.4 48.4 
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Supplementary Figure 2. Sensitivity of the deep learning model on the test set to identify the 

presence of RWMA based on the number of regions with abnormal wall motion.  
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Supplementary Figure 3. Subgroup analysis by ECG findings extracted from cardiologist 

reports in MIMIC-IV-ECG using diagnostic odds ratio (OR) with 95% confidence intervals (CIs). 

The vertical dashed lines represent the OR of the deep learning model across all patients in the 

test set. 
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Appendix 

 

Training details 

The deep learning model was pre-trained using 235,568 ECGs from MIMIC-IV-ECG with weights 

randomly initialized using truncated normal initialization (Figure 1). We used the Adam optimizer with an 

initial learning rate of 3×10–4, ℓ2-weight decay of 1×10–4, default coefficients of β1=0.9 and β2=0.999, 

and a cosine annealing learning rate scheduler. To reduce model overfit we used stochastic weighted 

averaging [Izmailov et al.] at each residual block and a dropout layer with P=0.5 for the fully connected 

layers. The model was trained using binary cross-entropy loss for multilabel classification with label 

smoothing of 0.05 for each output class. To improve generalizability we applied data augmentation by 

using random shifting, scaling, gaussian noise, CutOut [DeVries et al.], and lead dropout to the 

waveform. Fivefold cross-validation was used to assess robustness of the model during development. 

Models were trained for 100 epochs using an early stopping of 12 consecutive epochs with no 

improvement to the cross-validation macro AUC. The model with the highest validation AUC on the final 

cross-validation fold was selected for testing. 
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