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ABSTRACT 33 

Background 34 

In non-small cell lung cancer (NSCLC), alternative strategies to determine patient 35 

oncogene mutation status are essential to overcome some of the drawbacks associated 36 

with current methods. We aimed to review the use of radiomics alone or in combination 37 

with clinical data and to evaluate the performance of artificial intelligence (AI)-based 38 

models on the prediction of oncogene mutation status. 39 

Methods 40 

A PRISMA-compliant literature review was conducted. The Medline (via Pubmed), 41 

Embase, and Cochrane Library databases were searched for studies published through 42 

June 30, 2023 predicting oncogene mutation status in patients with NSCLC using 43 

radiomics. Independent meta-analyses evaluating the performance of AI-based models 44 

developed with radiomics features or with a combination of radiomics features plus 45 

clinical data for the prediction of different oncogenic driver mutations were performed. 46 

A meta-regression to analyze the influence of methodological/clinical factors was also 47 

conducted.  48 

Results 49 

Out of the 615 studies identified, 89 evaluating models for the prediction of epidermal 50 

growth factor-1 (EGFR), anaplastic lymphoma kinase (ALK), and Kirsten rat sarcoma 51 

virus (KRAS) mutations were included in the systematic review. A total of 38 met the 52 

inclusion criteria for the meta-analyses. The AI algorithms' sensitivity/false positive rate 53 

(FPR) in predicting EGFR, ALK, and KRAS mutations using radiomics-based models 54 

was 0.753 (95% CI 0.721–0.783)/0.346 (95% CI 0.305–0.390), 0.754 (95% CI 0.639–55 

0.841)/ 0.225 (95% CI 0.163–0.302), and 0.744 (95% CI 0.605–0.846)/0.376 (95% CI 56 

0.274–0.491), respectively. A meta-analysis of combined models was only possible for 57 

EGFR mutation, revealing a sensitivity/FPR of 0.800 (95% CI 0.767–0.830)/0.335 58 

(95% CI 0.279–0.396). No statistically significant results were obtained in the meta-59 

regression.  60 

Conclusions 61 
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Radiomics-based models may represent valuable non-invasive tools for the 62 

determination of oncogene mutation status in NSCLC. Further investigation is required 63 

to analyze whether clinical data might boost their performance.   64 

Keywords: radiomics, artificial intelligence, medical imaging, oncogene mutation 65 

status, non-small cell lung cancer. 66 
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INTRODUCTION 68 

Lung cancer represents the most often diagnosed cancer in both women and men 69 

worldwide, ranking first and third, respectively, and remaining the leading cause of 70 

cancer death1. Non-small cell lung cancer (NSCLC), the most frequent histological 71 

subtype, accounts for 80%–85% of cases, being adenocarcinoma the most common 72 

subtype (40%–50% of cases). Adenocarcinoma can be further subdivided into distinct 73 

molecular subtypes2. Indeed, molecular subtyping has become highly relevant in the 74 

disease context, as genotype-driven therapy (“targeted therapy”) is nowadays the 75 

standard of care for a significant subgroup of patients with advanced and metastatic 76 

NSCLC3. However, traditional methods for determining the molecular genotype, as well 77 

as the possible emergence of drug resistance mutations during patient’s follow-up, entail 78 

invasive biopsies and genetic sequence testing, procedures with multiple number of 79 

associated drawbacks including high costs, sampling bias, lack of enough sample, 80 

turnaround time, and medical complications4-6. Importantly, the overall accessibility of 81 

molecular diagnostics and liquid biopsy may be limited for many patients7, highlighting 82 

the need to investigate complementary methods to characterize the oncogene mutation 83 

status of lesions. 84 

Radiological imaging represents a potent non-invasive tool for lung cancer, from the 85 

screening, diagnosis and staging of the disease to the management, therapeutic 86 

planification and follow-up of both early- and advanced-stage cases8. Specifically, 87 

computed tomography (CT) remains the standard of care for lung cancer visualization, 88 

providing excellent morphological and textural information. In recent years, radiomics, 89 

the process of extracting and analyzing quantitative features from medical images to 90 

investigate potential connections with biology and clinical outcomes, has gained 91 

increasing attention for its applicability in several oncological diseases including lung 92 

cancer8. The application of artificial intelligence (AI) to imaging analyses has enabled 93 

important clinical needs to be met. This includes the prognostication of outcomes or the 94 

prediction of response to treatment, disease progression, or the mutational and 95 

molecular profiling of tumors9. In particular, the use of radiomics coupled with AI 96 

methods has demonstrated to be a promising non-invasive alternative tool for the 97 

prediction of oncogene mutation status in NSCLC8. 98 

In this systematic review and meta-analysis we aimed to: 1) review the available 99 

scientific evidence on the use of imaging-based models and radiomics for the prediction 100 
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of the main targetable oncogenic driver alterations in NSCLC, including epidermal 101 

growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and Kirsten rat 102 

sarcoma virus (KRAS); 2) analyze the overall performance of specifically, AI-based 103 

methods, for the prediction of oncogene mutation status; 3) evaluate whether the 104 

inclusion of clinical variables in the models improve their performance; 4) evaluate the 105 

impact of the available evidence from a clinical perspective.  106 

MATERIAL AND METHODS 107 

This systematic review was conducted in accordance with the Preferred Reporting Items 108 

for Systematic Reviews and Meta-Analysis (PRISMA) guidelines10. The review was 109 

registered on PROSPERO before initiation (registration no. CRD42022349809). 110 

Search strategy 111 

A systematic search for eligible publications published through 30 June 2023 was per- 112 

formed in Medline (via Pubmed), Cochrane Library and EMBASE databases using the 113 

keywords “Radiomics”, “NSCLC” and “Mutational status”. Further details on the 114 

search terms used in each database are provided in Supplementary Table S1. There 115 

were no limitations on the publishing year, participant age, or nationality. The search 116 

was exclusively limited to English-language publications.  117 

Study selection 118 

Literature search and study selection were independently performed by two reviewers 119 

(A.F.M. and A.L.S.). To find relevant publications, they reviewed the titles and 120 

abstracts. Studies that satisfied the inclusion criteria were then manually assessed for 121 

eligibility by full-text screening. Covidence systematic review software (Veritas Health 122 

Innovation, Melbourne, Australia. Available at www.covidence.org) was used as a 123 

screening and data extraction tool.  124 

Inclusion criteria 125 

Papers were included in the qualitative synthesis (systematic review) if meeting the 126 

following inclusion criteria based on Patient, Index test, Comparator, Reference test, 127 

Diagnosis of reference (PIRD) questions: 1) being focused on the ability of radiomics to 128 

predict oncogene mutation status in NSCLC; 2) radiomics features were extracted from 129 

CT or from F-18 fluoro-deoxy-glucose (FDG)/CT scans; 3) a full text was available; 4) 130 

were written in English. 131 
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Exclusion criteria 132 

Papers describing studies conducted using MRI scans (not the standard of care for 133 

NSCLC patients) or performed in phantom or animal models, or published as case 134 

reports, editorials, reviews, poster presentations, letters, editorials, or meeting abstracts 135 

were excluded.  Papers not on the field of interest were also excluded.  136 

For the quantitative synthesis (meta-analysis), the following additional exclusion 137 

criteria were applied: 1) oncogene mutation status was not the primary objective of the 138 

paper; 2) were focused on specific mutation subtypes; 3) did not apply AI-based 139 

methodologies; 4) developed simultaneous detection models or discriminant models; 5) 140 

sensitivity or specificity metrics were not available and could not be calculated; 6) were 141 

not comparable with the other articles included (model was developed based on intra- 142 

and extra-tumor derived radiomics features); 7) only included models developed with a 143 

combination of quantitative features extracted from PET/CT or from PET images 144 

(strictly adhering to a clinical perspective, PET scanning equipment is not always 145 

available and CT remains the standard of care for NSCLC patients); 8) did not reach a 146 

sufficient quality score according to the quality assessment (described below). 147 

Quality assessment 148 

The methodological quality of each study for its possible inclusion in the quantitative 149 

assessment was evaluated by using the Checklist for Artificial Intelligence in Medical 150 

Imaging (CLAIM)11. Classification, image reconstruction, text analysis, and workflow 151 

optimization are some of the applications of AI in medical imaging that are addressed 152 

by CLAIM, which is modeled after the Standards for Reporting of Diagnostic Accuracy 153 

Studies (STARD) guideline12-15. CLAIM checklist consists of 42 items divided into the 154 

conventional sections included in peer-reviewed scientific articles: title or abstract (1 155 

item), abstract (1 item), introduction (2 items), methods (28 items subdivided into study 156 

design [2 items], data [7 items], ground truth [5 items], data partitions [3 items], model [ 157 

3 items], training [3 items] and evaluation [5 items]), results (5 items subdivided into 158 

data [2 items] and model performance [3 items]), discussion (2 items) and other 159 

information (3 items). The CLAIM guideline offers a roadmap for writers and reviewers 160 

with the intention of fostering clear, open, and verifiable scientific discourse on the use 161 

of AI in medical imaging11.  162 
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For our quality assessment, a score was calculated for each paper ([total score, 42 -163 

 number of “not applicable” fields in each case]). A cut-off value of at least half of the 164 

total score after removing the “not applicable” items was established for the inclusion in 165 

the quantitative analysis. Therefore, this cut-off value varied for each study depending 166 

on the number of items that were applicable from among the 42 total items included in 167 

the CLAIM checklist (e.g., a cut-off value of 19 was established for those studies in 168 

which only 38 items of the checklist were applicable). See Supplementary Table S2. 169 

The assessment of the rigor, quality, and generalizability of the work of all enrolled 170 

studies was performed by three reviewers (A.J.P., F.B.B. and A.P.P.). 171 

Data extraction 172 

Data extracted included the following: (1) study details: first author, publication year, 173 

research questions, study design; (2) patient details: the source of data acquisition 174 

(single-center/multicenter), sample size, smoking history, age, sex, TNM staging, 175 

treatment status (naïve or any treatment received prior image acquisition), histological 176 

subtype; (3) imaging details: imaging modality, plain or contrast CT; (4) oncogene 177 

mutation status-related information: type of mutation, specific subtype of mutation (if 178 

available), sequencing method; sequencing kit (5) radiomics details: segmentation 179 

software, type of segmentation (manual, automatic, or semi-automatic), radiomics 180 

feature extraction software, number of imaging features extracted, number and name of 181 

radiomics features included in final models, features selection methods, type of models 182 

constructed (machine learning [ML], deep learning [DL], classical statistical model), 183 

final classifier used in machine learning models, clinical variables included in the 184 

models (if applicable), and models performance. Two independent reviewers (A.F.M. 185 

and A.L.S.) completed the initial screening and extracted data from all included studies. 186 

Data analysis 187 

For studies including models based on features extracted from different imaging 188 

modalities, only those based on CT scans were included in the quantitative analysis. A 189 

bivariate analysis of sensitivity and specificity as proposed by Reitsma et al.16 was 190 

chosen to perform the meta-analyses. This method has the distinct advantage of 191 

preserving the two-dimensional nature of the underlying data. It can also produce 192 

summary estimates of sensitivity and specificity (false positive rate [FPR, 1-193 

specificity]), recognizing any possible correlation between these two measures. The 194 
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method uses a random effect approach in which the values of the sensitivity and FPR 195 

estimates are obtained with restricted maximum likelihood. As a complement to the 196 

bivariate approach, the summary receiver operating characteristic (sROC) was 197 

calculated by converting each pair of sensitivity and specificity into a single measure of 198 

accuracy, the diagnostic odds ratio (DOR). 199 

The analyses were carried out by reproducing the confusion matrices of each model 200 

presented in the studies, the number of cases and the prevalence of oncogene mutant 201 

positive cases. All calculations were performed on the basis of validation cohorts for 202 

studies applying a training/validation split method, or on the basis of the total sample 203 

when cross-validation was the validation strategy. To ensure homogeneity, calculations 204 

were conducted based on internal validation cohort data when external validation was 205 

also performed (minority of the cases).  206 

Finally, a meta-regression analysis was performed to measure the possible influence of 207 

the following predictors: (1) average age of the cases, (2) manual segmentation vs semi-208 

automatic segmentation vs both procedures (no studies including automatic 209 

segmentation approaches met the inclusion criteria for the quantitative analysis), (3) 210 

whether the model included only radiomics features or was combined with clinical 211 

variables, and (4) whether the model was classified as ML or DL. The heterogeneity in 212 

the description of the clinical variables included in the models prevented the inclusion 213 

of additional predictors of greatest clinical interest. Only the best model from each 214 

study according to its DOR was selected. When the mean/median age was not available 215 

due to the heterogeneity among studies when presenting descriptive results, it was 216 

inferred from the information obtained. Thus, mean and median values were indistinctly 217 

considered; when both values were provided, an average of both was calculated. If 218 

mean values were absent, median values were considered and viceversa. If both values 219 

were absent from the validation cohort, mean/median age from the total cohort was 220 

considered. When this information was not available either, the study was not included 221 

in the meta-regression.  222 

All the analyses were performed using R Statistical Software v4.2.2 and the packages 223 

mada and tidyverse.  224 
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RESULTS 225 

In total 615 articles were obtained according to the search strategy (Figure 1). After de-226 

duplication, 397 studies were obtained and screened. According to the inclusion and 227 

exclusion criteria, 89 studies were included in the qualitative analysis (systematic 228 

review), all of them developing models for the prediction of EGFR, ALK, and/or 229 

KRAS. Out of those, 38 were found eligible for the quantitative part of the study (meta-230 

analyses). As detailed in Supplementary Table S2, all papers passed this quality check 231 

and were therefore included.  232 

Qualitative analysis (systematic review) 233 

Methodological characteristics of the studies 234 

The methodological characteristics of the studies are summarized in Table 1. Most of 235 

the studies (n = 69/ 89) applied exclusively ML algorithms, while this methodology was 236 

also used to build comparator models in 10 articles in which DL techniques were the 237 

main methodological approach followed. Only three studies exclusively applied DL 238 

algorithms, while classical statistical models were used in seven publications. Among 239 

the 79 articles applying ML techniques, the most common classifier used was logistic 240 

regression (n = 38), followed by support vector machine (n = 35) and by random forest 241 

(n = 29). In terms of partitioning strategy, training-validation split was the most frequent 242 

technique (n = 71). External validation was only performed in a small set of studies 243 

(n = 9). Regarding imaging techniques, CT was the most frequently used modality 244 

(n = 61), followed by PET/CT (n = 22) and by PET alone (n = 4). Additionally, in one 245 

study17 PET/CT scans and contrast-enhanced CT images independently acquired were 246 

collected, while in another study18, PET/CT, CT, and contrast-enhanced diagnostic 247 

quality (CTD) images were used. Of the 61 studies conducted with CT scans, 39 248 

included non-contrast-enhanced images, 18 contrast-enhanced images, in two contrast-249 

related information was not specified and in two both contrast- and non-contrast-250 

enhanced scans were included. Regarding tumor segmentation, a manual approach was 251 

followed in 48 studies, and automatic and semi-automatic segmentations were applied 252 

in two and 31 studies, respectively; three studies applied both methodologies (for 253 

verification or a different approach according to the imaging modality used) and five 254 

studies did not specify the method utilized for tumor segmentation.  255 

Clinical characteristics of the studies 256 
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The 89 studies evaluated in the qualitative synthesis included a total of 32,084 patients 257 

with NSCLC. Although most of the studies included >200 patients, in 42 publications, 258 

the sample size did not reach this figure and in 11 studies sample size was even lower 259 

than 100. All studies were retrospective and mostly unicentric (n = 72); the number of 260 

participant centers was not specified in one study19. In general, basic clinical and 261 

demographic information collected included sex, age, smoking status, TNM stage, 262 

histology, and treatment status at the moment of image acquisition, although this 263 

information was not available in 13, 9, 22, 34, 22 and 24 studies out of the 89 assessed, 264 

respectively. The clinical characteristics of the patients included in the 89 studies are 265 

depicted in Table 2. The median [range]/ mean ± standard deviation (SD) age of 266 

patients was 61.78 [59–64.17] years and 61.71 ± 3.64 years, respectively. In terms of 267 

sex, the total population was balanced, with 13,574 females and 14,066 males. The 268 

smoking history was available for 23,200 patients, and many were non-smokers 269 

(n = 12,813); while smoking history was unknown for 1,146 patients. Out of the 55 270 

studies detailing information about the TNM stage, the majority of them (n = 40) 271 

included information about the four stages (I-IV), either provided per group or grouped 272 

in stages I-II and stages III-IV. Among the 15 studies that did not include patients of all 273 

stages, two studies included only early stage patients (stages I and II)20, 21, two included 274 

patients stage II-IV22, 23, six included only patients of stages III and IV24-29 (three of 275 

them with a majority of stage IV patients24, 27, 29), and five included patients of stages I-276 

III without including the most advanced stage19, 30-33. A total of 65 studies included 277 

patients with adenocarcinoma: 43 exclusively including this histology subtype and 22 278 

including other NSCLC histology types as well. Finally, in most of the cases (n = 65), 279 

images were acquired before patients received any treatment, with two studies also 280 

including post-treatment images34, 35. In 24 studies, no information on treatment was 281 

detailed, although in some of them image acquisition before surgery31, 36-41, before 282 

polymerase chain reaction (PCR)42, or before pathological diagnosis43 was detailed as 283 

an inclusion criterion. In five studies19, 44-47, authors specify that patients had not 284 

received radiotherapy or chemotherapy, but no information on targeted therapy was 285 

provided. Finally, only one study48 out of the 89 included in the systematic review, 286 

which did not meet the inclusion criteria to be considered for the meta-analysis, 287 

included patients who had received treatment with tyrosine kinase inhibitors (TKIs).   288 
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Quantitative analysis (meta-analysis) 289 

A total of 38 studies met the inclusion criteria for the quantitative assessment 290 

(n = 17,066 patients). Three main different meta-analyses including radiomics-based 291 

models were conducted: 1) a meta-analysis including studies focused on the detection of 292 

EGFR (n = 34 studies)17, 25-28, 32, 33, 36, 38, 39, 46, 49-71; 2) a meta-analysis including studies 293 

focused on the detection of ALK (n = 3 studies)72-74; 3) a meta-analysis including 294 

studies focused on the detection of KRAS (n = 4 studies)47, 50, 54, 62. In three studies, 295 

authors developed models for the detection of both EGFR and KRAS50, 54, 62. 296 

Furthermore, a separate meta-analysis was conducted for combined models (radiomics 297 

features + clinical variables) for the prediction of EGFR (not enough studies for ALK or 298 

KRAS mutations). Studies included in all the meta-analyses conducted are summarized 299 

in Supplementary Table S3. Details on the radiomics features included in the EGFR, 300 

ALK, and KRAS models are summarized in Supplementary Table S4, 301 

Supplementary Table S5 and Supplementary Table S6, respectively. In terms of 302 

radiomics variables, models grouped different combinations of first order, shape, gray 303 

level co-occurrence matrix (GLCM), gray level size zone matrix (GLSZM), gray level 304 

run length matrix (GLRLM), neighboring gray tone difference matrix (NGTDM), and 305 

gray level dependence matrix (GLDM) features. Clinical data included sex, smoking 306 

history, and/or histological type in the majority of studies. 307 

EGFR 308 

Results of the meta-analysis focused on models built with radiomics features are 309 

summarized in Figure 2. Note that this meta-analysis also included a study50 in which 310 

predictions were based on features extracted by a multi-channel and multi-task deep 311 

learning model with the ability to simultaneously detect EGFR and KRAS oncogene 312 

mutations; and consequently, did not include radiomics features (only single-task results 313 

for the independent prediction of EGFR and KRAS were considered for the quantitative 314 

analysis). A hierarchical sROC curve was plotted for the included 24 studies 17, 25, 27, 32, 315 
36, 39, 46, 49-51, 54, 55, 57-60, 62, 64-66, 68-71 that evaluate the performance of AI algorithms in 316 

predicting EGFR mutation status in NSCLC (Supplementary Figure S1). Eight studies 317 

assessed more than one model32, 36, 39, 50, 59, 60, 65, 70. As observed, radiomics-based models 318 

exhibited high diagnostic performance in predicting EGFR mutation status with an 319 

overall AUC of 0.766. The AI algorithms' sensitivity in determining the EGFR mutation 320 
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status varied from 0.362 to 0.948, resulting in an estimate of 0.753 (95% CI 0.721–321 

0.783). The FPR of these algorithms ranged from 0.022 to 0.761, with a estimate of 322 

0.346 (95% CI 0.305–0.390). Detecting a positive case for EGFR mutation was almost 323 

six times more likely than not detecting it (DOR = 5.70 [95% CI 4.74–6.81]). 324 

The effect of adding clinical variables to radiomics models or to models including both 325 

radiomics and deep features65 (models including clinical data and radiomic or deep 326 

features referred in this work as combined models) in the prediction of EGFR mutation 327 

was also analyzed. This meta-analysis included 23 studies25, 26, 28, 32, 33, 38, 39, 46, 51-53, 56-58, 328 
61-69, of which four of them developed more than one model32, 39, 56, 67. Results are 329 

depicted in Figure 3 and sROC curve in Supplementary Figure S1. Overall, the 330 

performance of combined models slightly improved compared to radiomics models, 331 

with an AUC of 0.811 and a sensitivity of 0.800 (95% CI 0.767–0.830; model’s 332 

sensitivity ranging from 0.523 to 0.944). The FPR resulted similar with a value of 0.335 333 

(95% CI 0.279–0.396; model’s FPR ranging from 0.167 to 0.760.). Detecting a positive 334 

case for EGFR mutation with combined models was more than eight times more likely 335 

than not detecting it (DOR = 8.35 [95% CI 6.77–10.20]).  336 

ALK 337 

The meta-analysis focused on radiomics-based models included three studies72-74, one of 338 

which developed two different models, one based on pre-contrast images and another 339 

one on post-contrast images73. An overall AUC of 0.831 was obtained for the prediction 340 

of ALK aberration, with a sensitivity ranging from 0.682 to 0.825, resulting in an 341 

estimate of 0.754 (95% CI 0.639–0.841). The FPR of these algorithms ranged from 342 

0.167 to 0.277, with an estimate of 0.225 (95% CI 0.163–0.302). Detecting a positive 343 

case for ALK aberration was 11 times more likely than not detecting it (DOR = 5.70 344 

[95% CI 5.83–19.10]) (Figure 4 and Supplementary Figure S2). Given the lack of 345 

enough studies developing combined models, a meta-analysis to assess the effects of 346 

adding clinical variables in the prediction of ALK aberration was not possible. The only 347 

study74 that developed a model including age, sex, smoking history, smoking index, 348 

clinical stage, distal metastasis and pathological invasiveness of the tumor in 349 

combination with conventional CT features and different first order, GLCM, GLSZM, 350 

and GLRL radiomics features demonstrated increased performance in predicting ALK 351 

aberration of the combined model vs the radiomics-based model, but only in the 352 
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primary cohort (AUC , 0.83–0.88, p = 0.01), not in the testing cohort (AUC , 0.80–0.88, 353 

p = 0.29).  354 

KRAS 355 

Four studies met the inclusion criteria for the meta-analysis assessing models for KRAS 356 

mutation prediction47, 50, 54, 62, among which, three of them also developed models for 357 

EGFR mutation prediction50, 54, 62. KRAS/EGFR models were independently built 358 

except in one study, in which a multi-channel multi-task DL model for the prediction of 359 

both KRAS and EGFR mutations was developed50. However, and according to the 360 

inclusion criteria, only single-task metrics were considered for the quantitative analysis 361 

despite the multi-channel version displayed the highest performance for the 362 

simultaneous detection of both oncogenic driver mutations. Results of the meta-analysis 363 

evaluating radiomics-based models are shown in Figure 4 and Supplementary Figure 364 

S3. KRAS mutation was predicted with an overall AUC of 0.732 and a sensitivity of 365 

0.744 (95% CI 0.605–0.846; model’s sensitivity ranging from 0.641 to 0.875. The FPR 366 

was 0.376 (95% CI 0.274–0.491; model’s FPR ranging from 0.259 to 0.468). Detecting 367 

a positive case for KRAS mutation with radiomics-based models was more than five 368 

times more likely than not detecting it (DOR = 8.35 [95% CI 1.98–11.70]). Like ALK, 369 

the lack of enough KRAS studies made it impossible to perform a meta-analysis 370 

analyzing combined models. Only Ríos Velázquez et al.62 built a model including age, 371 

sex, smoking status, race, and clinical stage together with radiomics features that 372 

performed similar to the radiomics model (AUC = 0.69 [95% CI: 0.63– 0.75] vs 373 

AUC = 0.63 [95% CI: 0.57– 0.69]) and worse than a model developed only with clinical 374 

data AUC = 0.75 [95% CI: 0.69–0.80].  375 

Meta-regression and subgroup analysis 376 

The possible effects of different predictors on the predictive performance of the models 377 

was evaluated for EGFR mutation (not enough studies were available for ALK or 378 

KRAS mutations). Neither age, nor the use of contrast, nor the type of segmentation 379 

(manual/semi-automatic/automatic), nor the model (radiomics/combined), nor the AI 380 

methodology (machine learning/deep learning), yielded statistically significant results 381 

(Supplementary Table S7). 382 
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DISCUSSION 383 

At present, molecular testing performed on biopsied tissue remains the gold standard for 384 

diagnosis and genotyping in advanced NSCLC75, 76. However, given the associated 385 

limitations and inconveniences, such as the lack of enough tissue for successful 386 

testing77, 78, or the long turnaround times76, there is a need to validate and incorporate 387 

new procedures into routine clinical practice. In recent years, liquid biopsy has emerged 388 

as a promising alternative in NSCLC, especially in clinical scenarios78. Likewise, 389 

radiomics have shown encouraging results in prognosis and prediction in this setting79. 390 

In general, both methodologies possess great potential, since they are both simple, 391 

straightforward to do, and repeatable at patient follow-up visits, which makes it possible 392 

to gather important data about the type of tumor, its aggressiveness, its progression, and 393 

its response to therapy80. Radiomics has the additional advantage of only requiring 394 

medical images and capturing patient-level and tissue-level heterogeneity, such as CT 395 

scans in lung cancer, that are usually acquired as part of the patient’s standard journey, 396 

representing an affordable methodology both in terms of resources and costs. It is 397 

important that new techniques are properly validated to facilitate their standardization, 398 

prior to incorporation into the routine clinical workflow.  399 

To our knowledge, this is the first systematic review and meta-analysis that analyzes the 400 

performance and applicability of different imaging-based models for the prediction of 401 

three of the most common oncogene mutations—EGFR, ALK and KRAS—in NSCLC 402 

from a clinical perspective and with a special focus on AI methodologies. So far, results 403 

were only available for EGFR studies and did not take clinical aspects into account81. 404 

Thus, the results of our different meta-analyses demonstrate that AI-based models 405 

developed with CT-derived radiomics features showed good performance in predicting 406 

EGFR, ALK, and KRAS mutations with a sensitivity of 0.753 [95% CI (0.721–0.783)], 407 

0.754 [95% CI (0.639–0.841)] and 0.744 [95% CI (0.605–0.846)], respectively. 408 

Whether the inclusion of clinical variables increase models’ performance cannot be 409 

concluded from our results, although we believe that increasing the number of studies 410 

would probably confirm the trends observed in our quantitative analysis of EGFR 411 

mutation.  412 

Our outcomes point to radiomics as a candidate screening tool for oncogene mutation 413 

status determination. We especially focused on CT-based models, aiming to obtain 414 
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conclusions as applicable as possible to the standard clinical workflow since CT 415 

remains the most utilized imaging tool in NSCLC82. From our work, we conclude that 416 

in addition to additional validation of our findings that future studies should be 417 

conducted that consider the following important aspects. Firstly, a minimum sample size 418 

should be guaranteed to ensure the reliability of the results obtained with AI-based 419 

models83, 84. In both our systematic review and meta-analyses, more than half of the 420 

studies were conducted in >200 patients (n = 46/89 and n = 23/38 [n = 20/34 for EGFR, 421 

n = 2/3 for ALK and n = 3/4 for KRAS]), but still a sizable number had small sample 422 

sizes, which definitely limited the relevance of their conclusions. Multicentric designs 423 

would be also desirable to get more solid conclusions, an approach that few studies 424 

followed (n = 16/89 in the systematic review and n = 10/39 in the meta-analysis 425 

[n = 10/34 for EGFR, n = 0/3 for ALK and n = 3/4 for KRAS]). Secondly, including 426 

independent cohorts for external validations would reinforce the results, leading to more 427 

robust and reproducible models. Out of the 89 studies included in the qualitative 428 

analysis, only 9 used external cohorts for validation43, 46, 60, 63, 67, 68, 85-87, of which five 429 

were included in the EGFR meta-analysis46, 60, 63, 67, 68. Finally, it is important that 430 

patient populations reflect clinical practice. Thus, considering the potential applicability 431 

of the models for diagnostic purposes, studies should be conducted in treatment naïve 432 

populations to avoid possible therapy-related confounding effects, an inclusion criterion 433 

mostly applied in the studies evaluated in this work, but still missing in some of them. 434 

Additionally, studies should be carried out preferably in stage III-IV NSCLC patients 435 

(especially in those at stage IV, for whom clinical guidelines recommend molecular 436 

testing75, 76). As demonstrated in this work, most of the studies published so far do not 437 

provide information on TNM stage or include patients from all stages. Despite the 438 

heterogeneity of the studies evaluated, we believe that the evidence provided is enough 439 

as to demonstrate the potential of radiomics in oncogene mutation status determination. 440 

Thus, AI-based models using radiomics extracted from CT scans could be effective non-441 

invasive screening tools to detect targetable driver mutations in NSCLC with good 442 

sensitivity and moderate specificity. These tools would not be intended to replace gold 443 

standard techniques, such as PCR or next-generation sequencing, but to allow for the 444 

potential earlier identification of ideal candidates to be genetically tested, saving time, 445 

costs, and samples. Consequently, a high sensitivity would ensure the identification of 446 

oncogene mutation positive patients for whom laboratory-based testing would be 447 

subsequently confirmed.       448 
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When the influence of different factors on the prediction of EGFR mutation was 449 

evaluated, no statistically significant results were obtained, probably due to the limited 450 

number of studies included and the presence of missing data. However, some of those 451 

factors might play an essential role and should be considered when developing accurate 452 

models to be potentially implemented into clinical practice. Indeed, some of the studies 453 

included in our qualitative analysis analyzed the impact of different methodological 454 

aspects on the performance of the models. For example, Huang et al.35 demonstrated 455 

that interobserver variability in tumor segmentation affects the use of radiomics to 456 

predict oncogene mutation status, which suggests that automatic or semi-automatic 457 

models might be more suitable. In the study by Shiri et al.88, the application to 458 

radiomics features of ComBat harmonization improved the performance of the models 459 

toward more successful prediction of EGFR and KRAS mutations. Likewise, other 460 

authors have pointed to the impact of the experimental settings on the robustness of 461 

radiomics features89, or the influence of CT slice thickness on the predictive 462 

performance of radiomics-based models31. It is also worth mentioning the relevance of 463 

using a particular AI methodology. Although we found no differences in the EGFR 464 

mutation predictive performance between ML and DL methods, most likely due to the 465 

limited number of available DL-based studies, the latter might offer some advantages 466 

over the former. Thus, while in radiomics analysis a process of lesion segmentation and 467 

subsequent feature extraction is required, which introduces certain degree of variability 468 

and can be a high time-consuming task, DL models only required a bounding box of the 469 

lesion, greatly reducing this effect. On the other hand, DL models, and in particular end-470 

to-end convolutional neural network (CNN) models, such those developed in most of 471 

the DL studies included in our work37, 42, 43, 50, 58, 68, 85, 86, 90, 91, are generally more 472 

complex in terms of the number of parameters, allowing to solve more complicated 473 

problems than traditional ML models. Considering available evidence, it seems 474 

reasonable to think that methodologic approaches should be carefully revised when 475 

validation studies are designed and conducted.  476 

Our study has also some limitations, mainly derived from the limitations of the 477 

publications included. Thus, it is based on retrospective studies displaying great 478 

heterogeneity in terms of methodology and patient clinical characteristics, which clearly 479 

hamper the impact of our conclusions. Additionally, the limited available evidence for 480 

ALK and KRAS mutations, makes it difficult to draw solid conclusions. Despite this, 481 
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our work gathers the most up-to-date and complete evidence (all models developed in 482 

each of the studies were analyzed) on imaging-based models for the prediction of three 483 

of the most important oncogene mutations in NSCLC, following a clinical approach and 484 

a special focus on AI models. Our exhaustive review and meta-analyses are intended to 485 

provide solid evidence for future research in the field. 486 

In conclusion, radiomics-based models offer a useful and non-invasive method for 487 

determining the status of EGFR mutations in NSCLC and seem to retain similar 488 

predictive value for ALK and KRAS mutations. Additionally, although the inclusion of 489 

clinical variables tends to increase the performance of the models, further validation is 490 

required.  491 
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Table 1. Methodological characteristics of the studies (N = 89) included in the systematic review. For those studies with the same name for the first author and 

published the same year, a hashtag was added to unequivocally indicate those that were included in the different meta-analyses and consequently, that are 

represented in the forest plots.  

Author-Year 

Imaging 

modality 

 

Contrast-CT* 

 

Tumor 

segmentation 

Model 

 

Classifier  

(ML) 

 

Datasets 

Partition strategy Training 

 

Validation Test 

 

Agüloğlu et al. 

202292 
PET/CT Non-contrast CT Semi-automatic ML 

RF 

NB 

KNN 

DT 

SVM 

LR 

133 56 – 
Training-Validation 

split 

Aerts et al. 

201634 
CT Non-contrast CT Semi-automatic 

Classical 

statistical model 
– – – – – 

Agazzi et al.  

202193 
CT Contrast-enhanced Manual ML GBM 104 67 – 

Training-Validation 

split 
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Aide et al. 

202230 
PET – Manual ML LASSO 87 22 – 

Training-Validation 

split 

Chang et al. 

2021#49 
PET/CT Non-contrast CT Manual ML LASSO 409 174 – 

Training-Validation 

split 

Chang et al. 

2021##72 
PET/CT Non-contrast CT Manual ML LR† 367 159 – 

Training-Validation 

split 

Chen et al. 

202194 
CT Non-contrast CT Manual ML SVM 179 44 – 

Training-Validation 

split 

Chen et al. 

202295 
CT Non-contrast CT Semi-automatic ML LASSO 176 57 – 

Training-Validation 

split 

Choe et al. 

202196 
CT Contrast-enhanced Semi-automatic ML LR 349 154 – 

Training-Validation 

split 

Dang et al. 

202119 
CT Non-contrast CT Semi-automatic ML LASSO 88 30 – 

Training-Validation 

split 

Digumarthy et CT Contrast-enhanced Not specified Classical – – – – – 
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al.  201997 statistical model 

Dong et al. 

202233 
CT Non-contrast CT Not specified ML LR 87 45 – 

Training-Validation 

split 

Dong et al. 

202150 
CT Non-contrast CT Manual 

DL 

ML 
RF 363 162 – 

Training-Validation 

split 

Feng et al. 

202236 
CT Non-contrast CT Manual ML 

RF 

XGBoost 

LR 

SVM 

151 – – 
Training-Validation 

split 

Gao et al. 

202351 
PET/CT Non-contrast CT Semi-automatic ML 

LR 

RF 

SVM 

404 111 – 
Training-Validation 

split 

Hao et al. 

202298 
CT Non-contrast CT Manual ML 

SVM 

XGBoost 

AdaBoost 

LBP 

DT 

154 39 – 
Training-Validation 

split 
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LR 

He et al. 

202299 
CT Non-contrast CT Semi-automatic ML 

RF 

KNN 

 LGBM 

SVM 

– – – 
Training-Validation 

split 

Hong et al. 

202024 
CT Contrast-enhanced Manual ML 

NBC  

KNN  

RF  

SVM  

DT  

LR 

140 61 – 
Training-Validation 

split 

Huang et al. 

201835 
CT Non-contrast CT Semi-automatic 

Classical 

statistical model 
– – – – – 

Huang et al. 

202244 
PET/CT Non-contrast CT Manual 

DL 

ML 
LR 138 57 – 

Training-Validation 

split 

Huang et al. 

202237 
CT Non-contrast CT Manual DL LR 770 304 – 

Training-Validation 

split 
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ML 

Huo et al.  

202252 
CT Contrast-enhanced Manual ML GBT 487 121 – 

Training-Validation 

split 

Hou et al. 

2021100 
CT Contrast-enhanced Semi-automatic 

Classical 

statistical model 
– 144 62 – 

Training-Validation 

split 

Jia et al. 

201938 
CT Non-contrast CT Semi-automatic ML RF 345 158 – 

Training-Validation 

split 

Jiang et al. 

2019101 
PET/CT Non-contrast CT Semi-automatic ML SVM – – – 

10-fold cross-

validation 

Jiang et al. 

202253 
CT Non-contrast CT Manual ML SVM 514 178 – 

Training-Validation 

split 

Kawazoe et al. 

202345 
CT Non-contrast CT Semi-automatic ML 

SVM 

LR 

LGBM 

120 44 – 
Training-Validation 

split 

Kawazoe et al. CT Non-contrast CT Semi-automatic ML SVM 120 52 – Training-Validation 
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2023102 LR split 

Koyasu et al. 

2020103 
PET/CT Non-contrast CT Manual ML 

RF 

XGBoost 
– – – 

10-fold cross-

validation 

Le et al. 

202154 
CT Non-contrast CT Manual ML XGBoost 143 18 – 

Training-Validation 

split 

Li et al. 

2018#58 
CT Non-contrast CT Manual 

DL 

ML 

RF 

 
810 200 – 

Training-Validation 

split 

Li et al. 201831 CT Contrast-enhanced Semi-automatic ML SVM – – – 
3-fold cross-

validation 

Li et al 

2019#57 
PET/CT Non-contrast CT Manual ML 

Boosting ML 

scheme 
115 – – 

10-fold cross-

validation 

Li et al. 

2019104 
CT Non-contrast CT Manual ML LR 236 76 – 

Training-Validation 

split 

Li et al. 202056 CT Non-contrast CT Manual ML LR 

SVM 
326 112 – 

Training-Validation 

split 
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RF 

NB 

Neural network 

Li et al. 

2021105 
PET – Semi-automatic ML SVM 50 25 – 

Training-Validation 

split 

Li et al. 202255 PET/CT Non-contrast CT Manual ML LR 125 54 – 
Training-Validation 

split 

Liu et al. 

2016106 
CT Non-contrast CT Semi-automatic 

Classical 

statistical model 
– – – – – 

Liu et al. 

2020#39 
CT Contrast-enhanced Semi-automatic ML LR 210 53 – 

Training-Validation 

split 

Liu et al. 

202022 
PET/CT Non-contrast CT Manual ML XGBoost 111 37 – 

Training-Validation 

split 

Liu et al. 

202259 
CT Non-contrast CT Manual ML 

LR 

DT 

RF 

296 50 – 
Training-Validation 

split 
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SVM 

Liu et al. 

2023107 
PET/CT Non-contrast CT Manual ML 

LR 

DT 

RF 

SVM 

– – – 
10-fold cross-

validation 

Lu et al. 

2020#46 
CT Non-contrast CT Manual ML LR 83 – 21 

Training-Validation 

split 

Lu et al. 

2020108 
CT Non-contrast CT Semi-automatic ML 

KNN 

Bagging 

SVM 

RF 

105 228 – 
Training-Validation 

split 

Lu et al. 

202225 
CT Non-contrast CT Manual ML 

DT 

 AdaBoost 

NB 

RF 

LR 

SVM 

XGBoost 

140 61 – 
Training-Validation 

split 
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KNN 

Ma et al. 

202073 
CT Contrast-enhanced Manual ML SVM 98 42 – 

Training-Validation 

split 

Mei et al. 

201840 
CT Non-contrast CT Manual 

Classical 

statistical model 
– – – – – 

Mu et al. 

202085 
PET/CT Non-contrast CT Manual DL – 429 187 65 

Training-Validation 

split 

Nair et al. 

202117 
PET/CT Contrast-enhanced Manual ML LR – – – LOOCV 

Ninomiya et 

al. 202160 
CT Contrast-enhanced Manual ML SVM 99‡  99‡  95  

Training-Validation 

split 

Ninomiya et 

al. 202361 
CT Contrast-enhanced Not specified ML SVM 92 62 – 

Training-Validation 

split 

Omura et al. 

202320 
CT Contrast-enhanced Automatic ML RF – – – 

Training-Validation 

split 
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Ríos 

Velázquez et 

al. 201762 

CT 
Contrast + Non-

contrast CT 
Semi-automatic ML RF 353 352 – 

Training-Validation 

split 

Rossi et al. 

202163 
CT Non-contrast CT Manual ML SVM – 109 61 

Training-Validation 

split 

Ruan et al. 

2022109 
PET/CT Non-contrast CT Manual ML 

 

SVM 
70 30 – 

Training-Validation 

split 

Shao et al. 

202290 
CT Non-contrast CT Semi-automatic DL – – – – 

Training-Validation 

split 

Shiri et al. 

202018 

CT low 

dose 

CTD 

PET/CT 

Contrast-enhanced 
Manual 

Automatic§ 
ML 

SVM 

KNN 

DT 

QDA 

MLP 

SGD 

LR 

NB 

GNB 

82 68 – 
10-fold cross-

validation 
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RF 

AdaBoost 

Bagging 

Shiri et al. 

202288 

 

PET/CT 
Non-contrast CT 

Manual 

Automatic§ 
ML RF – – – 

Training-Validation 

split 

Song et al. 

202142 
CT Not specified 

Manual 

Automatic 

DL 

ML 
SVM 528 137 – 

Training-Validation 

split 

Song et al. 

202074 
CT Non-contrast CT Automatic ML DT 268 67 – 

Training-Validation 

split 

Trivizakis et 

al. 2021110 
CT Not specified Not specified 

DL 

ML 

KNN 

DT 

RBF-GPC 

RBF-SVM 

 Linear SVM 

Polynomial 

SVM 

Sigmoid SVM 

– – – 
5-fold cross-

validation 
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Tu et al. 

201964 
CT Non-contrast CT Not specified ML LR 243 161 – 

Training-Validation 

split 

Wang et al. 

201921 
CT Contrast-enhanced Manual ML SVM 41 – – 

Training-Validation 

split 

Wang et al. 

202143 
CT Non-contrast CT Manual DL – 882 125 255 

Training-Validation 

split 

Wang et al. 

2022#65 
CT Non-contrast CT Manual 

DL 

ML 
LASSO – – – 

Training-Validation 

split¶ 

Wang et al. 

2022##47 
PET/CT Non-contrast CT Semi-automatic ML LR 180 78 – 

Training-Validation 

split 

Weng et al. 

202166 
CT Non-contrast CT Semi-automatic ML LR 210 91 – 

Training-Validation 

split 

Wu et al. 

202026 
CT Contrast-enhanced Manual ML LR – – – 

10-fold cross-

validation 

Xiao et al. PET/CT Non-contrast CT Manual DL RF 121 29 – Training-Validation 
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202391 ML split 

Yamazaki et 

al. 2022111 
CT Non-contrast CT Semi-automatic ML RF – – – – 

Yang et al. 

2020#27 
CT Contrast-enhanced Semi-automatic ML LASSO 130 40 – 

Training-Validation 

split 

Yang et al. 

2020112 
PET/CT Non-contrast CT Semi-automatic ML RF 139 35 – 

Training-Validation 

split 

Yang et al. 

2022#67 
CT  

Contrast + Non-

contrast CT 
Manual ML 

LR  

RF 

SVM 

GBT 

NB 

327 66 19 
Training-Validation 

split 

Yang et al.  

202223 
PET/CT Non-contrast CT Semi-automatic ML 

SVM 

DT 

RF 

218 95 – 
Training-Validation 

split 

Yang et al. CT Contrast-enhanced Manual ML LR 176 74 – Training-Validation 
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202248 split 

Yip et al. 

201789 
PET – Manual 

Classical 

statistical model 
– – – – – 

Zhang et al. 

201828 
CT Non-contrast CT Manual ML LR 140 40 – 

Training-Validation 

split 

Zhang et al. 

2020#70 
PET/CT Non-contrast CT Manual ML 

RF 

SVM 

LR 

– – – 
10-fold cross-

validation 

Zhang et al. 

2020113 

 

PET/CT Non-contrast CT Semi-automatic ML LR 175 73 – 
Training-Validation 

split 

Zhang et al. 

2020##68 
CT Non-contrast CT Semi-automatic 

DL 

ML 

RF 

SVM 

 

638 71 205 
Training-Validation 

split 

Zhang et al. CT Contrast-enhanced Semi-automatic ML LASSO  – – – Training-Validation 
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202141 split 

Zhang et al. 

202169 
CT Non-contrast CT Manual ML 

DT 

LR 

SVM 

Multivariate 

analysis for C-

R-R model  

294 126 – 
Training-Validation 

split 

Zhang et al. 

2023114 
PET – Manual ML 

SVM 

RF 

LR 

AdaBoost 

– – – 
10-fold cross-

validation 

Zhao et al. 

201986 
CT Non-contrast CT Manual 

DL 

ML 
LR 348 116 116 

Training-Validation 

split 

Zhao et al. 

2019115 
CT Non-contrast CT Manual ML LR 322 315 – 

Training-Validation 

split 

Zhao et al. 

202271 
PET/CT Non-contrast CT Semi-automatic ML LR 65 23 – 

Training-Validation 

split 
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Zhu et al. 

202232 
CT Non-contrast CT Semi-automatic ML 

LASSO 

RF 

SVM 

875 217 – 
Training-Validation 

split 

Zhu et al.  

202129 
CT Contrast-enhanced Manual ML 

SVM 

KNN 

RF 

LR 

159 40 – 
Training-Validation 

split 

Zuo et al. 

202387 
PET/CT Non-contrast CT 

 

Manual 

 

ML 

LGBM 

XGBoost 

RF 

LR 

410 170 180 
Training-Validation 

split 

*In studies in which PET/CT was performed, only details about contrast were provided for PET acquisition. Consequently, it was assumed that CT scans were non-contrast enhanced. 

†Not specified but inferred from the methodology and results.  

‡Number of cases for training and validation sets not specified; only a total number for both cohorts provided.  

§Manual segmentation for PET images; automatic segmentation for CT images. 

¶80% Training-Validation split. 

CT, computed tomography; CTD, contrast-enhanced diagnostic quality; DL, deep learning; DT, decision tree; ERBB2, v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2; 
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GBM, gradient boosted machine; GBT, gradient boosting tree; GNB, Gaussian Naives Bayes; GPC, Gaussian processes classification; LASSO, least absolute shrinkage and selection 

operator; LBP, local binary pattern; LGBM, Light gradient boosted machine; LOOCV, leave-one-out cross-validation; LR, logistic regression; ML, machine learning; MLP, multilayer 

perceptron; NB, Naive Bayes; KNN, K-nearest neighbors; PET, positron emission tomography; QDA, quadratic discriminant analysis; RBF, radial basis function; RF, random forest; SGD, 

stocastic gradient descendent; SVM, support vector machine; TP53, tumor suppressor protein 53. 
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Table 2. Clinical characteristics of the studies (N = 89) included in the systematic review. For those studies with the same name for the first author and 

published the same year, a hashtag was added to unequivocally indicate those that were included in the different meta-analyses and consequently, that are 

represented in the forest plots. 

Author-Year 

Target 

oncogene 

mutation 

Design 

Total 

of 

patien

ts 

Sex 

Age 

Mean/median 
Histology 

Smoking status 

TNM stage Treatment Female Male Current

/former 

smoker 

Non-

smoker 

Agüloğlu et al. 

202292 

EGFR 

ALK 
Unicentric 189 59 130 62/– NSCLC 130 59 Stages I-IV Naïve 

Aerts et al. 

201634 
EGFR Unicentric 47 – – –/– NSCLC – – – 

Naïve + post-

treatment images 

Agazzi et al.  

202193 

EGFR 

ALK 
Unicentric 84 39 45 –/63 ADC 57 27 – Naïve 

Aide et al. 202230 EGFR Unicentric 109 34 75 –/66 ADC 96 13 Stages II-IV Naïve 
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Chang et al. 

2021#49 
EGFR Unicentric 583 305 278 –/62 ADC 229 354 Stages I-III Naïve 

Chang et al. 

2021##72 
ALK Unicentric 526 272 254 –/58.25 ADC 202 324 Stages I-IV Naïve 

Chen et al. 202194 EGFR Unicentric 223 109 114 64.63/– NSCLC 55 168 Stages I-IV Naïve 

Chen et al. 202295 EGFR Unicentric 233 105 128 57.5/– ADC 65 168 Stages I-IV Naïve 

Choe et al. 202196 ALK Unicentric 503 273 230 62.5/– ADC 200 303 Stages I-IV Not specified 

Dang et al. 

202119 
EGFR Not specified 118 55 63 63.82/– ADC, SCC – – Stages I-III No treatment* 

Digumarthy et al.  

201997 
EGFR Unicentric 93 50 43 60/– ADC, SCC 61 32 – Naïve 

Dong et al. 

202233 
EGFR Multicentric 132 64 68 58.8/– NSCLC 42 90 Stages I-III Naïve 

Dong et al. EGFR Multicentric 525 250 275 – /65.5 NSCLC 373 152 – Not specified 
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202150 KRAS 

Feng et al. 202236 EGFR Multicentric 168 – – –/– NSCLC – – – Not specified† 

Gao et al. 202351 EGFR Unicentric 515 264 251 64/– ADC 175 – Stages I-IV Naïve 

Hao et al. 202298 ALK Unicentric 193 102 91 54.26/– NSCLC 49 144 
Stages II and 

IV 
Naïve 

He et al. 202299 EGFR Multicentric 758 317 441 55.6/– NSCLC 358 400 Stages I-IV Naïve 

Hong et al. 

202024 
EGFR Unicentric 201 94 107 58.12/– ADC 64 137 Stages I-IV Naïve 

Huang et al. 

201835 
EGFR Unicentric 46 – – –/– NSCLC – – – 

Naïve + post-

treatment images 

Huang et al. 

202244 
EGFR Unicentric 195 72 123 61.14 – NSCLC 127 68 – No treatment* 

Huang et al. 

202237 
EGFR Unicentric 1074 – – –/– NSCLC – – – Not specified 
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Huo et al.  202252 EGFR Unicentric 608 272 336 61.7/– ADC 0 335 
Stages II and 

IV 
Naïve 

Hou et al. 2021100 EGFR Unicentric 206 120 86 –/59 

ADC, 

SCC, 

ASC‡ 

57 – Stages I-IV Naïve 

Jia et al. 201938 EGFR Unicentric 503 249 254 –/60.5 ADC 80 423 Stages I-IV Not specified† 

Jiang et al. 

2019101 
EGFR Unicentric 80 32 48 64/62.5 NSCLC 21 59 – Naïve 

Jiang et al. 202253 EGFR Unicentric 692 – – 59/– ADC – – – Naïve 

Kawazoe et al. 

202345 
EGFR Unicentric 164 75 89 70.24/– ADC 102 62 Stages I-IV No treatment§ 

Kawazoe et al. 

2023102 
EGFR Unicentric 172 77 95 70.76/– ADC 107 65 Stages I-IV Naïve 

Koyasu et al. 

2020103 
EGFR Unicentric 138 54 84 67.8/– ADC, SCC – – – Not specified 
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Le et al. 202154 
EGFR 

KRAS 
Multicentric 161 50 111 68.05/– 

ADC, 

NSCLC 

NOS, SCC 

61 100 – Naïve 

Li et al. 2018#58 EGFR Unicentric 1010 457 553 –/63 ADC 262 748 Stages I-IV Naïve 

Li et al. 201831 EGFR Unicentric 51 19 32 58.1/– ADC 24 27 Stages I-III Not specified† 

Li et al 2019#57 EGFR Unicentric 115 62 53 –/63 NSCLC 36 79 
Stages II and 

IV 
Naïve 

Li et al. 2019104 EGFR Unicentric 312 164 148 Freq./Freq.¶ ADC, SCC 109 203 
Stages II and 

IV 
Naïve 

Li et al. 202056 EGFR Multicentric 438 – – 61.31/– ADC – – – Naïve 

Li et al. 2021105 EGFR Unicentric 75 45 30 62/– 
Lung 

cancer** 
34 41 – Not specified 

Li et al. 202255 EGFR Unicentric 179 103 76 61.51/59.5 ADC 65 114 – Naïve 

Liu et al. 2016106 EGFR Unicentric 298 172 126 –/60 
ADC, 

Others 
136 162 

Stages II and 

IV 
Naïve 
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Liu et al. 2020#39 EGFR Unicentric 263 121 142 62.5/– ADC 31 232 – Not specified† 

Liu et al. 202022 EGFR Unicentric 148 63 85 –/61.2 ADC – – Stages II-IV Naïve 

Liu et al. 202259 EGFR Multicentric 346 141 205 66.69/– 

ADC, 

SCC, LCC, 

PSC 

225 121 – Naïve 

Liu et al. 2023107 EGFR Unicentric 115 62 53 –/62.75 ADC 36 79 
 

Stages I-IV 
Naïve 

Lu et al. 2020#46 EGFR Unicentric 104 64 40 58.27/– ADC 30 74 Stages I-IV No treatment* 

Lu et al. 2020108 EGFR Multicentric 228†† 85†† 120†† 67.94/– 
ADC, 

SCC, NOS 
– – Stages 0-IV Not specified 

Lu et al. 202225 EGFR Unicentric 201 99 102 64.81/– ADC 84 117 Stages III-IV Naïve 

Ma et al. 202073 ALK Unicentric 140 87 53 54.19/– ADC 45 95 
Stages II and 

IV 
Naïve 

Mei et al. 201840 EGFR Unicentric 296 144 152 58.56/– ADC 86 210 – Not specified† 
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Mu et al. 202085 EGFR Multicentric 681 303 378 61,83/– ADC, SCC 315 366 Stages I-IV Naïve 

Nair et al. 202117 EGFR Unicentric 50 18 32 –/– NSCLC 35 15 – Naïve 

Ninomiya et al. 

202160 
EGFR Multicentric 194 74 120 –/67 NSCLC 128 66 Stages I-IV 

 

Not specified 

 

Ninomiya et al. 

202361 
EGFR Multicentric 154 86 68 –/67 

Lung 

cancer 
73 81 Stages I-IV Not specified 

Omura et al. 

202320 

 

EGFR 

 

Unicentric 99 65 34 66/– ADC 41 – Stages I-II Naïve 

Ríos Velázquez 

et al. 201762 

EGFR 

KRAS 
Multicentric 763 459 304 65/– ADC 548 215 Stages I-IV 

 

Not specified 

 

Rossi et al. EGFR Multicentric 170 – – –/– ADC 110 30 – Naïve 
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202163  

Ruan et al. 

2022109 

EGFR 

 
Unicentric 100 42 58 – / 64.5 NSCLC 33 67 Stages I-IV Naïve 

Shao et al. 202290 
EGFR 

 
Unicentric 1096 – – 58.26/– NSCLC – – – Naïve 

Shiri et al. 202018 
EGFR 

KRAS 
Unicentric 150 – – 69.1 – 

ADC, 

SCC, 

NOS‡ 

– – 
 

– 
Not specified 

Shiri et al. 202288 
EGFR 

KRAS 
Multicentric 136 – – –/– 

ADC, 

SCC, NOS 
– – – Not specified 

Song et al. 202142 

 

EGFR 

 

Multicentric 665 336 329 Freq./Freq.¶ ADC 334 331 
Stages II and 

IV 

Not specified‡‡ 

 

 

Song et al. 202074 ALK Unicentric 335 196 139 57 / – ADC 103 232 Stages I-IV Naïve 
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Trivizakis et al. 

2021110 
EGFR Unicentric 112 – – –/– ADC, SCC – – – Not specified 

Tu et al. 201964 EGFR Unicentric 404 211 193 59.95/– NSCLC 114 290 
Stages II and 

IV 
Naïve 

Wang et al. 

201921 
EGFR Unicentric 

 

51 
35 16 58.45/– ADC 9 42 Stages 0-II Not specified 

Wang et al. 

202143 

EGFR 

PD-L1 
Unicentric 1262 642 620 57.7/– 

ADC, 

SCC, 

Others‡ 

452 749 Stages I-IV Not specified§§ 

Wang et al. 

2022#65 

EGFR 

PD-L1 
Unicentric 3629 1674 1955 59.29/– 

ADC, 

SCC, 

Others 

1413 1981 Stages I-IV Naïve 

Wang et al. 

2022##47 
KRAS Unicentric 258 78 180 62.35/– NSCLC 166 92 – No treatment* 

Weng et al. 

202166 
EGFR Unicentric 301 145 156 64.95/– NSCLC 110 191 – Naïve 
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Wu et al. 202026 EGFR Unicentric 67 29 38 56.35/– ADC, SCC 34 33 Stages III-IV Naïve 

Xiao et al. 202391 EGFR Unicentric 150 59 91 –/58 NSCLC 64 86 – Not specified 

Yamazaki et al. 

2022111 
EGFR Unicentric 478 190 288 Freq./Freq.¶ 

ADC, 

SCC, 

Others‡ 

– – 
Stages II and 

IV 
Naïve 

Yang et al. 

2020#27 
EGFR Unicentric 253 155 98 –/62 ADC 105 148 Stages III-IV Naïve 

Yang et al. 

2020112 
EGFR Unicentric 174 81 93 61.72/– ADC 59 115 

Stages II and 

IV 
Naïve 

Yang et al. 

2022#67 
EGFR Unicentric 412 223 189 62/– ADC, SCC 105 307 – Naïve 

Yang et al.  

202223 
EGFR Unicentric 313 164 149 59.21/– ADC 105 208 Stages II-IV Naïve 

Yang et al. 

202248 
EGFR Unicentric 250 – – 56.35 / – ADC – – – Treated with TKIs¶¶ 
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Yip et al. 201789 KRAS Unicentric 348 214 134 –/65 

ADC, 

NSCLC 

NOS, SC. 

Not 

available 

for 1 

patient‡ 

286 62 Stages I-IV Naïve 

Zhang et al. 

201828 
EGFR Unicentric 180 46 134 59.7/– 

ADC, 

SCC, 

Others 

119 61 Stages III-IV Naïve 

Zhang et al. 

2020#70 
EGFR Unicentric 173 58 115 60.8/– 

ADC 

SCC, LCC, 

NSCLC-

NOS 

– – Stages I-IV Naïve 

Zhang et al. 

2020113 
EGFR Unicentric 248 113 135 62.23/– ADC 117 131 Stages I-IV Naïve 

Zhang et al. 

2020##68 
EGFR Unicentric 914 493 421 59.79/– ADC – – – Naïve 
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Zhang et al. 

202141 

EGFR 

KRAS 

ERBB2 

TP53 

Unicentric 134 56 78 63.6/– 

ADC, 

SCC, 

ASC 

28 106 
 

– 

 

Not specified 

 

 

Zhang et al. 

202169 
EGFR Unicentric 420 201 219 57.43/56.5 ADC 147 273 – Naïve 

Zhang et al. 

2023114 
EGFR Unicentric 115 – – –/– NSCLC – – – Naïve 

Zhao et al. 201986 EGFR Unicentric 579 334 245 60.1/– ADC – – Stages 0-IV 
Not specified 

 

Zhao et al. 

2019115 
EGFR Unicentric 637 368 269 59.9/– ADC 49 588 – Naïve 

Zhao et al. 202271 EGFR Unicentric 88 39 49 64.23/– ADC 31 57 
Stages II and 

IV 
Naïve 

Zhu et al. 202232 EGFR Unicentric 1092 648 442 59.59/– ADC – – Stages I-III Naïve 
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Zhu et al.  202129 
EGFR 

TP53 
Unicentric 199 86 113 Freq./Freq.¶ ADC 94 105 Stages III-IV Naïve 

Zuo et al. 202387 EGFR Multicentric 767 372 395 –/62.04 ADC – – 

Stages I-IV 

Others (34 

patients) 

Not specified 

*Patients were excluded if treated with RT or chemotherapy, but targeted therapy is not specified. 

†CT scans acquired prior surgery; no information on prior treatments. 

‡Mainly adenocarcinoma cases. 

§Patients did receive target treatment, but no information on the administration of other treatments (immunotherapy and/or chemotherapy) is specified. 

¶These studies provide age data as frequencies establishing an age threshold. 

**Inferred that NSCLC patients were included as it is specified that 17 patients had 19Del and 20 cases had L858R mutation; EGFR mutations are very rare in SCLC. 

††In this study, there are 23 patients with no information about sex.  

‡‡Image acquired 3 months before PCR; no information about treatments. 

§§CT images acquired within 1 month before pathological diagnosis. 

¶¶ Imaging-proven progression on first- or second-generation TKIs; patients underwent chest contrast-enhanced CT at the time of confirmed progression, and the interval between CT 

and confirmed progression was within 3 days. 
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ADC,  adenocarcinoma; ALK, anaplastic lymphoma kinase; ASC,  adenosquamous carcinoma; CT,  computed tomography; EGFR,  epidermal growth factor receptor; ERBB2, v-erb-

b2 avian erythroblastic leukemia viral oncogene homolog 2; Freq. ,  frequency; KRAS,  Kirsten rat sarcoma viral oncogene homologue; LCC,  large cell lung carcinoma; NOS,  not 

otherwise specified; NSCLC,  non-small cell lung cancer; PCR, polymerase chain reaction; PD-L1,  programmed death ligand 1; PSC,  pulmonary sarcomatoid carcinoma; RT,  

radiotherapy; SCC,  Squamous cell carcinoma; SCLC, small-cell lung cancer; TKI , tyrosine kinase inhibitor; TP53, tumor suppressor protein 53. 
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FIGURES 

Figure 1. PRISMA flowchart. AI, artificial intelligence; CLAIM , Checklist for Artificial 

Intelligence in Medical Imaging; CT , computed tomography; MRI , magnetic resonance 

imaging. 
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Figure 2. Forest plots of the included studies developing radiomics models using machine 

learning and/or deep learning methods for the prediction of EGFR mutation status. Numbers are 

estimated with 95% CIs in brackets and indicated by horizontal lines. For those studies with the 

same name for the first author and published the same year, a hashtag was added to 

unequivocally tag them as done in Tables 1 and 2 and in the reference list. EGFR, epidermal 

growth factor receptor; CI, confidence interval; DOR, diagnostic odds ration; FPR, false 

positive rate. 
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Figure 3. Forest plots of the included studies developing combined models (radiomics + clinical 

data) using machine learning and/or deep learning methods for the prediction of EGFR mutation 

status. Numbers are estimates with 95% CIs in brackets and indicated by horizontal lines. For 

those studies with the same name for the first author and published the same year, a hashtag was 

added to unequivocally tag them as done in Tables 1 and 2 and in the reference list. EGFR, 

epidermal growth factor receptor; CI, confidence interval; DOR, diagnostic odds ration; 

FPR, false positive rate. 
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Figure 4. Forest plots of the included studies developing radiomics models using machine 

learning and/or deep learning methods for the prediction of A) ALK and B) KRAS mutation 

status. Numbers are estimates with 95% CIs in brackets and indicated by horizontal lines. For 

those studies with the same name for the first author and published the same year, a hashtag was 

added to unequivocally tag them as done in Tables 1 and 2 and in the reference list. ALK, 

anaplastic lymphoma kinase; CI, confidence interval; DOR, diagnostic odds ration; FPR, false 

positive rate; KRAS, Kirsten rat sarcoma viral oncogene homologue. 
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Supplementary Figure S1. Hierarchical sROC curves of included studies for the comparative 

performance of radiomics models and combined models (radiomics + clinical data) using 

machine learning and/or deep learning methods for the prediction of EGFR mutation status 

(n = 24 and  n = 23 studies, respectively). EGFR, epidermal growth factor receptor. 
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Supplementary Figure S2. Hierarchical sROC curve of included studies for the performance of 

radiomics models for the prediction of ALK mutation status (n = 3). ALK, anaplastic lymphoma 

kinase. 
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Supplementary Figure S3. Hierarchical sROC curve of included studies for the performance of 

radiomics models for the prediction of KRAS mutation status (n = 4). KRAS, Kirsten rat 

sarcoma viral oncogene homologue. 
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Supplementary tables 

Supplementary Table S1. Search strategy applied for the qualitative analysis 

(systematic review). 

 

 

Databases Search strategy 

MEDLINE (via Pubmed) 

 

("radiomics"[TIAB] OR "radiomic"[TIAB] OR "texture 

analysis"[TIAB]) AND ("lung neoplasms"[MESH] OR "lung 

cancer"[TIAB] OR "NSCLC"[TIAB] or "non-small cell lung 

cancer"[TIAB] OR "lung adenocarcinoma"[TIAB]) AND 

("mutational status" OR "mutation" OR "molecular subtype" OR 

"ALK"[TIAB] OR "anaplastic lymphoma kinase"[TIAB] OR 

"BRAF"[TIAB] OR "EGFR"[TIAB] OR "Epidermal growth factor 

receptor"[TIAB] OR "ERRB2"[TIAB] OR "Receptor, ErbB-

2"[MESH] OR "HER2"[TIAB] OR "KRAS"[TIAB] OR "Kirsten 

rat sarcoma virus"[TIAB] OR "Proto Oncogene Proteins c 

met"[TIAB] OR "NTRK"[TIAB] OR "ROS"[TIAB] OR "c-

ros"[TIAB]) 

 

COCHRANE LIBRARY  

("radiomics" OR “radiomic” OR "texture analysis") AND ("lung 

neoplasms" OR "lung cancer" OR “NSCLC” OR “non-small cell 

lung cancer”) AND ("mutational status" OR "mutation" OR 

"molecular subtype" OR "ALK" OR "anaplastic lymphoma kinase" 

OR “BRAF” OR “EGFR” OR “ERRB2” OR "Receptor, ErbB-2" 

OR “HER2” OR “KRAS” OR “Kirsten rat sarcoma virus” OR 

“Proto Oncogene Proteins c met” OR “NTRK” OR “ROS” OR “c-

ros”) 

EMBASE 

('radiomics':ab,ti OR 'radiomics'/exp OR 'radiomic':ab,ti OR 'texture 

analysis':ab,ti) AND ('lung cancer'/exp OR 'lung cancer':ab,ti OR 

'NSCLC'/exp OR 'NSCLC':ab,ti OR 'non small cell lung 

cancer'/exp OR 'non small cell lung cancer':ab,ti OR 'lung 

adenocarcinoma'/exp OR 'lung adenocarcinoma':ab,ti) AND 
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('mutational status':ab,ti OR ('mutational' NEAR/2 'status') OR 

'mutation':ab,ti OR 'mutation'/exp OR 'molecular subtype':ab,ti OR 

('molecular' NEAR/2 'subtype') OR 'ALK':ab,ti OR 'ALK gene'/exp 

OR 'anaplastic lymphoma kinase':ab,ti OR 'anaplastic lymphoma 

kinase'/exp OR 'BRAF':ab,ti OR 'BRAF gene'/exp OR 'EGFR':ab,ti 

OR 'EGFR gene'/exp OR 'Epidermal growth factor receptor':ab,ti 

OR 'Epidermal growth factor receptor gene'/exp OR 'ERRB2':ab,ti 

OR 'ERRB2 gene'/exp OR 'epidermal growth factor receptor 2'/exp 

OR 'epidermal growth factor receptor 2':ab,ti OR 'HER2':ab,ti OR 

'KRAS':ab,ti OR 'KRAS gene'/exp OR 'Kirsten rat sarcoma 

virus':ab,ti OR 'Kirsten rat sarcoma virus'/exp OR 'Proto Oncogene 

Proteins c met' OR 'MET':ab,ti OR 'MET gene'/exp OR 

'NTRK':ab,ti OR 'NTRK gene'/exp OR 'c ros oncogene 1':ab,ti OR 

'ROS1':ab,ti OR 'ROS1 gene'/exp) 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.31.24308261doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.31.24308261


 68

Supplementary Table S2. Quality assessment results obtained after CLAIM evaluation.  

 

 

N 

Study 

Score 

Mean score Cut-off 
Reviewer 1 

(A.J.P.) 

Reviewer 2 

(F.B.B.) 

Reviewer 3 

(A.P.P.) 

1 Chang et al. 20211 28 24 27 26 17 

2 Chang et al. 20212 26 25 26 26 17 

3 Dong et al. 20213 23 22 19 21 18 

4 Dong et al. 20224 25 22 21 23 18 

5 Feng et al. 20225 20 22 23 22 18.5 

6 Gao et al. 20236 22 22 20 21 17.5 

7 Huo et al. 20227 22 25 25 24 17.5 

8 Jia et al. 20198 19 19 20 19 17 

9 Jiang et al. 20229 24 23 22 23 16.5 

10 Le et al. 202110 22 20 21 21 17.5 

11 Li et al. 201811 25 28 22 25 19 

12 Li et al. 201912 23 22 21 22 17 

13 Li et al. 202013 25 23 22 23 19 

14 Li et al. 202214 21 21 21 21 17 
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15 Liu et al. 202015 22 25 23 23 17 

16 Liu et al. 202216 24 23 22 23 17 

17 Lu et al. 202017 27 30 26 28 17.5 

18 Lu et al. 202218 22 25 21 23 17.5 

19 Ma et al. 202019  24 26 22 24 17 

20 Nair et al. 202120 21 22 19 21 17.5 

21 Ninomiya et al. 202121 21 22 21 21 17.5 

22 Ninomiya et al. 202322 21 22 22 22 17 

23 Rios Velazquez et al. 201723 19 23 20 21 18 

24 Rossi et al. 202124 20 22 19 20 17.5 

25 Song et al. 202025 27 28 27 27 19 

26 Tu et al. 201926 19 21 20 20 17 

27 Wang et al. 202227 23 26 26 25 18 

28 Wang et al. 202228 24 22 22 23 19 

29 Weng et al. 202129 24 25 24 24 17.5 

30 Wu 202030 20 22 21 21 17 

31 Yang 202031 22 23 23 23 17 

32 Yang 202232 19 18 18 18 17 

33 Zhang 201833 26 27 23 25 17 

34 Zhang 202034 19 19 19 19 17 
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35 Zhang 202035 22 23 23 23 17 

36 Zhang 202136 27 26 26 26 17 

37 Zhao 202237 23 24 23 23 19 

38 Zhu 202238 22 22 20 21 17.5 
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Supplementary Table S3. Studies included in the different meta-analyses conducted.  

 

N EGFR ALK KRAS 

Radiomics models Combined models Radiomics models Radiomics models 

1 Chang et al. 20211 Dong et al. 20224 Chang et al. 20212 Dong et al. 20213 

2 Dong et al. 20213 Gao et al. 20236 Ma et al. 202019 Le et al. 202110 

3 Feng et al. 20225 Huo et al. 20227 Song et al. 202025 RiosVelazquez et al. 201723 

4 Gao et al. 20236 Jia et al. 20198  Wang et al. 202228 

5 Le et al. 202110 Jiang et al. 20229   

6 Li et al. 201811 Li et al. 201811   

7 Li et al. 201912 Li et al. 201912   

8 Li et al. 202214 Li et al. 202013   
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9 Liu et al. 202015 Liu et al. 202015   

10 Liu et al. 202216 Lu et al. 202017   

11 Lu et al. 202017 Lu et al. 202218   

12 Lu et al. 202218 Ninomiya et al. 202322   

13 Nair et al. 202120 Rios Velazquez et al. 201723   

14 Ninomiya et al. 202121 Rossi et al. 202124   

15 RiosVelazquez et al. 201723 Tu et al. 201926   

16 Tu et al. 201926 Wang et al. 202227   

17 Wang et al. 202227 Weng et al. 202129   

18 Weng et al. 202129 Wu 202030   

19 Yang 202031 Yang 202232   

20 Zhang 202034 Zhang 201833   
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21 Zhang 202035 Zhang 202035   

22 Zhang 202136 Zhang 202136   

23 Zhao 202237 Zhu 202238   

24 Zhu 202238    

ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma viral oncogene homologue. 
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Supplementary Table S4. Type of models (radiomic model/deep learning or combined [radiomic features + clinical variables]) developed in the 

studies for EGFR prediction and the radiomics/clinical features included. EGFR, epidermal growth factor receptor. 

 

Study Models Radiomic features Clinical variables 

Chang et al. 20211 

 

Radiomic 

 

ShortRunLowGreyLevelEmphasis_AllDirection_offset1_SDH 

Percentile85 

OneVoxelVolume 

Flatness  

ShortRunEmphasis_AllDirection_offset_SD 

HaralickCorrelation_AllDirection_offset4_SD 

Zone Percentage  

GLCM_Entropy_AllDirection_offset7_SD 

Correlation_AllDirection_offset7_SD CT_GLCMEntropy_AllDirection_offset1_SD 

HaralickCorrelation_angle135_offset7 

LongRunHighGreyLevelEmphasis_angleO_offset 1 

ShortRunLowGreyLevelEmphasis_AllDirection_offset7_SD 

N/A 
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HaralickCorrelation_AllDirection_offset1_SD 

SurfaceVolumeRatio 

Dong et al. 20213 Deep learning Not specified N/A 

Dong et al. 20224 Combined 

wavelet-HLL_GLCM_MaximumProbability 

wavelet-LLL_GLCM_MaximumProbability 

original_GLCM_SumEntropy) 

log-sigma-1-0-mm-3D_GLCM_MaximumProbability 

wavelet-LHL_firstorder_Kurtosis 

wavelet-LLL_firstorder_Skewness 

log-sigma-2-0-mm-3D_firstorder_Kurtosis 

original_shape_Sphericity 

wavelet-LHL_GLSZM_LargeAreaHighG 

Smoking status 

Histological type 

Feng et al. 20225 Radiomic 

Skewness.7_firstorder_wavelet-LHL SmallAreaHighGrayLevelEmphasis.7_GLSZM_wavelet-LHL 

HighGrayLevelZoneEmphasis.12_GLSZM_wavelet-HHH 90Percentile_firstorder_original  

Variance.4_firstorder_square  

Range.4_firstorder_square  
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GrayLevelVariance.26_GLSZM_wavelet-LHH  

JointAverage.11_GLCM_wavelet-HLH  

MeanAbsolute Deviation.4_firstorder_square RobustMeanAbsoluteDeviation.4_firstorder_square 

GrayLevelNonUniformity.32_GLSZM_wavelet-LLH | GrayLevelNonUniformity.1_girlm_original 

GrayLevelNonUniformity.4_girlm_logarithm GrayLevelNonUniformity.16_girlm_squareroot 

HighGrayLevelRunEmphasis.5_girlm_squareroot 

GrayLevelNonUniformityNormalized.21_GLSZM_wavelet-LLH LowGrayLevelRunEmphasis 

girlm_original LowGrayLevelRunEmphasis.5_girlm_squareroot GrayLevel 

Variance.32_GLSZM_wavelet-LLH 

Minimum.4_firstorder_square SmallArealowGrayLevelEmphasis.11_GLSZM_wavelet-HLH 

SmallArealowGrayLevelEmphasis.12_GLSZM_wavelet-HHH 

Mean.12_firstorder_wavelet-HHH SmallArealowGrayLevelEmphasis.9_GLSZM_wavelet-HLL 

Imc2.12 GLCM wavelet-HHH 

ADC 

 

 

 

 

 

 

 

 

 

 

N/A 

Gao et al. 20236 
Radiomic 

Combined 

original_firstorder_Kurtosis 

original_firstorder_Median 

original_firstorder_Skewness 

log-sigma-1-0-mm-3D_firstorder_Energy 

 

CEA 

Sex (male) 

Nodule type (sub-
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log-sigma-4-0-mm-3D_GLDM_DependenceVariance 

wavelet-LHL_GLRLM_LongRunLowGrayLevelEmphasis 

wavelet-HLL_firstorder_Energy 

solidity) 

Huo et al. 20227* Combined 137 features (not specified) 

Age 

Sex (female) 

Non-smokers 

Clinical stage (I-II) 

Jia et al. 20198 Combined 94 features (not specified) 
Sex 

Smoking history 

Jiang et al. 20229 Combined 

Skewness 

Minimum 

Kurtosis 

Variance 

Minimum 

10th percentile 

 

 

 

 

Age 

Sex 
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SumSquare  

SizeZoneNonUniformity 

HighGrayLevelZoneEmphasis 

ZoneVariance 

LargeDependence HighGrayLevelEmphasis 

LargeDependenceHighGrayLevel Emphasis 

DependenceEntropy 

Smoking 

Tumor 

Family history 

Le et al. 202110 Radiomic 

wavelet-LLLfirstorderEnergy 

wavelet-LHHGLSZMGrayLevelNonUniformityNormalized 

wavelet-HHLGLDMSmallDependenceLowGratLevelEmphasis 

wavelet-HLHGLCM_MCC 

wavelet-HLHGLSZMSmallAreaLowGrayLevelEmphasis 

wavelet-HHHGLCMjointEnergy 

wavelet-HHHGLRLMGrayLevelNonUniformityNormalized 

 

 

N/A 

Li et al. 201811 
Radiomic 

Combined 
338 features (not specified) 

Sex 

Smoking status 
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Li et al. 201912 
Radiomic 

Combined 

CT_GGS_Gray Span 

CT_GGC_Gray Mean 

Age 

Sex 

Smoking status 

Clinical stage 

Lesion location 

Li et al. 202013 Combined 12 features (not specified) 

Sex 

Age 

Smoking status 

Li et al. 202214 Radiomic 3 features (not specified) – 

Liu et al. 202015 
Radiomic 

Combined 

RADIOMIC MODEL: 

wavelet-HLH_GLDM_DependenceVariance  

wavelet-LHL_GLDM_LargeDependenceLowGrayLevelEmphasis  

logarithm_GLCM_InverseVariance  

square_GLDM_DependenceVariance  

wavelet-HLH_GLDM_LargeDependenceHighGrayLevelEmphasis 
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wavelet-HHH_GLCM_Id  

log-sigma-0-5-mm-3D_GLSZM_ZoneEntropy  

square_GLCM_Correlation  

original_GLCM_ClusterShade  

wavelet-LHH_GLDM_LargeDependenceHighGrayLevelEmphasis 

 

COMBINED MODEL: 

wavelet-HLH_GLDM_DependenceVariance  

custom_PatientSex 

logarithm_GLCM_InverseVariance  

square_GLCM_Correlation  

wavelet-HLL_firstorder_Kurtosis  

wavelet-LHL_GLRLM_LongRunLowGrayLevelEmphasis  

wavelet-HLL_firstorder_Median 

original_GLSZM_SizeZoneNonUniformityNormalized 

exponential_firstorder_Skewness  

 

 

Age 

Sex 

Smoking history A
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wavelet-LLH_GLCM_ClusterShade 

Liu et al. 202216 Radiomic 

Mean absolute deviation  

60 Percentile area 

Convex 

Correlation 

Dissimilarity 

5-1 Homogeneity 2 

10-4 Homogeneity 2 

-333-7 Information measure corr 1  

8-1 Information measure corr 1 

9-7 Information measure corr 1 

2-4 Inverse diff norm 

6-4 Inverse variance 

8-4 Inverse variance 

8-1 Max Probability 

12-7 Max Probability 

 

 

 

 

 

 

 

 

– 
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-333 Run length nonuniformity 

Lu et al. 202017 
Radiomic 

Combined 

original_GLSZM_SmallAreaHighGrayLevelEmphasis 

original_GLSZM_SmallAreaLowGrayLevelEmphasis original_GLDM_LowGrayLevelEmphasis  

log-sigma-1-0-mm-3D_GLCM_Cluster Prominence  

log-sigma-3-0-mm-3D_GLDM_DependenceNonUniformityNormalized wavelet-

LLL_GLCM_InverseVariance 

wavelet-LLH_GLCM_Imc2  

wavelet-HLL_firstorder_Mean  

wavelet-HLL_GLSZM_LowGrayLevelZoneEmphasis  

wavelet-HLL_GLDM_SmallDependenceHighGrayLevelEmphasis  

wavelet-HLH_GLSZM_SizeZoneNonUniformityNormalized  

wavelet-HHH_firstorder_Skewness  

wavelet-HHH_GLSZM_Size Zone Non Uniformity Normalized 

Sex 

Smoking status 

Pathohistological 

subtype 

Vascular infiltration 

status 

Lu et al. 202218 
Radiomic 

Combined 
1269 features (not specified) 

Age 

Sex 

Smoking status 

Stage of disease 
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Serum level of tumor 

markers (CEA, 

CYFRA 21-1, SCC, 

Pro-GRP) 

Nair et al. 202120† 
Radiomic 

 

NGTDM_600_Complexity 

Glrl_Saggital_30_ShortRunEmphasis 

Glrl_Saggital_30_ShortRunHighGrayLevelEmphasis 

Glrl_Saggital_120_ShortRunHighGrayLevelEmphasis 

Glrl_Coronal_120_ShortRunHighGrayLevelEmphasis 

Glrl_Coronal_30_ShortRunEmphasis 

Glrl_Saggital_120_ShortRunEmphasis 

Glrl_Axial_30_ShortRunEmphasis 

Glrl_Coronal_120_ShortRunEmphasis 

FirstOrder_HistogramBin2 

 

 

 

 

          – 

Ninomiya et al. 

202121 

Radiomic 

 

BN MODEL: 

b0_GLCM_Energy_45, 

b1/b0_GLSZM_ZSN_104 
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b1_GLCM_SumAverage_122 

b0_GLRLM_Lrlge_97) 

 

OI MODEL: 

GLRLM_ ShortRunLowGrayLevelEmphasis 

GLSZM_ LowGrayLevelZoneEmphasis 

GLSZM_ShortZoneLowGrayEmphasis 

 

WD MODEL: 

GLSZM_ LowGrayLevelZoneEmphasis _LL 

           – 

Ninomiya et al. 

202322 
Combined 

GLSZM_SmallAreaLowGrayLevelEmphasis 

GLSZM_LargeAreaEmphasis 

Hist.RootMeanSquared 

GLDM_DependenceVariance 

 

Sex 

Smoking status 

RiosVelazquez et al. 

201723 

Radiomic 

Combined 

imaging.Wavelet_LHH_GLCM_invDiffmomnor 

imaging.LoG_sigma_3_mm_3D_GLSZM_highIntensityLarteAreaEmp 
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imaging.Wavelet_LLL_GLCM_clusProm 

imaging.GLCM_maxProb 

imaging.Wavelet_LLL_stats_energy imaging.Wavelet_HLL_stats_var 

imaging.LoG_sigma_3_mm_3D_GLSZM_largeAreaEmphasis imaging.Wavelet_LLH_stats_range 

imaging.Wavelet_LHH_GLCM_clusProm 

imaging.Wavelet_LLL_GLSZM_highIntensityLarteAreaEmp 

imaging.Wavelet_HLH_GLSZM_lowIntensitySmallAreaEmp imaging.Wavelet_HHL_stats_energy 

imaging.Wavelet_LLH_stats_mean 

imaging.Stats_median imaging.Wavelet_HHL_GLCM_maxProb 

imaging.LoG_sigma_3_mm_3D_GLCM_clusProm imaging.Shape_spherDisprop 

imaging.Stats_kurtosis 

imaging.Wavelet_HHH_GLCM_correl1 

imaging.LoG_sigma_3_mm_3D_rlgl_grayLevelNonuniformity 

 

 

 

Stage 

Sex 

Smoking status 

Age 

Race 

Rossi et al. 202124 Combined 

First order_90 Percentile 

First order_Entropy 

First order_Maximum 

First order_Median  

First order_Robust mean absolute deviation 

 

Sex 

Smoking status 
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First order_Root mean squared  

First order_Skewness 

First order_Uniformity 

GLCM_Correlation 

GLCM_Difference average 

GLCM_Difference entropy 

GLCM_InverseDifference 

GLCM_ InverseDifferenceMoment 

GLCM_ InverseDifferenceMomentNormalized 

GLCM_ InverseDifferenceNormalized 

GLCM_ InformationalMeasureCorrelation1 

GLCM_ InformationalMeasureCorrelation2 

GLCM_InverseVariance 

GLCM_JointEnergy 

GLCM_JointEntropy 

GLCM_MaximalCorrelationCoefficient 
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GLCM_MaximumProbability 

GLCM_SumEntropy 

GLDM_DependenceEntropy 

GLDM_DependenceNonUniformity 

GLDM_Dependence NonUniformityNormalized 

GLDM_DependenceVariance 

GLDM_GrayLevelNonUniformity 

GLDM_LargeDependenceEmphasis 

GLDM_SmallDependenceEmphasis 

GLRLM_GrayLevelNonUniformity 

GLRLM_GrayLevelNonUniformityNormalized 

GLRLM_RunEntropy 

GLRLM_RunPercentage 

GLRLM_ShortRunEmphasis 

GLSZM_GrayLevelNonUniformity 

GLSZM_GrayLevelNonUniformityNormalized 
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GLSZM_SizeZoneNonUniformityNormalized 

GLSZM_SmallAreaEmphasis 

GLSZM_ZoneEntropy 

GLSZM_ZoneVariance 

NGTDM_Coarseness 

Tu et al. 201926 
Radiomic 

Combined 

X0_GLRLM_ RunLengthNon-Uniformity 

X4_H_median 

X0_GLCM_homogeneity1 

Maximum diameter 

Location 

Sex 

Wang et al. 202227 
Radiomic 

Combined‡ 
Not specified 

Age 

Sex 

Tumor staging 

Number 

Size 

Past recurrence 

Medication status 
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Weng et al. 202129 Combined 

SmallAreaEmphasis 

LongRunHigh GreyLevelEmphasis_angle0_offset4 

ClusterProminence_All Direction_offset7_SD 

InverseDifference Moment_All Direction_offset4_SD 

LowGreyLevel Run Emphasis_All Direction_offset4_SD 

LongRunLowGrey Level Emphasis_All Direction_offset7_SDCorrelation_angle0_offset7 

std Deviation 

GLCM Energy_All Direction_offset4_SD 

Smoking status 

Spiculation 

Air bronchogram 

CEA 

SCCA 

Wu 202030 Combined Not specified 
Smoking status 

Histological subtype 

Yang 202031 Radiomic Not specified – 

Yang 202232 
Radiomic 

Combined 

Nonwavelet-LHH_NGTDM_Strength 

wavelet-LHH_GLDM_DependenceEntropy 

wavelet-LLL_GLSZM_LargeAreaLowGrayLevelEmphasis 

wavelet-LLL_firstorder_Minimum 

Sex 

Emphysema 

Interstitial lung 

disease 
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wavelet-LLH_NGTDM_Contrast 

wavelet-LHH_NGTDM_Strength 

log-sigma-1-5-mm-3D_firstorder_Kurtosis 

wavelet-LHL_GLCM_ClusterShade 

wavelet-LHH_NGTDM_Strength 

wavelet-LLL_GLSZM_LargeAreaLowGrayLevelEmphasis 

wavelet-LLH_firstorder_Mean 

original_NGTDM_Contrast 

original_firstorder_Kurtosis 

log-sigma-1-5-mm-3D_firstorder_Kurtosis 

wavelet-LLL_NGTDM_Contrast 

original_GLCM_MaximumProbability 

wavelet-LLL_GLSZM_LargeAreaLowGrayLevelEmphasis 

Zhang 201833 Combined 

IIF.range 

IIF.Skewness 

WLLHF.IF.mean_absulute_eviation 

Histological subtype 

Sex 

Smoking status 
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WLHHF.IF.median 

WLLHF.IF.mean 

WLLHF.GLCM.variance 

GLRLM_ HighGrayLevelRunEmphasis 

Zhang 202034 Radiomic 

GLSZM_ HighGrayLevelZoneEmphasis 

GLDM_DependenceVariance 

GLSZM_ GreyLevelNon UniformityNormalized 

GLSZM_ZoneEntropy 

– 

Zhang 202035 
Radiomic 

Combined 
784 features (not specified) 

Sex 

Histopathological 

Subtype 

Age 

Zhang 202136 
Radiomic 

Combined 

fo_Skewness 

exp_GLRLM_ShortRunEmphasis 

exp_GLRLM_ShortRunHighGrayLevelEmphasis 

exp_GLDM_SmallDependenceEmphasis 

Smoking history 

Bubble-like lucency 

Pleural attachment 

Pleural retraction 
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grad_GLDM_DependenceEntropy 

LLH_fo_90P 

LLH_GLCM_SumEntropy 

LLL–fo_kurtosis 

LLL–GLCM_ClusterProminence 

LLL_GLSZM_GrayLevelNonUniformityNormalized 

LLL_GLSZM_GrayLevelVariance 

LLL_GLSZM_ZoneEntropy 

Zhao 202237§ Radiomic 

CT_Shape_Sphericity 

CT_GLRLM_ShortRunEmphasis 

CT_GLRLM_ShortRunHighGreyLevelEmphasis 

CT_NGLDM_Busyness 

CT_Glzlm_ShortZoneEmphasis 

– 

Zhu 202238 
Radiomic 

Combined 

log_sigma_1.0_mm_3D_GLRLM_RunVariance 

wavelet_LLH_firstorder_RootMeanSquared 

log-sigma-2-0-mm-3D_GLCM_ClusterShade 

Sex 

Age 

Emphysema 
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wavelet_HHH_firstorder_Mean Pathological subtype 

*Combined model also included 14 CT features: location (peripheral), tumor size ≥3cm, subsolid density, spiculation, lobulation, air bronchogram , air space, necrosis , 

calcification (presence), vascular convergence sign, pleural retraction sign, pleural effusion, lymphatic metastasis and multiple pulmonary metastasis. 

†Top 10 selected features. The maximum number of texture features included was determined by maximizing cross-validated accuracy. This value was not the same for 

each binary group or each machine learning model. 

‡Note that this model includes radiomic features + deep features and clinical variables. 

§Model 1. 

 

BN, Betti numbers; CEA, carcinoembryonic antigen; CYFRA 21-1, fragment of cytokeratin sub-unit 19; GLCM, gray-level co-occurrence matrix; GLDM, gray-level 

dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighbouring gray tone difference matrix; OI, original image; 

Pro-GRP, pro-gastrin-releasing peptide; SCC, squamous cell carcinoma antigen; WD, wavelet decomposition. 
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Supplementary Table S5. Type of models (radiomic model or combined [radiomic features + clinical variables]) developed in the studies for 

ALK prediction and the radiomics/clinical features included. ALK, anaplastic lymphoma kinase. 

 

Study Models Radiomic features Clinical variables 

Chang et al. 20212 

 

Radiomic 

 

CT_uniformity 

CT_LongRunEmphasis_AllDirection_offset4_SD 

CT_HaraEntropy 

CT_GLCMEnergy_angle135_offset7 

CT_LongRunHighGreyLevelEmphasis_angle45_offset1 

CT_LongRunLowGreyLevelEmphasis_AllDirection_offset7_SD 

CT_Correlation_AllDirection_offset4_SD 

CT_Percentile70 

CT_HaralickCorreltion_AllDirection_offset4_SD 

CT_LongRunLowGreyLevelEmphasis_AllDirection_offset4_SD 

CT_LongRunEmphasis_angle135_offset4 

CT_LongRunHighGreyLevelEmphasis_angle90_offset4 

 

 

 

 

 

 

 

 

 

– 
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CT_LongRunLowGreyLevelEmphasis_AllDirection_offset1_SD 

CT_HaralickCorreltion_AllDirection_offset7_SD 

CT_ShortRunEmphasis_AllDirection_offset1_SD 

CT_LongRunHighGreyLevelEmphasis_angle0_offset1 

CT_GLCMEntropy_angle90_offset1 

CT_Percentile30 

CT_LongRunEmphasis_angle90_offset4 

CT_LongRunEmphasis_AllDirection_offset1_SD 

Ma et al. 202019 Radiomic 

 

PRE-CONTRAST MODEL: 

wavelet-LLL_GLCM_DifferenceVariance 

wavelet-LLH_firstorder_Median 

wavelet-LLH_NGTDM_Busyness 

wavelet-LHL_GLSZM_LargeAreaLowGrayLevelEmphasis 

wavelet-HHH_GLSZM_LargeAreaLowGrayLevelEmphasis 

wavelet-LHL_firstorder_Energy 

– 
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wavelet-HHL_firstorder_90Percentile 

wavelet-HHL_GLCM_JointEntropy 

wavelet-HHL_firstorder_Uniformity 

wavelet-HHL_firstorder_RobustMeanAbsoluteDeviation 

wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis 

wavelet-HLH_firstorder_Median 

wavelet-LHL_GLDM_LargeDependenceLowGrayLevelEmphasis 

wavelet-HHL_GLCM_InverseDifference 

wavelet-HHL_firstorder_InterquartileRange 

wavelet-HHL_GLCM_MaximumProbabiblity 

wavelet-HHH_GLSZM_SmallAreaLowGrayLevelEmphasis 

wavelet-HHL_firstorder_Mean 

wavelet-HLL_GLCM_ClusterShade 

wavelet-HHL_GLSZM_SmallAreaLowGrayLevelEmphasis 

wavelet-LHH_GLCM_ MaximalCorrelationCoefficient 

wavelet-LLL_GLSZM_SizeZoneNonUniformityNormalized 
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wavelet-LLL_GLSZM_SmallAreaEmphasis 

wavelet-HHL_GLCM_ InverseDifferenceNormalized 

 

POST-CONTRAST MODEL: 

wavelet-LHH_GLDM_SmallDependenceHighGrayLevelEmphasis 

wavelet_HHL_GLSZM_GrayLevelNonUniformity 

wavelet-LLH_firstorder_Mean 

wavelet-LLH_GLSZM_HighGrayLevelZoneEmphasis 

wavelet-LLH_GLSZM_SmallAreaHighGrayLevelEmphasis 

wavelet-LLH_GLSZM_SmallAreaLowGrayLevelEmphasis 

wavelet-HHH_GLCM_MaximumProbability 

wavelet-LLL_GLDM_LargeDependenceLowGrayLevelEmphasis 

wavelet-HLL_GLDM_DependenceVariance 

wavelet-HHH_firstorder_Mean 

wavelet-HHH_GLDM_LowGrayLevelEmphasis 

wavelet-LLH_firstorder_90Percentile 
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wavelet-HHL_GLDM_DependenceVariance 

wavelet-HHH_GLCM_MaximalCorrelationCoefficient 

wavelet-HHH_NGTDM_Contrast 

wavelet-original_GLCM_InverseVariance 

wavelet-LLH_firstorder_Range 

wavelet-HHL_GLCM_MaximalCorrelationCoefficient 

wavelet-HLL_GLSZM_GrayLevelNonUniformityNormalized 

Song et al. 202025 
Radiomic 

Combined 

RADIOMIC MODEL: 

 

Original_Firstorder_90Percentile 

Original_Firstorder_Entropy 

Original_Firstorder_Maximum 

Wavelet-LHH_Firstorder_10Percentile 

Wavelet-HLL_Firstorder_Median 

Wavelet-HHH_Firstorder_Mean 

LoG-sigma-1-0-mm-3D_Firstorder_Median 

            

 

 

 

 

 

Age 

Sex 

Smoking history 
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LoG-sigma-1-0-mm-3D_Firstorder_RootMeanSquared 

LoG-sigma-1-0-mm-3D_Firstorder_Minimum 

LoG-sigma-2-0-mm-3D_Firstorder_10Percentile 

LoG-sigma-3-0-mm-3D_Firstorder_90Percentile 

LoG-sigma-5-0-mm-3D_Firstorder_Skewness 

Original_ GLCM _ClusterShade 

Wavelet-LHH_ GLCM _Correlation 

Wavelet-LHL_ GLCM _InverseDifferenceNormalized 

Wavelet-HHH_ GLCM _InformationalMeasureofCorrelation1 

LoG-sigma-1-0-mm-3D_GLCM _Autocorrelation 

LoG-sigma-2-0-mm-3D_GLCM _InverseVariance 

Original_GLSZM_ SmallAreaHighGrayLevelEmphasis 

Wavelet-HHH_ GLSZM _ SmallAreaHighGrayLevelEmphasis 

Wavelet-HLL_ GLSZM _ZoneEntropy 

Wavelet-HLH_ GLSZM _ZoneEntropy 

LoG-sigma-2-0-mm-3D_GLSZM _ZoneEntropy 

Smoking index 

Clinical stage Distal 

metastasis  

Pathological  

invasiveness  of  the  

tumor 
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LoG-sigma-3-0-mm-3D_GLSZM _ SmallAreaEmphasis 

LoG-sigma-3-0-mm-3D_GLSZM _ Size-ZoneNonUniformityNormalized 

LoG-sigma-5-0-mm-3D_GLSZM _ GrayLevelNonUniformityNormalized 

Wavelet-LHH_GLDM_ LargeDependenceHighGrayLevelEmphasis 

LoG-sigma-1-0-mm-3D_GLDM _ HighGrayLevelEmphasis 

LoG-sigma-3-0-mm-3D_GLRLM_RunPercentage 

LoG-sigma-4-0-mm-3D_GLRLM _ LongRunLowGrayLevelEmphasis 

 

COMBINED MODEL: 

Current smoker 

Stage I 

Male 

Local lymphadenopathy 

Pericardial effusion 

Left Lower Lobe lesion 

No cavity in the lesion 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted M

ay 31, 2024. 
; 

https://doi.org/10.1101/2024.05.31.24308261
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.05.31.24308261


 101 

Lobulated margin 

No pleural retraction sign 

No local lymphadenopathy 

Wavelet-HHL_Firstorder_Kurtosis 

Wavelet-HLL_Firstorder_Median 

Wavelet-LHH_Firstorder_Skewness 

Wavelet-LLL_Firstorder_Minimum 

Wavelet-HLH_Firstorder_Median 

LoG-sigma-1-0-mm-3D_Firstorder_Minimum 

LoG-sigma-2-0-mm-3D_Firstorder_Minimum 

Wavelet-LLL_GLCM_ClusterShade 

Wavelet-LLH_GLCM _InformationalMeasureofCorrelation2 

Wavelet-HLH_GLCM _InformationalMeasureofCorrelation2 

Wavelet-HLH_GLCM_InformationalMeasureofCorrelation1 

LoG-sigma-1-0-mm-3D_GLCM_InformationalMeasureofCorrelation1 

LoG-sigma-3-0-mm-3D_GLCM_InformationalMeasureofCorrelation2 
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LoG-sigma-5-0-mm-3D_GLCM_InformationalMeasureofCorrelation2 

Original_Shape_MajorAxisLength 

Wavelet-HLH_GLSZM_SizeZoneNon-Uniformity 

LoG-sigma-4-0-mm-3D_GLSZM_GrayLevelNonUniformityNormalized 

Wavelet-HLH_GLDM_ LargeDependenceHigh GrayLevelEmphasis 

Wavelet-HHH_GLDM_ LargeDependenceHigh GrayLevelEmphasis 

Original_GLRLM_ HighGrayLevelRunEmphasis 

GLCM , gray-level co-occurrence matrix; GLDM , gray-level dependence matrix; GLRLM , gray-level run-length matrix; GLSZM , gray-level size zone 

matrix; NGTDM , neighbouring gray tone difference matrix. 
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Supplementary Table S6. Type of models (radiomic model or combined [radiomic features + clinical variables]) developed in the studies for 

KRAS prediction and the radiomics/clinical features included. KRAS, Kirsten rat sarcoma viral oncogene homologue. 

 

Study Models Radiomic features Clinical variables 

Dong et al. 20213 

 

Radiomic 

 

Not specified – 

Le et al. 202110 Radiomic 

wavelet-LLHGLSZMLargeAreaEmphasis 

wavelet-LLLGLDMDependenceEntropy 

wavelet-LHHGLDMLargeDependenceLowGrayLevelEmphasis 

ori-firstorderkurtosis 

wavelet-HLHGLCMInverseVariance 

wavelet-HLLGLSZMSmallAreaHighGrayLevelEmphasis 

wavelet-LHHGLCMld 

wavelet-HHLGLCMDifferenceEntropy 

– 
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wavelet-LLLGLSZMGrayLevelNonUniformityNormalized 

wavelet-HHHGLCMDifferenceAverage 

wavelet-HHHGLDMDependenceEntropy 

RiosVelazquez et al. 

201723 

Radiomic 

Combined 

imaging.LoG_sigma_3_mm_3D_GLSZM_highIntensityLarteAreaEmp 

imaging.Wavelet_LHH_GLCM_clusProm imaging.Wavelet_LHH_GLCM_energy 

imaging.Wavelet_LLL_stats_energy imaging.Wavelet_LLL_stats_median 

imaging.LoG_sigma_3_mm_3D_GLSZM_largeAreaEmphasis 

imaging.Wavelet_HHH_GLSZM_lowIntensitySmallAreaEmp 

imaging.Wavelet_HHH_GLCM_correl1 imaging.LoG_sigma_3_mm_3D_GLCM_clusProm 

imaging.Wavelet_LLL_GLSZM_highIntensityLarteAreaEmp imaging.Wavelet_HHL_stats_energy 

imaging.Wavelet_HLL_stats_var imaging.Wavelet_HLH_GLSZM_lowIntensitySmallAreaEmp 

imaging.Wavelet_LHH_rlgl_GrayLevelNonuniformity 

imaging.LoG_sigma_3_mm_3D_GLSZM_lowIntensitySmallAreaEmp imaging.GLCM_clusShade 

imaging.Wavelet_LHH_GLCM_invDiffmomnor imaging.Wavelet_HLL_stats_min 

imaging.Wavelet_LLL_rlgl_longRunHighGrayLevEmpha imaging.Wavelet_LLH_stats_mean 

            

 

 

 

 

Stage 

Sex 

Smoking status 

Age 

Race 

 

Wang et al. 202228 Radiomic 
CT_square_GLSZM_SizeZoneNonUniformityNormalized 

CT_wavelet-LHH_GLDM_DependenceNonUniformityNormalized 
– 
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CT_wavelet-HHL_firstorder_Skewness 

CT_wavelet-HHL_GLDM_DependenceNonUniformityNormalized 

GLCM , gray-level co-occurrence matrix; GLDM , gray-level dependence matrix; GLRLM , gray-level run-length matrix; GLSZM , gray-level size zone matrix. 
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Supplementary Table S7. Results of the meta-regression analyzing the effects of age, 

type of segmentation (manual/semi-automatic/automatic), type of model 

(radiomics/combined [radiomic features + clinical data) and artificial intelligence 

methodology (machine learning/deep learning). 

AGE 

Fixed-effects coefficients 

 

 Estimate SE z p-value CI 95% 

tsens.(Intercept) 4.488 2.181 2.058 0.040 [0.214, 8.762] 

tsens.AGE -0.052 0.035 -1.483 0.138 [-0.121, 0.017] 

tfpr.(Intercept) -0.156 2.288 -0.068 0.946 [-4.640, 4.328] 

tfpr.AGE -0.012 0.037 -0.318 0.750 [-0.084, 0.061] 

 

Variance components: between-studies Std. Dev and correlation matrix 

 SD tsens tfpr 

tsens 0.395 - 0.819 

tfpr 0.431 0.819 - 

TYPE OF SEGMENTATION 

Fixed-effects coefficients 

 

 Estimate SE z p-value CI 95% 

tsens.(Intercept) 1.217 0.127 9.599 0.000 [0.968, 1.465] 

tsens.SegmentationSemiautomatic -0.086 0.241 -0.356 0.722 [-0.558, 0.387] 
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tsens.SegmentationUnknown 0.347 0.708 0.491 0.624 [-1.040, 1.734] 

tfpr.(Intercept) -0.984 0.133 -7.426 0.000 [-1.244, -0.725] 

tfpr.SegmentationSemiautomatic 0.272 0.254 1.067 0.286 [-0.227, 0.770] 

tfpr.SegmentationUnknown 0.397 0.697 0.569 0.569 [-0.970, 1.763] 

 

Variance components: between-studies Std. Dev and correlation matrix 

 SD tsens tfpr 

tsens 0.465 - 0.827 

tfpr 0.511 0.827 - 

CONTRAST 

Fixed-effects coefficients 

 

 Estimate SE z p-value CI 95% 

tsens.(Intercept) 1.244 0.608 2.045 0.041 [0.052, 2.437] 

tsens.Contrastcontrast-enhanced 0.151 0.650 0.232 0.817 [-1.124, 1.425] 

tsens.Contrastnon-contrast CT -0.096 0.620 -0.156 0.876 [-1.312, 1.119] 

tfpr.(Intercept) -0.619 0.638 -0.970 0.332 [-1.870, 0.632] 

tfpr.Contrastcontrast-enhanced -0.509 0.683 -0.745 0.456 [-1.848, 0.829] 

tfpr.Contrastnon-contrast CT -0.309 0.650 -0.476 0.634 [-1.584, 0.965] 

 

Variance components: between-studies Std. Dev and correlation matrix 
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 SD tsens tfpr 

tsens 0.468 - 0.889 

tfpr 0.511 0.889 - 

TYPE OF MODEL 

Fixed-effects coefficients 

 

 Estimate SE z p-value CI 95% 

tsens.(Intercept) 1.281 0.133 9.603 0.000 [1.020, 1.543] 

tsens.Modelrad -0.193 0.197 -0.980 0.327 [-0.579, 0.193] 

tfpr.(Intercept) -0.939 0.146 -6.413 0.000 [-1.226, -0.652] 

tfpr.Modelrad 0.006 0.222 0.026 0.979 [-0.429, 0.441] 

 

Variance components: between-studies Std. Dev and correlation matrix 

 SD tsens tfpr 

tsens 0.434 - 0.828 

tfpr 0.524 0.828 - 

AI METHODOLOGY 

Fixed-effects coefficients 

 

 Estimate SE z p-value CI 95% 

tsens.(Intercept) 1.215 0.232 5.2240 0.000 [0.761, 1.670] 

tsens.TypeML -0.022 0.257 -0.087 0.930 [-0.526, 0.481] 
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tfpr.(Intercept) -0.898 0.257 -3.489 0.000 [-1.403, 0.394] 

tfpr.TypeML -0.052 0.285 -0.184 0.854 [-0.610, 0.505] 

 

Variance components: between-studies Std. Dev and correlation matrix 

 SD tsens tfpr 

tsens 0.442 - 0.795 

tfpr 0.520 0.795 - 

AI , artifical intelligence; CI , confidence interval; ML , machine learning; rad, model including only 

radiomic features; SE, standard error; SD, Standard deviation; z, standard score in a gaussian 

distribution; tsens, logarithmic transformation of sensitivity; tfpr, logarithmic transformation of false 

positive rate. 
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