1 Article type: Review

2	Prediction of oncogene mutation status in non-small cell lung cancer: A
3	systematic review and meta-analysis with a special focus on artificial-
4	intelligence-based methods
5	
6 7 8 9	Almudena Fuster-Matanzo ^{†1} , Alfonso Picó Peris ^{†1} , Fuensanta Bellvís Bataller ¹ , Ana Jimenez-Pastor ¹ , Glen J. Weiss ² , Luis Martí-Bonmatí ^{3,4} , Antonio Lázaro Sánchez ⁵ , Giuseppe L. Banna ⁶ , Alfredo Addeo ⁷ , Ángel Alberich-Bayarri ¹
10	¹ Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain
11 12	² Quantitative Imaging Biomarkers in Medicine, Quibim, Boston, MA, USA, Boston, MA
13 14	³ Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026, Valencia, Spain.
15 16 17	⁴ Área Clínica de Imagen Médica, Área Clínica de Imagen Médica, Hospital Universitari i Politècnic La Fe, Avinguda Fernando Abril Martorell, 106 Torre E planta 0, 46026, València, Spain.
18	5
19 20 21	⁶ Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, PO6 3LY, UK; Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
22	⁷ University Hospital Geneva, Geneva, Switzerland.
23	[†] These authors contributed equally to this work.
24	
25	Correspondence:
26	Almudena Fuster-Matanzo

- 27 Quantitative Imaging Biomarkers in Medicine (Quibim),
- 28 EDIFICIO EUROPA, Av. d'Aragó, 30, Planta 13
- 29 46021 Valencia, Spain
- 30 Mail: <u>almudenafuster@quibim.com</u>
- 31 Tel: +34 652124031
- 32

33 ABSTRACT

34 Background

In non-small cell lung cancer (NSCLC), alternative strategies to determine patient oncogene mutation status are essential to overcome some of the drawbacks associated with current methods. We aimed to review the use of radiomics alone or in combination with clinical data and to evaluate the performance of artificial intelligence (AI)-based models on the prediction of oncogene mutation status.

40 Methods

41 A PRISMA-compliant literature review was conducted. The Medline (via Pubmed), 42 Embase, and Cochrane Library databases were searched for studies published through 43 June 30, 2023 predicting oncogene mutation status in patients with NSCLC using 44 radiomics. Independent meta-analyses evaluating the performance of AI-based models developed with radiomics features or with a combination of radiomics features plus 45 46 clinical data for the prediction of different oncogenic driver mutations were performed. 47 A meta-regression to analyze the influence of methodological/clinical factors was also 48 conducted.

49 **Results**

50 Out of the 615 studies identified, 89 evaluating models for the prediction of epidermal 51 growth factor-1 (EGFR), anaplastic lymphoma kinase (ALK), and Kirsten rat sarcoma 52 virus (KRAS) mutations were included in the systematic review. A total of 38 met the 53 inclusion criteria for the meta-analyses. The AI algorithms' sensitivity/false positive rate 54 (FPR) in predicting EGFR, ALK, and KRAS mutations using radiomics-based models 55 was 0.753 (95% CI 0.721–0.783)/0.346 (95% CI 0.305–0.390), 0.754 (95% CI 0.639– 56 0.841)/ 0.225 (95% CI 0.163-0.302), and 0.744 (95% CI 0.605-0.846)/0.376 (95% CI 57 0.274-0.491), respectively. A meta-analysis of combined models was only possible for 58 EGFR mutation, revealing a sensitivity/FPR of 0.800 (95% CI 0.767-0.830)/0.335 59 (95% CI 0.279–0.396). No statistically significant results were obtained in the meta-60 regression.

61 Conclusions

- 62 Radiomics-based models may represent valuable non-invasive tools for the
- 63 determination of oncogene mutation status in NSCLC. Further investigation is required
- 64 to analyze whether clinical data might boost their performance.
- 65 Keywords: radiomics, artificial intelligence, medical imaging, oncogene mutation
- 66 status, non-small cell lung cancer.

67

68 INTRODUCTION

69 Lung cancer represents the most often diagnosed cancer in both women and men 70 worldwide, ranking first and third, respectively, and remaining the leading cause of 71 cancer death¹. Non-small cell lung cancer (NSCLC), the most frequent histological 72 subtype, accounts for 80%-85% of cases, being adenocarcinoma the most common 73 subtype (40%–50% of cases). Adenocarcinoma can be further subdivided into distinct 74 molecular subtypes². Indeed, molecular subtyping has become highly relevant in the 75 disease context, as genotype-driven therapy ("targeted therapy") is nowadays the 76 standard of care for a significant subgroup of patients with advanced and metastatic 77 $NSCLC^{3}$. However, traditional methods for determining the molecular genotype, as well 78 as the possible emergence of drug resistance mutations during patient's follow-up, entail 79 invasive biopsies and genetic sequence testing, procedures with multiple number of 80 associated drawbacks including high costs, sampling bias, lack of enough sample, turnaround time, and medical complications⁴⁻⁶. Importantly, the overall accessibility of 81 82 molecular diagnostics and liquid biopsy may be limited for many patients⁷, highlighting 83 the need to investigate complementary methods to characterize the oncogene mutation 84 status of lesions.

85 Radiological imaging represents a potent non-invasive tool for lung cancer, from the 86 screening, diagnosis and staging of the disease to the management, therapeutic 87 planification and follow-up of both early- and advanced-stage cases⁸. Specifically, 88 computed tomography (CT) remains the standard of care for lung cancer visualization, 89 providing excellent morphological and textural information. In recent years, radiomics, 90 the process of extracting and analyzing quantitative features from medical images to 91 investigate potential connections with biology and clinical outcomes, has gained 92 increasing attention for its applicability in several oncological diseases including lung 93 cancer⁸. The application of artificial intelligence (AI) to imaging analyses has enabled 94 important clinical needs to be met. This includes the prognostication of outcomes or the 95 prediction of response to treatment, disease progression, or the mutational and molecular profiling of tumors⁹. In particular, the use of radiomics coupled with AI 96 97 methods has demonstrated to be a promising non-invasive alternative tool for the prediction of oncogene mutation status in NSCLC⁸. 98

99 In this systematic review and meta-analysis we aimed to: 1) review the available 100 scientific evidence on the use of imaging-based models and radiomics for the prediction

101 of the main targetable oncogenic driver alterations in NSCLC, including epidermal 102 growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and Kirsten rat 103 sarcoma virus (KRAS); 2) analyze the overall performance of specifically, AI-based 104 methods, for the prediction of oncogene mutation status; 3) evaluate whether the 105 inclusion of clinical variables in the models improve their performance; 4) evaluate the 106 impact of the available evidence from a clinical perspective.

107 MATERIAL AND METHODS

108 This systematic review was conducted in accordance with the Preferred Reporting Items

- 109 for Systematic Reviews and Meta-Analysis (PRISMA) guidelines¹⁰. The review was
- registered on PROSPERO before initiation (registration no. CRD42022349809).

111 Search strategy

A systematic search for eligible publications published through 30 June 2023 was performed in Medline (via Pubmed), Cochrane Library and EMBASE databases using the keywords "Radiomics", "NSCLC" and "Mutational status". Further details on the search terms used in each database are provided in **Supplementary Table S1**. There were no limitations on the publishing year, participant age, or nationality. The search was exclusively limited to English-language publications.

118 Study selection

Literature search and study selection were independently performed by two reviewers (A.F.M. and A.L.S.). To find relevant publications, they reviewed the titles and abstracts. Studies that satisfied the inclusion criteria were then manually assessed for eligibility by full-text screening. Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia. Available at <u>www.covidence.org</u>) was used as a screening and data extraction tool.

125 Inclusion criteria

Papers were included in the qualitative synthesis (systematic review) if meeting the following inclusion criteria based on Patient, Index test, Comparator, Reference test, Diagnosis of reference (PIRD) questions: 1) being focused on the ability of radiomics to predict oncogene mutation status in NSCLC; 2) radiomics features were extracted from CT or from F-18 fluoro-deoxy-glucose (FDG)/CT scans; 3) a full text was available; 4) were written in English.

132 Exclusion criteria

Papers describing studies conducted using MRI scans (not the standard of care for NSCLC patients) or performed in phantom or animal models, or published as case reports, editorials, reviews, poster presentations, letters, editorials, or meeting abstracts were excluded. Papers not on the field of interest were also excluded.

137 For the quantitative synthesis (meta-analysis), the following additional exclusion 138 criteria were applied: 1) oncogene mutation status was not the primary objective of the 139 paper; 2) were focused on specific mutation subtypes; 3) did not apply AI-based 140 methodologies; 4) developed simultaneous detection models or discriminant models; 5) 141 sensitivity or specificity metrics were not available and could not be calculated; 6) were 142 not comparable with the other articles included (model was developed based on intra-143 and extra-tumor derived radiomics features); 7) only included models developed with a 144 combination of quantitative features extracted from PET/CT or from PET images 145 (strictly adhering to a clinical perspective, PET scanning equipment is not always 146 available and CT remains the standard of care for NSCLC patients); 8) did not reach a 147 sufficient quality score according to the quality assessment (described below).

148 Quality assessment

149 The methodological quality of each study for its possible inclusion in the quantitative 150 assessment was evaluated by using the Checklist for Artificial Intelligence in Medical 151 Imaging (CLAIM)¹¹. Classification, image reconstruction, text analysis, and workflow 152 optimization are some of the applications of AI in medical imaging that are addressed by CLAIM, which is modeled after the Standards for Reporting of Diagnostic Accuracy 153 Studies (STARD) guideline¹²⁻¹⁵. CLAIM checklist consists of 42 items divided into the 154 155 conventional sections included in peer-reviewed scientific articles: title or abstract (1 156 item), abstract (1 item), introduction (2 items), methods (28 items subdivided into study 157 design [2 items], data [7 items], ground truth [5 items], data partitions [3 items], model [158 3 items], training [3 items] and evaluation [5 items]), results (5 items subdivided into 159 data [2 items] and model performance [3 items]), discussion (2 items) and other 160 information (3 items). The CLAIM guideline offers a roadmap for writers and reviewers with the intention of fostering clear, open, and verifiable scientific discourse on the use 161 of AI in medical imaging¹¹. 162

163 For our quality assessment, a score was calculated for each paper ([total score, 42 -164 number of "not applicable" fields in each case]). A cut-off value of at least half of the 165 total score after removing the "not applicable" items was established for the inclusion in 166 the quantitative analysis. Therefore, this cut-off value varied for each study depending 167 on the number of items that were applicable from among the 42 total items included in 168 the CLAIM checklist (e.g., a cut-off value of 19 was established for those studies in 169 which only 38 items of the checklist were applicable). See Supplementary Table S2. 170 The assessment of the rigor, quality, and generalizability of the work of all enrolled 171 studies was performed by three reviewers (A.J.P., F.B.B. and A.P.P.).

172 Data extraction

173 Data extracted included the following: (1) study details: first author, publication year, 174 research questions, study design; (2) patient details: the source of data acquisition 175 (single-center/multicenter), sample size, smoking history, age, sex, TNM staging, 176 treatment status (naïve or any treatment received prior image acquisition), histological 177 subtype; (3) imaging details: imaging modality, plain or contrast CT; (4) oncogene 178 mutation status-related information: type of mutation, specific subtype of mutation (if 179 available), sequencing method; sequencing kit (5) radiomics details: segmentation 180 software, type of segmentation (manual, automatic, or semi-automatic), radiomics 181 feature extraction software, number of imaging features extracted, number and name of 182 radiomics features included in final models, features selection methods, type of models constructed (machine learning [ML], deep learning [DL], classical statistical model), 183 184 final classifier used in machine learning models, clinical variables included in the 185 models (if applicable), and models performance. Two independent reviewers (A.F.M. 186 and A.L.S.) completed the initial screening and extracted data from all included studies.

187 Data analysis

For studies including models based on features extracted from different imaging modalities, only those based on CT scans were included in the quantitative analysis. A bivariate analysis of sensitivity and specificity as proposed by Reitsma et al.¹⁶ was chosen to perform the meta-analyses. This method has the distinct advantage of preserving the two-dimensional nature of the underlying data. It can also produce summary estimates of sensitivity and specificity (false positive rate [FPR, 1specificity]), recognizing any possible correlation between these two measures. The

195 method uses a random effect approach in which the values of the sensitivity and FPR 196 estimates are obtained with restricted maximum likelihood. As a complement to the 197 bivariate approach, the summary receiver operating characteristic (sROC) was 198 calculated by converting each pair of sensitivity and specificity into a single measure of 199 accuracy, the diagnostic odds ratio (DOR).

The analyses were carried out by reproducing the confusion matrices of each model presented in the studies, the number of cases and the prevalence of oncogene mutant positive cases. All calculations were performed on the basis of validation cohorts for studies applying a training/validation split method, or on the basis of the total sample when cross-validation was the validation strategy. To ensure homogeneity, calculations were conducted based on internal validation cohort data when external validation was also performed (minority of the cases).

207 Finally, a meta-regression analysis was performed to measure the possible influence of 208 the following predictors: (1) average age of the cases, (2) manual segmentation vs semi-209 automatic segmentation vs both procedures (no studies including automatic 210 segmentation approaches met the inclusion criteria for the quantitative analysis), (3) 211 whether the model included only radiomics features or was combined with clinical 212 variables, and (4) whether the model was classified as ML or DL. The heterogeneity in 213 the description of the clinical variables included in the models prevented the inclusion 214 of additional predictors of greatest clinical interest. Only the best model from each 215 study according to its DOR was selected. When the mean/median age was not available 216 due to the heterogeneity among studies when presenting descriptive results, it was 217 inferred from the information obtained. Thus, mean and median values were indistinctly 218 considered; when both values were provided, an average of both was calculated. If 219 mean values were absent, median values were considered and viceversa. If both values 220 were absent from the validation cohort, mean/median age from the total cohort was 221 considered. When this information was not available either, the study was not included 222 in the meta-regression.

All the analyses were performed using R Statistical Software v4.2.2 and the packagesmada and tidyverse.

225 **RESULTS**

In total 615 articles were obtained according to the search strategy (**Figure 1**). After deduplication, 397 studies were obtained and screened. According to the inclusion and exclusion criteria, 89 studies were included in the qualitative analysis (systematic review), all of them developing models for the prediction of EGFR, ALK, and/or KRAS. Out of those, 38 were found eligible for the quantitative part of the study (metaanalyses). As detailed in **Supplementary Table S2**, all papers passed this quality check and were therefore included.

233 **Qualitative analysis (systematic review)**

234 Methodological characteristics of the studies

235 The methodological characteristics of the studies are summarized in **Table 1**. Most of 236 the studies (n = 69/89) applied exclusively ML algorithms, while this methodology was 237 also used to build comparator models in 10 articles in which DL techniques were the 238 main methodological approach followed. Only three studies exclusively applied DL 239 algorithms, while classical statistical models were used in seven publications. Among 240 the 79 articles applying ML techniques, the most common classifier used was logistic 241 regression (n = 38), followed by support vector machine (n = 35) and by random forest 242 (n = 29). In terms of partitioning strategy, training-validation split was the most frequent 243 technique (n = 71). External validation was only performed in a small set of studies 244 (n = 9). Regarding imaging techniques, CT was the most frequently used modality 245 (n = 61), followed by PET/CT (n = 22) and by PET alone (n = 4). Additionally, in one study¹⁷ PET/CT scans and contrast-enhanced CT images independently acquired were 246 collected, while in another study¹⁸, PET/CT, CT, and contrast-enhanced diagnostic 247 248 quality (CTD) images were used. Of the 61 studies conducted with CT scans, 39 249 included non-contrast-enhanced images, 18 contrast-enhanced images, in two contrast-250 related information was not specified and in two both contrast- and non-contrast-251 enhanced scans were included. Regarding tumor segmentation, a manual approach was 252 followed in 48 studies, and automatic and semi-automatic segmentations were applied 253 in two and 31 studies, respectively; three studies applied both methodologies (for 254 verification or a different approach according to the imaging modality used) and five 255 studies did not specify the method utilized for tumor segmentation.

256 Clinical characteristics of the studies

257 The 89 studies evaluated in the qualitative synthesis included a total of 32,084 patients 258 with NSCLC. Although most of the studies included >200 patients, in 42 publications, 259 the sample size did not reach this figure and in 11 studies sample size was even lower 260 than 100. All studies were retrospective and mostly unicentric (n = 72); the number of participant centers was not specified in one study¹⁹. In general, basic clinical and 261 demographic information collected included sex, age, smoking status, TNM stage, 262 263 histology, and treatment status at the moment of image acquisition, although this 264 information was not available in 13, 9, 22, 34, 22 and 24 studies out of the 89 assessed, 265 respectively. The clinical characteristics of the patients included in the 89 studies are 266 depicted in Table 2. The median [range]/ mean \pm standard deviation (SD) age of 267 patients was 61.78 [59–64.17] years and 61.71 ± 3.64 years, respectively. In terms of 268 sex, the total population was balanced, with 13,574 females and 14,066 males. The smoking history was available for 23,200 patients, and many were non-smokers 269 270 (n = 12.813); while smoking history was unknown for 1,146 patients. Out of the 55 271 studies detailing information about the TNM stage, the majority of them (n = 40)272 included information about the four stages (I-IV), either provided per group or grouped 273 in stages I-II and stages III-IV. Among the 15 studies that did not include patients of all stages, two studies included only early stage patients (stages I and II)^{20, 21}, two included 274 patients stage II-IV^{22, 23}, six included only patients of stages III and IV²⁴⁻²⁹ (three of 275 them with a majority of stage IV patients^{24, 27, 29}), and five included patients of stages I-276 III without including the most advanced stage^{19, 30-33}. A total of 65 studies included 277 278 patients with adenocarcinoma: 43 exclusively including this histology subtype and 22 279 including other NSCLC histology types as well. Finally, in most of the cases (n = 65), 280 images were acquired before patients received any treatment, with two studies also including post-treatment images^{34, 35}. In 24 studies, no information on treatment was 281 detailed, although in some of them image acquisition before surgery^{31, 36-41}, before 282 polymerase chain reaction (PCR)⁴², or before pathological diagnosis⁴³ was detailed as 283 an inclusion criterion. In five studies^{19, 44-47}, authors specify that patients had not 284 285 received radiotherapy or chemotherapy, but no information on targeted therapy was provided. Finally, only one study⁴⁸ out of the 89 included in the systematic review, 286 287 which did not meet the inclusion criteria to be considered for the meta-analysis, 288 included patients who had received treatment with tyrosine kinase inhibitors (TKIs).

289 Quantitative analysis (meta-analysis)

290 A total of 38 studies met the inclusion criteria for the quantitative assessment 291 (n = 17,066 patients). Three main different meta-analyses including radiomics-based 292 models were conducted: 1) a meta-analysis including studies focused on the detection of EGFR $(n = 34 \text{ studies})^{17, 25-28, 32, 33, 36, 38, 39, 46, 49-71}$; 2) a meta-analysis including studies 293 focused on the detection of ALK (n = 3 studies)⁷²⁻⁷⁴; 3) a meta-analysis including 294 studies focused on the detection of KRAS $(n = 4 \text{ studies})^{47, 50, 54, 62}$. In three studies, 295 authors developed models for the detection of both EGFR and KRAS^{50, 54, 62}. 296 297 Furthermore, a separate meta-analysis was conducted for combined models (radiomics 298 features + clinical variables) for the prediction of EGFR (not enough studies for ALK or 299 KRAS mutations). Studies included in all the meta-analyses conducted are summarized 300 in **Supplementary Table S3.** Details on the radiomics features included in the EGFR, 301 ALK, and KRAS models are summarized in Supplementary Table S4, 302 Supplementary Table S5 and Supplementary Table S6, respectively. In terms of 303 radiomics variables, models grouped different combinations of first order, shape, gray 304 level co-occurrence matrix (GLCM), gray level size zone matrix (GLSZM), gray level 305 run length matrix (GLRLM), neighboring gray tone difference matrix (NGTDM), and 306 gray level dependence matrix (GLDM) features. Clinical data included sex, smoking 307 history, and/or histological type in the majority of studies.

308 EGFR

309 Results of the meta-analysis focused on models built with radiomics features are summarized in **Figure 2**. Note that this meta-analysis also included a study⁵⁰ in which 310 predictions were based on features extracted by a multi-channel and multi-task deep 311 312 learning model with the ability to simultaneously detect EGFR and KRAS oncogene 313 mutations; and consequently, did not include radiomics features (only single-task results 314 for the independent prediction of EGFR and KRAS were considered for the quantitative analysis). A hierarchical sROC curve was plotted for the included 24 studies ^{17, 25, 27, 32}, 315 36, 39, 46, 49-51, 54, 55, 57-60, 62, 64-66, 68-71 that evaluate the performance of AI algorithms in 316 317 predicting EGFR mutation status in NSCLC (Supplementary Figure S1). Eight studies assessed more than one model^{32, 36, 39, 50, 59, 60, 65, 70}. As observed, radiomics-based models 318 319 exhibited high diagnostic performance in predicting EGFR mutation status with an 320 overall AUC of 0.766. The AI algorithms' sensitivity in determining the EGFR mutation

status varied from 0.362 to 0.948, resulting in an estimate of 0.753 (95% CI 0.721–
0.783). The FPR of these algorithms ranged from 0.022 to 0.761, with a estimate of
0.346 (95% CI 0.305–0.390). Detecting a positive case for EGFR mutation was almost

324 six times more likely than not detecting it (DOR = 5.70 [95% CI 4.74-6.81]).

325 The effect of adding clinical variables to radiomics models or to models including both radiomics and deep features⁶⁵ (models including clinical data and radiomic or deep 326 327 features referred in this work as combined models) in the prediction of EGFR mutation was also analyzed. This meta-analysis included 23 studies^{25, 26, 28, 32, 33, 38, 39, 46, 51-53, 56-58,} 328 ⁶¹⁻⁶⁹, of which four of them developed more than one model^{32, 39, 56, 67}. Results are 329 330 depicted in Figure 3 and sROC curve in Supplementary Figure S1. Overall, the 331 performance of combined models slightly improved compared to radiomics models, 332 with an AUC of 0.811 and a sensitivity of 0.800 (95% CI 0.767-0.830; model's 333 sensitivity ranging from 0.523 to 0.944). The FPR resulted similar with a value of 0.335 334 (95% CI 0.279–0.396; model's FPR ranging from 0.167 to 0.760.). Detecting a positive 335 case for EGFR mutation with combined models was more than eight times more likely 336 than not detecting it (DOR = 8.35 [95% CI 6.77–10.20]).

337 ALK

The meta-analysis focused on radiomics-based models included three studies⁷²⁻⁷⁴, one of 338 339 which developed two different models, one based on pre-contrast images and another 340 one on post-contrast images⁷³. An overall AUC of 0.831 was obtained for the prediction 341 of ALK aberration, with a sensitivity ranging from 0.682 to 0.825, resulting in an 342 estimate of 0.754 (95% CI 0.639–0.841). The FPR of these algorithms ranged from 343 0.167 to 0.277, with an estimate of 0.225 (95% CI 0.163–0.302). Detecting a positive 344 case for ALK aberration was 11 times more likely than not detecting it (DOR = 5.70) 345 [95% CI 5.83–19.10]) (Figure 4 and Supplementary Figure S2). Given the lack of enough studies developing combined models, a meta-analysis to assess the effects of 346 347 adding clinical variables in the prediction of ALK aberration was not possible. The only study⁷⁴ that developed a model including age, sex, smoking history, smoking index, 348 349 clinical stage, distal metastasis and pathological invasiveness of the tumor in 350 combination with conventional CT features and different first order, GLCM, GLSZM, 351 and GLRL radiomics features demonstrated increased performance in predicting ALK 352 aberration of the combined model vs the radiomics-based model, but only in the

primary cohort (AUC, 0.83-0.88, p = 0.01), not in the testing cohort (AUC, 0.80-0.88,

354 p = 0.29).

355 KRAS

356 Four studies met the inclusion criteria for the meta-analysis assessing models for KRAS mutation prediction^{47, 50, 54, 62}, among which, three of them also developed models for 357 EGFR mutation prediction^{50, 54, 62}. KRAS/EGFR models were independently built 358 359 except in one study, in which a multi-channel multi-task DL model for the prediction of both KRAS and EGFR mutations was developed⁵⁰. However, and according to the 360 361 inclusion criteria, only single-task metrics were considered for the quantitative analysis 362 despite the multi-channel version displayed the highest performance for the simultaneous detection of both oncogenic driver mutations. Results of the meta-analysis 363 evaluating radiomics-based models are shown in Figure 4 and Supplementary Figure 364 365 **S3.** KRAS mutation was predicted with an overall AUC of 0.732 and a sensitivity of 366 0.744 (95% CI 0.605–0.846; model's sensitivity ranging from 0.641 to 0.875. The FPR 367 was 0.376 (95% CI 0.274–0.491; model's FPR ranging from 0.259 to 0.468). Detecting 368 a positive case for KRAS mutation with radiomics-based models was more than five times more likely than not detecting it (DOR = 8.35 [95% CI 1.98–11.70]). Like ALK, 369 370 the lack of enough KRAS studies made it impossible to perform a meta-analysis analyzing combined models. Only Ríos Velázquez et al.⁶² built a model including age, 371 372 sex, smoking status, race, and clinical stage together with radiomics features that 373 performed similar to the radiomics model (AUC = 0.69 [95% CI: 0.63 - 0.75] vs 374 AUC = 0.63 [95% CI: 0.57–0.69]) and worse than a model developed only with clinical 375 data AUC = 0.75 [95% CI: 0.69–0.80].

376 *Meta-regression and subgroup analysis*

The possible effects of different predictors on the predictive performance of the models was evaluated for EGFR mutation (not enough studies were available for ALK or KRAS mutations). Neither age, nor the use of contrast, nor the type of segmentation (manual/semi-automatic/automatic), nor the model (radiomics/combined), nor the AI methodology (machine learning/deep learning), yielded statistically significant results (**Supplementary Table S7**).

383 **DISCUSSION**

384 At present, molecular testing performed on biopsied tissue remains the gold standard for diagnosis and genotyping in advanced NSCLC^{75, 76}. However, given the associated 385 limitations and inconveniences, such as the lack of enough tissue for successful 386 testing^{77, 78}, or the long turnaround times⁷⁶, there is a need to validate and incorporate 387 388 new procedures into routine clinical practice. In recent years, liquid biopsy has emerged as a promising alternative in NSCLC, especially in clinical scenarios⁷⁸. Likewise, 389 radiomics have shown encouraging results in prognosis and prediction in this setting⁷⁹. 390 391 In general, both methodologies possess great potential, since they are both simple, 392 straightforward to do, and repeatable at patient follow-up visits, which makes it possible 393 to gather important data about the type of tumor, its aggressiveness, its progression, and its response to therapy⁸⁰. Radiomics has the additional advantage of only requiring 394 395 medical images and capturing patient-level and tissue-level heterogeneity, such as CT 396 scans in lung cancer, that are usually acquired as part of the patient's standard journey, 397 representing an affordable methodology both in terms of resources and costs. It is 398 important that new techniques are properly validated to facilitate their standardization, 399 prior to incorporation into the routine clinical workflow.

400 To our knowledge, this is the first systematic review and meta-analysis that analyzes the 401 performance and applicability of different imaging-based models for the prediction of 402 three of the most common oncogene mutations—EGFR, ALK and KRAS—in NSCLC 403 from a clinical perspective and with a special focus on AI methodologies. So far, results were only available for EGFR studies and did not take clinical aspects into account⁸¹. 404 405 Thus, the results of our different meta-analyses demonstrate that AI-based models 406 developed with CT-derived radiomics features showed good performance in predicting 407 EGFR, ALK, and KRAS mutations with a sensitivity of 0.753 [95% CI (0.721–0.783)], 408 0.754 [95% CI (0.639–0.841)] and 0.744 [95% CI (0.605–0.846)], respectively. 409 Whether the inclusion of clinical variables increase models' performance cannot be 410 concluded from our results, although we believe that increasing the number of studies 411 would probably confirm the trends observed in our quantitative analysis of EGFR 412 mutation.

413 Our outcomes point to radiomics as a candidate screening tool for oncogene mutation 414 status determination. We especially focused on CT-based models, aiming to obtain

415 conclusions as applicable as possible to the standard clinical workflow since CT remains the most utilized imaging tool in NSCLC⁸². From our work, we conclude that 416 417 in addition to additional validation of our findings that future studies should be 418 conducted that consider the following important aspects. Firstly, a minimum sample size 419 should be guaranteed to ensure the reliability of the results obtained with AI-based models^{83, 84}. In both our systematic review and meta-analyses, more than half of the 420 studies were conducted in >200 patients (n = 46/89 and n = 23/38 [n = 20/34 for EGFR, 421 422 n = 2/3 for ALK and n = 3/4 for KRAS]), but still a sizable number had small sample 423 sizes, which definitely limited the relevance of their conclusions. Multicentric designs 424 would be also desirable to get more solid conclusions, an approach that few studies 425 followed (n = 16/89 in the systematic review and n = 10/39 in the meta-analysis 426 [n = 10/34 for EGFR, n = 0/3 for ALK and n = 3/4 for KRAS]). Secondly, including 427 independent cohorts for external validations would reinforce the results, leading to more 428 robust and reproducible models. Out of the 89 studies included in the qualitative analysis, only 9 used external cohorts for validation^{43, 46, 60, 63, 67, 68, 85-87}, of which five 429 were included in the EGFR meta-analysis^{46, 60, 63, 67, 68}. Finally, it is important that 430 patient populations reflect clinical practice. Thus, considering the potential applicability 431 432 of the models for diagnostic purposes, studies should be conducted in treatment naïve 433 populations to avoid possible therapy-related confounding effects, an inclusion criterion 434 mostly applied in the studies evaluated in this work, but still missing in some of them. 435 Additionally, studies should be carried out preferably in stage III-IV NSCLC patients (especially in those at stage IV, for whom clinical guidelines recommend molecular 436 testing^{75, 76}). As demonstrated in this work, most of the studies published so far do not 437 438 provide information on TNM stage or include patients from all stages. Despite the 439 heterogeneity of the studies evaluated, we believe that the evidence provided is enough 440 as to demonstrate the potential of radiomics in oncogene mutation status determination. 441 Thus, AI-based models using radiomics extracted from CT scans could be effective non-442 invasive screening tools to detect targetable driver mutations in NSCLC with good 443 sensitivity and moderate specificity. These tools would not be intended to replace gold 444 standard techniques, such as PCR or next-generation sequencing, but to allow for the 445 potential earlier identification of ideal candidates to be genetically tested, saving time, 446 costs, and samples. Consequently, a high sensitivity would ensure the identification of 447 oncogene mutation positive patients for whom laboratory-based testing would be 448 subsequently confirmed.

449 When the influence of different factors on the prediction of EGFR mutation was 450 evaluated, no statistically significant results were obtained, probably due to the limited 451 number of studies included and the presence of missing data. However, some of those 452 factors might play an essential role and should be considered when developing accurate 453 models to be potentially implemented into clinical practice. Indeed, some of the studies 454 included in our qualitative analysis analyzed the impact of different methodological aspects on the performance of the models. For example, Huang et al.³⁵ demonstrated 455 that interobserver variability in tumor segmentation affects the use of radiomics to 456 457 predict oncogene mutation status, which suggests that automatic or semi-automatic models might be more suitable. In the study by Shiri et al.⁸⁸, the application to 458 radiomics features of ComBat harmonization improved the performance of the models 459 460 toward more successful prediction of EGFR and KRAS mutations. Likewise, other 461 authors have pointed to the impact of the experimental settings on the robustness of radiomics features⁸⁹, or the influence of CT slice thickness on the predictive 462 463 performance of radiomics-based models³¹. It is also worth mentioning the relevance of 464 using a particular AI methodology. Although we found no differences in the EGFR 465 mutation predictive performance between ML and DL methods, most likely due to the 466 limited number of available DL-based studies, the latter might offer some advantages 467 over the former. Thus, while in radiomics analysis a process of lesion segmentation and 468 subsequent feature extraction is required, which introduces certain degree of variability 469 and can be a high time-consuming task, DL models only required a bounding box of the 470 lesion, greatly reducing this effect. On the other hand, DL models, and in particular end-471 to-end convolutional neural network (CNN) models, such those developed in most of the DL studies included in our work^{37, 42, 43, 50, 58, 68, 85, 86, 90, 91}, are generally more 472 complex in terms of the number of parameters, allowing to solve more complicated 473 474 problems than traditional ML models. Considering available evidence, it seems 475 reasonable to think that methodologic approaches should be carefully revised when 476 validation studies are designed and conducted.

477 Our study has also some limitations, mainly derived from the limitations of the 478 publications included. Thus, it is based on retrospective studies displaying great 479 heterogeneity in terms of methodology and patient clinical characteristics, which clearly 480 hamper the impact of our conclusions. Additionally, the limited available evidence for 481 ALK and KRAS mutations, makes it difficult to draw solid conclusions. Despite this,

482 our work gathers the most up-to-date and complete evidence (all models developed in 483 each of the studies were analyzed) on imaging-based models for the prediction of three 484 of the most important oncogene mutations in NSCLC, following a clinical approach and 485 a special focus on AI models. Our exhaustive review and meta-analyses are intended to 486 provide solid evidence for future research in the field.

In conclusion, radiomics-based models offer a useful and non-invasive method for determining the status of EGFR mutations in NSCLC and seem to retain similar predictive value for ALK and KRAS mutations. Additionally, although the inclusion of clinical variables tends to increase the performance of the models, further validation is required.

492 ACKNOWLEDGEMENTS

493

494 **CONFLICTS OF INTEREST**

495 GJW reports personal fees from Quibim related to this work. He is a former employee 496 of SOTIO Biotech Inc., and reports personal fees from Imaging Endpoints II, 497 MiRanostics Consulting, Gossamer Bio, International Genomics Consortium, Angiex, 498 Genomic Health, Oncacare, Rafael Pharmaceuticals, Roche, Immunocore, Kymera, and 499 SPARC-all outside this submitted work; has ownership interest in MiRanostics 500 Consulting, Exact Sciences, Moderna, Agenus, Aurinia Pharmaceuticals, and 501 Circulogene-outside the submitted work; and has issued patents- all outside the 502 submitted work. The remaining authors declare no conflicts of interest.

- 503 FUNDING
- 504

505 **REFERENCES**

Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. *CA Cancer J Clin.* 2021; 71(3): 209-249.

Somani L, Askin F, Gabrielson E et al. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. *Semin Cancer Biol.* 2018; 52(Pt 1): 103-109.

513 514 515	3	König D, Savic Prince S, Rothschild SI. Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations. <i>Cancers (Basel)</i> . 2021; 13(4).
516 517	4	Chiu YW, Kao YH, Simoff MJ et al. Costs of biopsy and complications in patients with lung cancer. <i>Clinicoecon Outcomes Res.</i> 2021; 13: 191-200.
518 519 520	5	Manicone M, Poggiana C, Facchinetti A et al. Critical issues in the clinical application of liquid biopsy in non-small cell lung cancer. <i>J Thorac Dis.</i> 2017; 9(Suppl 13): S1346-s1358.
521 522	6	Young M SR. Percutaneous lung lesion biopsy. [Updated 2023 Jun 19]. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing.
523 524 525	7	Di Capua D, Bracken-Clarke D, Ronan K et al. The liquid biopsy for lung cancer: state of the art, limitations and future developments. <i>Cancers (Basel)</i> . 2021; 13(16).
526 527	8	Wu G, Jochems A, Refaee T et al. Structural and functional radiomics for lung cancer. <i>Eur J Nucl Med Mol Imaging</i> . 2021; 48(12): 3961-3974.
528 529 530	9	Bera K, Braman N, Gupta A et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. <i>Nat Rev Clin Oncol.</i> 2022; 19(2): 132-146.
531 532	10	Page MJ, McKenzie JE, Bossuyt PM et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. <i>BMJ</i> . 2021; 372: n71.
533 534 535	11	Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. <i>Radiol Artif Intell</i> . 2020; 2(2): e200029.
536	12	Bossuyt PM, Reitsma JB. The STARD initiative. Lancet. 2003; 361(9351): 71.
537 538 539	13	Bossuyt PM, Reitsma JB, Bruns DE et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. <i>Radiology</i> . 2003; 226(1): 24-28.
540 541 542	14	Bossuyt PM, Reitsma JB, Bruns DE et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. <i>Radiology</i> . 2015; 277(3): 826-832.
543 544 545	15	Cohen JF, Korevaar DA, Altman DG et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. <i>BMJ Open.</i> 2016; 6(11): e012799.
546 547 548	16	Reitsma JB, Glas AS, Rutjes AW et al. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. <i>J Clin Epidemiol</i> . 2005; 58(10): 982-990.
549 550 551	17	Nair JKR, Saeed UA, McDougall CC et al. Radiogenomic models using machine learning techniques to predict EGFR mutations in non-small cell lung cancer. <i>Can Assoc Radiol J.</i> 2021; 72(1): 109-119.
552 553	18	Shiri I, Maleki H, Hajianfar G et al. Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using

 Dang Y, Wang R, Qian K et al. Clinical and radiological predictors of epidermal growth factor receptor mutation in nonsmall cell lung cancer. J Appl Clin Med Phys. 2021; 22(1): 271-280. Omura K, Murakami Y, Hashimoto K et al. Detection of EGFR mutations in carly-stage lung adenocarcinoma by machine learning-based radiomics. Transl Cancer Res. 2023; 12(4): 837-847. Wang X, Kong C, Xu W et al. Decoding tumor mutation burden and driver mutations in early stage lung adenocarcinoma using CT-based radiomics signature. Thorac Cancer. 2019; 10(10): 1904-1912. Liu Q, Sun D, Li N et al. Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features: Transl Lung Cancer Res. 2020; 9(3): 549-562. Yang L, Xu P, Li M et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. Front Oncol. 2022; 12: 894323. Hong D, Xu K, Zhang L et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. Front Oncol. 2020; 10: 28. Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. Dis Markers. 2022; 2022: 2056837. Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non- small cell lung cancer: a single institutional study. Front Oncol. 2020; 10: 542957. Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. Transl Cancer Res. 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). Ann Transl Med. 2021; 9(7): 545. Aide N, W	554 555		multimodal imaging and machine learning algorithms. <i>Mol Imaging Biol</i> . 2020; 22(4): 1132-1148.
 Omura K, Murakami Y, Hashimoto K et al. Detection of EGFR mutations in early-stage lung adenocarcinoma by machine learning-based radiomics. <i>Transl</i> <i>Cancer Res.</i> 2023; 12(4): 837-847. Wang X, Kong C, Xu W et al. Decoding tumor mutation burden and driver mutations in early stage lung adenocarcinoma using CT-based radiomics signature. <i>Thorac Cancer.</i> 2019; 10(10): 1904-1912. Liu Q, Sun D, Li N et al. Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features. <i>Transl Lung Cancer Res.</i> 2020; 9(3): 549-562. Yang L, Xu P, Li M et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. <i>Front Oncol.</i> 2022; 12: 894323. Hong D, Xu K, Zhang L et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. <i>Front Oncol.</i> 2020; 10: 28. Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. <i>Dis Markers.</i> 2022; 2022: 2056837. Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non- small cell lung cancer: a single institutional study. <i>Front Oncol.</i> 2020; 10: 542957. Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res.</i> 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol.</i> 2018; 11(1): 94-101. Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545.	556 557 558	19	Dang Y, Wang R, Qian K et al. Clinical and radiological predictors of epidermal growth factor receptor mutation in nonsmall cell lung cancer. <i>J Appl Clin Med Phys.</i> 2021; 22(1): 271-280.
 Wang X, Kong C, Xu W et al. Decoding tumor mutation burden and driver mutations in early stage lung adenocarcinoma using CT-based radiomics signature. <i>Thorac Cancer</i>. 2019; 10(10): 1904-1912. Liu Q, Sun D, Li N et al. Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features. <i>Transl Lung Cancer Res</i>. 2020; 9(3): 549-562. Yang L, Xu P, Li M et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. <i>Front Oncol</i>. 2022; 12: 894323. Hong D, Xu K, Zhang L et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. <i>Front Oncol</i>. 2020; 10: 28. Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. <i>Dis Markers</i>. 2022; 2022: 2056837. Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non- small cell lung cancer: a single institutional study. <i>Front Oncol</i>. 2020; 10: 542957. Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res</i>. 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol</i>. 2018; 11(1): 94-101. Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med</i>. 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagn</i>	559 560 561	20	Omura K, Murakami Y, Hashimoto K et al. Detection of EGFR mutations in early-stage lung adenocarcinoma by machine learning-based radiomics. <i>Transl Cancer Res.</i> 2023; 12(4): 837-847.
 Liu Q, Sun D, Li N et al. Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features. <i>Transl Lung Cancer Res.</i> 2020; 9(3): 549-562. Yang L, Xu P, Li M et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. <i>Front Oncol.</i> 2022; 12: 894323. Hong D, Xu K, Zhang L et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. <i>Front Oncol.</i> 2020; 10: 28. Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. <i>Dis Markers.</i> 2022; 2022: 2056837. Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non-small cell lung cancer: a single institutional study. <i>Front Oncol.</i> 2020; 10: 542957. Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res.</i> 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutations involving TP53 and epidermal growth factor receptor mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel).</i> 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913. 	562 563 564	21	Wang X, Kong C, Xu W et al. Decoding tumor mutation burden and driver mutations in early stage lung adenocarcinoma using CT-based radiomics signature. <i>Thorac Cancer</i> . 2019; 10(10): 1904-1912.
 Yang L, Xu P, Li M et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. <i>Front Oncol.</i> 2022; 12: 894323. Hong D, Xu K, Zhang L et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. <i>Front Oncol.</i> 2020; 10: 28. Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. <i>Dis</i> <i>Markers.</i> 2022; 2022: 2056837. Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non- small cell lung cancer: a single institutional study. <i>Front Oncol.</i> 2020; 10: 542957. Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res.</i> 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol.</i> 2018; 11(1): 94-101. Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel).</i> 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting eff status in non-small cell lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913. 	565 566 567	22	Liu Q, Sun D, Li N et al. Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features. <i>Transl Lung Cancer Res.</i> 2020; 9(3): 549-562.
 571 24 Hong D, Xu K, Zhang L et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. <i>Front Oncol.</i> 2020; 10: 28. 573 25 Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. <i>Dis</i> <i>Markers</i>. 2022; 2022: 2056837. 576 26 Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non- small cell lung cancer: a single institutional study. <i>Front Oncol</i>. 2020; 10: 542957. 579 27 Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res</i>. 2020; 9(11): 6683-6690. 582 28 Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol</i>. 2018; 11(1): 94-101. 585 29 Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med</i>. 2021; 9(7): 545. 589 30 Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel)</i>. 2022; 12(10). 592 31 Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep</i>. 2018; 8(1): 17913. 	568 569 570	23	Yang L, Xu P, Li M et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. <i>Front Oncol.</i> 2022; 12: 894323.
 Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. <i>Dis</i> <i>Markers</i>. 2022; 2022: 2056837. Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non- small cell lung cancer: a single institutional study. <i>Front Oncol</i>. 2020; 10: 542957. Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res</i>. 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol</i>. 2018; 11(1): 94-101. Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med</i>. 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel)</i>. 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting gefr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep</i>. 2018; 8(1): 17913. 	571 572	24	Hong D, Xu K, Zhang L et al. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. <i>Front Oncol.</i> 2020; 10: 28.
 Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non-small cell lung cancer: a single institutional study. <i>Front Oncol.</i> 2020; 10: 542957. Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res.</i> 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol.</i> 2018; 11(1): 94-101. Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel).</i> 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913. 	573 574 575	25	Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. <i>Dis Markers</i> . 2022; 2022: 2056837.
 Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res.</i> 2020; 9(11): 6683-6690. Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol.</i> 2018; 11(1): 94-101. Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel).</i> 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913. 	576 577 578	26	Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in non- small cell lung cancer: a single institutional study. <i>Front Oncol.</i> 2020; 10: 542957.
 Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl</i> <i>Oncol.</i> 2018; 11(1): 94-101. Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel).</i> 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913. 	579 580 581	27	Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. <i>Transl Cancer Res.</i> 2020; 9(11): 6683-6690.
 Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545. Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel).</i> 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913. 	582 583 584	28	Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. <i>Transl Oncol.</i> 2018; 11(1): 94-101.
 Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel)</i>. 2022; 12(10). Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep</i>. 2018; 8(1): 17913. 	585 586 587 588	29	Zhu Y, Guo YB, Xu D et al. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor (EGFR) in patients with advanced lung adenocarcinomas (LUAD). <i>Ann Transl Med.</i> 2021; 9(7): 545.
 592 31 Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect 593 performance of a radiomic model for predicting egfr status in non-small cell 594 lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913. 	589 590 591	30	Aide N, Weyts K, Lasnon C. Prediction of the presence of targetable molecular alteration(s) with clinico-metabolic (18) F-FDG PET radiomics in non-Asian lung adenocarcinoma patients. <i>Diagnostics (Basel)</i> . 2022; 12(10).
	592 593 594	31	Li Y, Lu L, Xiao M et al. CT slice thickness and convolution Kernel affect performance of a radiomic model for predicting egfr status in non-small cell lung cancer: a preliminary study. <i>Sci Rep.</i> 2018; 8(1): 17913.

595	32	Zhu H, Song Y, Huang Z et al. Accurate prediction of epidermal growth factor
596		receptor mutation status in early-stage lung adenocarcinoma, using radiomics
597		and clinical features. Asia Pac J Clin Oncol. 2022; 18(6): 586-594.

- 59833Dong Y, Jiang Z, Li C et al. Development and validation of novel radiomics-599based nomograms for the prediction of EGFR mutations and Ki-67 proliferation600index in non-small cell lung cancer. Quant Imaging Med Surg. 2022; 12(5):6012658-2671.
- 60234Aerts HJ, Grossmann P, Tan Y et al. Defining a adiomic response phenotype: a603pilot study using targeted therapy in NSCLC. Sci Rep. 2016; 6: 33860.
- Huang Q, Lu L, Dercle L et al. Interobserver variability in tumor contouring
 affects the use of radiomics to predict mutational status. *J Med Imaging (Bellingham)*. 2018; 5(1): 011005.
- Feng Y, Song F, Zhang P et al. Prediction of EGFR mutation status in non-small
 cell lung cancer based on ensemble learning. *Front Pharmacol.* 2022; 13:
 897597.
- Huang X, Sun Y, Tan M et al. Three-dimensional convolutional neural networkbased prediction of epidermal growth factor receptor expression status in
 patients with non-small cell lung cancer. *Front Oncol.* 2022; 12: 772770.
- 613 38 Jia TY, Xiong JF, Li XY et al. Identifying EGFR mutations in lung
 614 adenocarcinoma by noninvasive imaging using radiomics features and random
 615 forest modeling. *Eur Radiol.* 2019; 29(9): 4742-4750.
- 616 39 Liu G, Xu Z, Ge Y et al. 3D radiomics predicts EGFR mutation, exon-19
 617 deletion and exon-21 L858R mutation in lung adenocarcinoma. *Transl Lung*618 *Cancer Res.* 2020; 9(4): 1212-1224.
- Mei D, Luo Y, Wang Y et al. CT texture analysis of lung adenocarcinoma: can
 Radiomic features be surrogate biomarkers for EGFR mutation statuses. *Cancer Imaging*. 2018; 18(1): 52.
- 41 Zhang T, Xu Z, Liu G et al. Simultaneous identification of
 EGFR,KRAS,ERBB2, and TP53 mutations in patients with non-small cell lung
 cancer by machine learning-derived three-dimensional radiomics. *Cancers*(*Basel*). 2021; 13(8).
- Song J, Ding C, Huang Q et al. Deep learning predicts epidermal growth factor
 receptor mutation subtypes in lung adenocarcinoma. *Med Phys.* 2021; 48(12):
 7891-7899.
- 43 Wang C, Xu X, Shao J et al. Deep learning to predict EGFR mutation and PD630 L1 expression status in non-small-cell lung cancer on computed tomography
 631 images. J Oncol. 2021; 2021: 5499385.
- 44 Huang W, Wang J, Wang H et al. PET/CT based egfr mutation status
 classification of NSCLC using deep learning features and radiomics features. *Front Pharmacol.* 2022; 13: 898529.
- 635 45 Kawazoe Y, Shiinoki T, Fujimoto K et al. Investigation of the combination of 636 intratumoral and peritumoral radiomic signatures for predicting epidermal

growth factor receptor mutation in lung adenocarcinoma. J Appl Clin Med Phys.

637

638

2023; 24(6): e13980.

639 46 Lu X, Li M, Zhang H et al. A novel radiomic nomogram for predicting 640 epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. 641 Phys Med Biol. 2020; 65(5): 055012. 642 47 Wang J, Lv X, Huang W et al. Establishment and optimization of radiomics 643 algorithms for prediction of KRAS gene mutation by integration of NSCLC 644 gene mutation mutual exclusion information. Front Pharmacol. 2022; 13: 645 862581. 646 48 Yang X, Fang C, Li C et al. Can CT radiomics detect acquired T790M mutation 647 and predict prognosis in advanced lung adenocarcinoma with progression after 648 first- or second-generation EGFR TKIs? Front Oncol. 2022; 12: 904983. 649 49 Chang C, Zhou S, Yu H et al. A clinically practical radiomics-clinical combined 650 model based on PET/CT data and nomogram predicts EGFR mutation in lung 651 adenocarcinoma. Eur Radiol. 2021; 31(8): 6259-6268. 652 50 Dong Y, Hou L, Yang W et al. Multi-channel multi-task deep learning for 653 predicting EGFR and KRAS mutations of non-small cell lung cancer on CT 654 images. *Quant Imaging Med Surg.* 2021; 11(6): 2354-2375. 655 51 Gao J, Niu R, Shi Y et al. The predictive value of [(18)F]FDG PET/CT 656 radiomics combined with clinical features for EGFR mutation status in different 657 clinical staging of lung adenocarcinoma. EJNMMI Res. 2023; 13(1): 26. 52 658 Huo JW, Luo TY, Diao L et al. Using combined CT-clinical radiomics models to 659 identify epidermal growth factor receptor mutation subtypes in lung adenocarcinoma. Front Oncol. 2022; 12: 846589. 660 53 661 Jiang M, Yang P, Li J et al. Computed tomography-based radiomics 662 quantification predicts epidermal growth factor receptor mutation status and 663 efficacy of first-line targeted therapy in lung adenocarcinoma. Front Oncol. 664 2022; 12: 985284. 665 54 Le NQK, Kha QH, Nguyen VH et al. Machine learning-based radiomics 666 signatures for EGFR and KRAS mutations prediction in non-small-cell lung cancer. Int J Mol Sci. 2021; 22(17). 667 668 55 Li S, Li Y, Zhao M et al. Combination of (18)F-fluorodeoxyglucose PET/CT 669 radiomics and clinical features for predicting epidermal growth factor receptor 670 mutations in lung adenocarcinoma. Korean J Radiol. 2022; 23(9): 921-930. 671 56 Li S, Luo T, Ding C et al. Detailed identification of epidermal growth factor 672 receptor mutations in lung adenocarcinoma: Combining radiomics with machine 673 learning. Med Phys. 2020; 47(8): 3458-3466. 674 57 Li X, Yin G, Zhang Y et al. Predictive power of a radiomic signature based on 675 (18)F-FDG PET/CT images for EGFR mutational status in NSCLC. Front 676 Oncol. 2019; 9: 1062. 677 58 Li XY, Xiong JF, Jia TY et al. Detection of epithelial growth factor receptor 678 (EGFR) mutations on CT images of patients with lung adenocarcinoma using 22

679	radiomics and/or multi-level residual convolutionary neural networks. J Thorac
680	Dis. 2018; 10(12): 6624-6635.

- Liu Y, Zhou J, Wu J et al. Development and validation of machine learning
 models to predict epidermal growth factor receptor mutation in non-small cell
 lung cancer: a multi-center retrospective radiomics study. *Cancer Control*. 2022;
 29: 10732748221092926.
- 685 60 Ninomiya K, Arimura H, Chan WY et al. Robust radiogenomics approach to the
 686 identification of EGFR mutations among patients with NSCLC from three
 687 different countries using topologically invariant Betti numbers. *PLoS One*. 2021;
 688 16(1): e0244354.
- 689 61 Ninomiya K, Arimura H, Tanaka K et al. Three-dimensional topological
 690 radiogenomics of epidermal growth factor receptor Del19 and L858R mutation
 691 subtypes on computed tomography images of lung cancer patients. *Comput*692 *Methods Programs Biomed*. 2023; 236: 107544.
- 693 62 Rios Velazquez E, Parmar C, Liu Y et al. Somatic mutations drive distinct 694 imaging phenotypes in lung cancer. *Cancer Res.* 2017; 77(14): 3922-3930.
- 695 63 Rossi G, Barabino E, Fedeli A et al. Radiomic detection of EGFR mutations in
 696 NSCLC. *Cancer Res.* 2021; 81(3): 724-731.
- 64 Tu W, Sun G, Fan L et al. Radiomics signature: A potential and incremental
 698 predictor for EGFR mutation status in NSCLC patients, comparison with CT
 699 morphology. *Lung Cancer*. 2019; 132: 28-35.
- Wang C, Ma J, Shao J et al. Predicting EGFR and PD-L1 status in NSCLC
 patients using multitask ai system based on CT images. *Front Immunol*. 2022;
 13: 813072.
- Weng Q, Hui J, Wang H et al. Radiomic feature-based nomogram: a novel
 technique to predict EGFR-activating mutations for EGFR tyrosin kinase
 inhibitor therapy. *Front Oncol.* 2021; 11: 590937.
- Yang X, Liu M, Ren Y et al. Using contrast-enhanced CT and non-contrastenhanced CT to predict EGFR mutation status in NSCLC patients-a radiomics nomogram analysis. *Eur Radiol*. 2022; 32(4): 2693-2703.
- 709 68 Zhang B, Qi S, Pan X et al. Deep CNN model using CT radiomics feature
 710 mapping recognizes EGFR gene mutation status of lung adenocarcinoma. *Front*711 Oncol. 2020; 10: 598721.
- 712 69 Zhang G, Cao Y, Zhang J et al. Predicting EGFR mutation status in lung
 713 adenocarcinoma: development and validation of a computed tomography-based
 714 radiomics signature. *Am J Cancer Res.* 2021; 11(2): 546-560.
- 715 70 Zhang M, Bao Y, Rui W et al. Performance of (18)F-FDG PET/CT radiomics for
 716 predicting EGFR mutation status in patients with non-small cell lung cancer.
 717 *Front Oncol.* 2020; 10: 568857.
- 718 71 Zhao HY, Su YX, Zhang LH et al. Prediction model based on 18F-FDG PET/CT
 719 radiomic features and clinical factors of EGFR mutations in lung
 720 adenocarcinoma. *Neoplasma*. 2022; 69(1): 233-241.

- 721 72 Chang C, Sun X, Wang G et al. A machine learning model based on PET/CT
 722 radiomics and clinical characteristics predicts ALK rearrangement status in lung
 723 adenocarcinoma. *Front Oncol.* 2021; 11: 603882.
- 724 73 Ma DN, Gao XY, Dan YB et al. Evaluating solid lung adenocarcinoma anaplastic lymphoma kinase gene rearrangement using noninvasive radiomics biomarkers. *Onco Targets Ther.* 2020; 13: 6927-6935.
- 727 74 Song L, Zhu Z, Mao L et al. Clinical, conventional ct and radiomic feature-based
 728 machine learning models for predicting ALK rearrangement status in lung
 729 adenocarcinoma patients. *Front Oncol.* 2020; 10: 369.
- 730 75 Hendriks LE, Kerr KM, Menis J et al. Oncogene-addicted metastatic non-small731 cell lung cancer: ESMO clinical practice guideline for diagnosis, treatment and
 732 follow-up. *Ann Oncol.* 2023; 34(4): 339-357.
- 733 76 Ettinger DS, Wood DE, Aisner DL et al. Non-Small Cell Lung Cancer, Version
 734 3.2022, NCCN Clinical Practice Guidelines in Oncology. *J Natl Compr Canc*735 *Netw.* 2022; 20(5): 497-530.
- Ferry-Galow KV, Datta V, Makhlouf HR et al. What can be done to improve research biopsy quality in oncology clinical trials? *J Oncol Pract.* 2018; 14(11): Jop1800092.
- 739 78 Gutierrez ME, Choi K, Lanman RB et al. Genomic profiling of advanced non740 small cell lung cancer in community settings: gaps and opportunities. *Clin Lung*741 *Cancer*. 2017; 18(6): 651-659.
- 742 79 Fornacon-Wood I, Faivre-Finn C, O'Connor JPB et al. Radiomics as a
 743 personalized medicine tool in lung cancer: separating the hope from the hype.
 744 Lung Cancer. 2020; 146: 197-208.
- Neri E, Del Re M, Paiar F et al. Radiomics and liquid biopsy in oncology: the
 holons of systems medicine.
- 747 Insights Imaging. 2018; 9(6): 915-924.
- Nguyen HS, Ho DKN, Nguyen NN et al. Predicting EGFR mutation status in non-small cell lung cancer using artificial intelligence: a systematic review and meta-analysis. *Acad Radiol*. 2023.
- 751
 82
 Steinert HC. PET and PET-CT of lung cancer. *Methods Mol Biol.* 2011; 727: 33

 752
 51.
- Alwosheel A, van Cranenburgh S, Chorus CG. Is your dataset big enough?
 Sample size requirements when using artificial neural networks for discrete choice analysis. *J Choice Model*. 2018; 28: 167-182.
- Rajput D, Wang W-J, Chen C-C. Evaluation of a decided sample size in machine
 learning applications. *BMC Bioinformatics*. 2023; 24(1): 48.
- Mu W, Jiang L, Zhang J et al. Non-invasive decision support for NSCLC
 treatment using PET/CT radiomics. *Nat Commun.* 2020; 11(1): 5228.
- 760 86 Zhao W, Yang J, Ni B et al. Toward automatic prediction of EGFR mutation
 761 status in pulmonary adenocarcinoma with 3D deep learning. *Cancer Med.* 2019;
 762 8(7): 3532-3543.

- 763 87 Zuo Y, Liu Q, Li N et al. Optimal (18)F-FDG PET/CT radiomics model
 764 development for predicting EGFR mutation status and prognosis in lung
 765 adenocarcinoma: a multicentric study. *Front Oncol.* 2023; 13: 1173355.
- Shiri I, Amini M, Nazari M et al. Impact of feature harmonization on
 radiogenomics analysis: prediction of EGFR and KRAS mutations from nonsmall cell lung cancer PET/CT images. *Comput Biol Med.* 2022; 142: 105230.
- 769 89 Yip SSF, Parmar C, Kim J et al. Impact of experimental design on PET radiomics in predicting somatic mutation status. *Eur J Radiol.* 2017; 97: 8-15.
- Shao J, Ma J, Zhang S et al. Radiogenomic system for non-invasive identification of multiple actionable mutations and PD-L1 expression in non-small cell lung cancer based on ct images. *Cancers (Basel)*. 2022; 14(19).
- Xiao Z, Cai H, Wang Y et al. Deep learning for predicting epidermal growth
 factor receptor mutations of non-small cell lung cancer on PET/CT images. *Quant Imaging Med Surg.* 2023; 13(3): 1286-1299.
- Agüloğlu N, Aksu A, Akyol M et al. Importance of pretreatment 18F-FDG
 PET/CT texture analysis in predicting EGFR and ALK mutation in patients with
 non-small cell lung cancer. *Nuklearmedizin*. 2022; 61(6): 433-439.
- Agazzi GM, Ravanelli M, Roca E et al. CT texture analysis for prediction of
 EGFR mutational status and ALK rearrangement in patients with non-small cell
 lung cancer. *Radiol Med.* 2021; 126(6): 786-794.
- 783 94 Chen W, Hua Y, Mao D et al. A computed tomography-derived radiomics
 784 approach for predicting uncommon EGFR mutation in patients with NSCLC.
 785 *Front Oncol.* 2021; 11: 722106.
- 786 95 Chen Q, Li Y, Cheng Q et al. EGFR mutation status and subtypes predicted by
 787 CT-based 3D radiomic features in lung adenocarcinoma. *Onco Targets Ther.*788 2022; 15: 597-608.
- 789 96 Choe J, Lee SM, Kim W et al. CT radiomics-based prediction of anaplastic
 790 lymphoma kinase and epidermal growth factor receptor mutations in lung
 791 adenocarcinoma. *Eur J Radiol.* 2021; 139: 109710.
- 792 97 Digumarthy SR, Padole AM, Gullo RL et al. Can CT radiomic analysis in
 793 NSCLC predict histology and EGFR mutation status? *Medicine (Baltimore)*.
 794 2019; 98(1): e13963.
- Hao P, Deng BY, Huang CT et al. Predicting anaplastic lymphoma kinase
 rearrangement status in patients with non-small cell lung cancer using a machine
 learning algorithm that combines clinical features and CT images. *Front Oncol.*2022; 12: 994285.
- He R, Yang X, Li T et al. A machine learning-based predictive model of
 epidermal growth factor mutations in lung adenocarcinomas. *Cancers (Basel)*.
 2022; 14(19).
- Hou D, Li W, Wang S et al. Different clinicopathologic and computed tomography imaging characteristics of primary and acquired EGFR T790M mutations in patients with non-small-cell lung cancer. *Cancer Manag Res.* 2021; 13: 6389-6401.

- Jiang M, Zhang Y, Xu J et al. Assessing EGFR gene mutation status in non-small
 cell lung cancer with imaging features from PET/CT. *Nucl Med Commun.* 2019;
 40(8): 842-849.
- Kawazoe Y, Shiinoki T, Fujimoto K et al. Comparison of the radiomics-based
 predictive models using machine learning and nomogram for epidermal growth
 factor receptor mutation status and subtypes in lung adenocarcinoma. *Phys Eng Sci Med.* 2023; 46(1): 395-403.
- Koyasu S, Nishio M, Isoda H et al. Usefulness of gradient tree boosting for
 predicting histological subtype and EGFR mutation status of non-small cell lung
 cancer on (18)F FDG-PET/CT. *Ann Nucl Med.* 2020; 34(1): 49-57.
- Li S, Ding C, Zhang H et al. Radiomics for the prediction of EGFR mutation
 subtypes in non-small cell lung cancer. *Med Phys.* 2019; 46(10): 4545-4552.
- Li H, Gao C, Sun Y et al. Radiomics analysis to enhance precise identification of
 epidermal growth factor receptor mutation based on positron emission
 tomography images of lung cancer patients. *J Biomed Nanotechnol*. 2021; 17(4):
 691-702.
- Liu Y, Kim J, Balagurunathan Y et al. Radiomic features are associated with
 EGFR mutation status in lung adenocarcinomas. *Clin Lung Cancer*. 2016; 17(5):
 441-448.e446.
- Liu Z, Zhang T, Lin L et al. Applications of radiomics-based analysis pipeline
 for predicting epidermal growth factor receptor mutation status. *Biomed Eng Online*. 2023; 22(1): 17.
- Lu L, Sun SH, Yang H et al. Radiomics prediction of EGFR status in lung
 cancer-our experience in using multiple feature extractors and The Cancer
 Imaging Archive Data. *Tomography*. 2020; 6(2): 223-230.
- Ruan D, Fang J, Teng X. Efficient 18F-Fluorodeoxyglucose positron emission
 tomography/computed tomography-based machine learning model for predicting
 epidermal growth factor receptor mutations in non-small cell lung cancer. *Q J Nucl Med Mol Imaging*. 2022.
- Trivizakis E, Souglakos J, Karantanas A et al. Deep radiotranscriptomics of nonsmall cell lung carcinoma for assessing molecular and histology subtypes with a
 data-driven analysis. *Diagnostics (Basel)*. 2021; 11(12).
- 838 111 Yamazaki M, Yagi T, Tominaga M et al. Role of intratumoral and peritumoral
 839 CT radiomics for the prediction of EGFR gene mutation in primary lung cancer.
 840 Br J Radiol. 2022; 95(1140): 20220374.
- Yang B, Ji HS, Zhou CS et al. (18)F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiomic features for prediction of epidermal growth factor receptor mutation status and prognosis in patients with lung adenocarcinoma. *Transl Lung Cancer Res.* 2020; 9(3): 563-574.
- 845 113 Zhang J, Zhao X, Zhao Y et al. Value of pre-therapy (18)F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer. *Eur J Nucl Med Mol Imaging*. 2020; 47(5): 1137-1146.

- 848 114 Zhang T, Liu Z, Lin L et al. Detection of the gene mutation of epidermal growth
 849 factor receptor in lung adenocarcinoma by radiomic features from a small
 850 amount of PET data. *Nucl Med Commun.* 2023.
- 851 115 Zhao W, Wu Y, Xu Y et al. The potential of radiomics nomogram in noninvasively prediction of epidermal growth factor receptor mutation status and subtypes in lung adenocarcinoma. *Front Oncol.* 2019; 9: 1485.

854

Table 1. Methodological characteristics of the studies (N = 89) included in the systematic review. For those studies with the same name for the first author and published the same year, a hashtag was added to unequivocally indicate those that were included in the different meta-analyses and consequently, that are represented in the forest plots.

Author-Year	Imaging	Contrast-CT*	Tumor segmentation		Classifier	Datasets			
	modality			Μοαει	(ML)	Training	Validation	Test	Partition strategy
Agüloğlu et al. 2022 ⁹²	PET/CT	Non-contrast CT	Semi-automatic	ML	RF NB KNN DT SVM LR	133	56	_	Training-Validation split
Aerts et al. 2016 ³⁴	СТ	Non-contrast CT	Semi-automatic	Classical statistical model	_	_	_	_	_
Agazzi et al. 2021 ⁹³	СТ	Contrast-enhanced	Manual	ML	GBM	104	67	_	Training-Validation split

Aide et al. 2022 ³⁰	PET	_	Manual	ML	LASSO	87	22	_	Training-Validation split
Chang et al. 2021# ⁴⁹	PET/CT	Non-contrast CT	Manual	ML	LASSO	409	174	_	Training-Validation split
Chang et al. 2021## ⁷²	PET/CT	Non-contrast CT	Manual	ML	LR^{\dagger}	367	159	_	Training-Validation of split
Chen et al. 2021 ⁹⁴	СТ	Non-contrast CT	Manual	ML	SVM	179	44	_	Training-Validation split
Chen et al. 2022 ⁹⁵	СТ	Non-contrast CT	Semi-automatic	ML	LASSO	176	57	_	Training-Validation split
Choe et al. 2021 ⁹⁶	СТ	Contrast-enhanced	Semi-automatic	ML	LR	349	154	_	- Training-Validation split
Dang et al. 2021 ¹⁹	СТ	Non-contrast CT	Semi-automatic	ML	LASSO	88	30	_	Training-Validation split
Digumarthy et	СТ	Contrast-enhanced	Not specified	Classical	_	_	-	_	_

al. 2019 ⁹⁷				statistical model					
Dong et al. 2022 ³³	СТ	Non-contrast CT	Not specified	ML	LR	87	45	_	Training-Validation split
Dong et al. 2021 ⁵⁰	СТ	Non-contrast CT	Manual	DL ML	RF	363	162	_	Training-Validation split
Feng et al. 2022 ³⁶	СТ	Non-contrast CT	Manual	ML	RF XGBoost LR SVM	151	_	_	Training-Validation split
Gao et al. 2023 ⁵¹	PET/CT	Non-contrast CT	Semi-automatic	ML	LR RF SVM	404	111	_	Training-Validation split
Hao et al. 2022 ⁹⁸	СТ	Non-contrast CT	Manual	ML	SVM XGBoost AdaBoost LBP DT	154	39	_	Training-Validation split

					LR				
He et al. 2022 ⁹⁹	СТ	Non-contrast CT	Semi-automatic	ML	RF KNN LGBM SVM	_	_	_	Training-Validation split
Hong et al. 2020 ²⁴	СТ	Contrast-enhanced	Manual	ML	NBC KNN RF SVM DT LR	140	61	_	Training-Validation split
Huang et al. 2018 ³⁵	СТ	Non-contrast CT	Semi-automatic	Classical statistical model	_	_	_	_	_
Huang et al. 2022 ⁴⁴	PET/CT	Non-contrast CT	Manual	DL ML	LR	138	57	_	Training-Validation split
Huang et al. 2022 ³⁷	СТ	Non-contrast CT	Manual	DL	LR	770	304	_	Training-Validation split

31

				ML					
Huo et al. 2022 ⁵²	СТ	Contrast-enhanced	Manual	ML	GBT	487	121	_	Training-Validation split
Hou et al. 2021 ¹⁰⁰	СТ	Contrast-enhanced	Semi-automatic	Classical statistical model	_	144	62	_	Training-Validation split
Jia et al. 2019 ³⁸	СТ	Non-contrast CT	Semi-automatic	ML	RF	345	158	_	Training-Validation split
Jiang et al. 2019 ¹⁰¹	PET/CT	Non-contrast CT	Semi-automatic	ML	SVM	_	_	_	10-fold cross- validation
Jiang et al. 2022 ⁵³	СТ	Non-contrast CT	Manual	ML	SVM	514	178	_	Training-Validation split
Kawazoe et al. 2023 ⁴⁵	СТ	Non-contrast CT	Semi-automatic	ML	SVM LR LGBM	120	44	_	Training-Validation split
Kawazoe et al.	СТ	Non-contrast CT	Semi-automatic	ML	SVM	120	52	-	Training-Validation

2023 ¹⁰²					LR				split
Koyasu et al. 2020 ¹⁰³	PET/CT	Non-contrast CT	Manual	ML	RF XGBoost	_	-	_	10-fold cross- validation
Le et al. 2021 ⁵⁴	СТ	Non-contrast CT	Manual	ML	XGBoost	143	18	_	Training-Validation split
Li et al. 2018# ⁵⁸	СТ	Non-contrast CT	Manual	DL ML	RF	810	200	_	Training-Validation split
Li et al. 2018 ³¹	СТ	Contrast-enhanced	Semi-automatic	ML	SVM	_	_	_	3-fold cross- validation
Li et al 2019 # ⁵⁷	PET/CT	Non-contrast CT	Manual	ML	Boosting ML scheme	115	_	_	10-fold cross- validation
Li et al. 2019 ¹⁰⁴	СТ	Non-contrast CT	Manual	ML	LR	236	76	_	Training-Validation split
Li et al. 2020 ⁵⁶	СТ	Non-contrast CT	Manual	ML	LR SVM	326	112	_	Training-Validation split

					RF				
					NB				
					Neural network				
Li et al. 2021 ¹⁰⁵	PET	_	Semi-automatic	ML	SVM	50	25	_	Training-Validation split
Li et al. 2022 ⁵⁵	PET/CT	Non-contrast CT	Manual	ML	LR	125	54	_	Training-Validation split
Lin et el				Classical					5
2016^{106}	СТ	Non-contrast CT	Semi-automatic	statistical model	_	_	_	-	—
Liu et al									Training-Validation
2020# ³⁹	СТ	Contrast-enhanced	Semi-automatic	ML	LR	210	53	-	split
L in et al									Training-Validation
2020^{22}	PET/CT	Non-contrast CT	Manual	ML	XGBoost	111	37	-	split
					LR				
Liu et al.	СТ	Non-contrast CT	Manual	ML	DT	296	50	_	Training-Validation
202237					RF				split

					SVM				
Liu et al. 2023 ¹⁰⁷	PET/CT	Non-contrast CT	Manual	ML	LR DT RF SVM	_	_	_	10-fold cross- validation
Lu et al. 2020# ⁴⁶	СТ	Non-contrast CT	Manual	ML	LR	83	_	21	Training-Validation split
Lu et al. 2020 ¹⁰⁸	СТ	Non-contrast CT	Semi-automatic	ML	KNN Bagging SVM RF	105	228	_	Training-Validation split
Lu et al. 2022 ²⁵	СТ	Non-contrast CT	Manual	ML	DT AdaBoost NB RF LR SVM XGBoost	140	61	_	Training-Validation split

					KNN				
Ma et al. 2020 ⁷³	СТ	Contrast-enhanced	Manual	ML	SVM	98	42	_	Training-Validation split
Mei et al. 2018 ⁴⁰	СТ	Non-contrast CT	Manual	Classical statistical model	_	_	_	_	_
Mu et al. 2020 ⁸⁵	PET/CT	Non-contrast CT	Manual	DL	_	429	187	65	Training-Validation split
Nair et al. 2021 ¹⁷	PET/CT	Contrast-enhanced	Manual	ML	LR	_	_	_	LOOCV
Ninomiya et al. 2021 ⁶⁰	СТ	Contrast-enhanced	Manual	ML	SVM	99 [‡]	99 [‡]	95	Training-Validation split
Ninomiya et al. 2023 ⁶¹	СТ	Contrast-enhanced	Not specified	ML	SVM	92	62	_	Training-Validation split
Omura et al. 2023 ²⁰	СТ	Contrast-enhanced	Automatic	ML	RF	-	_	_	Training-Validation split
Ríos Velázquez et al. 2017 ⁶²	СТ	Contrast + Non- contrast CT	Semi-automatic	ML	RF	353	352	_	Training-Validation split
--	---------------------------------	--------------------------------	----------------------------------	----	--	-----	-----	----	------------------------------
Rossi et al. 2021 ⁶³	СТ	Non-contrast CT	Manual	ML	SVM	_	109	61	Training-Validation split
Ruan et al. 2022 ¹⁰⁹	PET/CT	Non-contrast CT	Manual	ML	SVM	70	30	_	Training-Validation split
Shao et al. 2022 ⁹⁰	СТ	Non-contrast CT	Semi-automatic	DL	-	_	_	_	Training-Validation split
Shiri et al. 2020 ¹⁸	CT low dose CTD PET/CT	Contrast-enhanced	Manual Automatic [§]	ML	SVM KNN DT QDA MLP SGD LR NB GNB	82	68	_	10-fold cross- validation

					RF AdaBoost Bagging				
Shiri et al. 2022 ⁸⁸	PET/CT	Non-contrast CT	Manual Automatic [§]	ML	RF	_	_	_	Training-Validation split
Song et al. 2021 ⁴²	СТ	Not specified	Manual Automatic	DL ML	SVM	528	137	_	Training-Validation split
Song et al. 2020 ⁷⁴	СТ	Non-contrast CT	Automatic	ML	DT	268	67	_	Training-Validation split
Trivizakis et al. 2021 ¹¹⁰	СТ	Not specified	Not specified	DL ML	KNN DT RBF-GPC RBF-SVM Linear SVM Polynomial SVM Sigmoid SVM	_	_	_	5-fold cross- validation

Tu et al. 2019 ⁶⁴	СТ	Non-contrast CT	Not specified	ML	LR	243	161	_	Training-Validation split
Wang et al. 2019 ²¹	СТ	Contrast-enhanced	Manual	ML	SVM	41	_	_	Training-Validation split
Wang et al. 2021 ⁴³	СТ	Non-contrast CT	Manual	DL	_	882	125	255	Training-Validation split
Wang et al. 2022 # ⁶⁵	СТ	Non-contrast CT	Manual	DL ML	LASSO	_	_	_	Training-Validation split [¶]
Wang et al. 2022 ## ⁴⁷	PET/CT	Non-contrast CT	Semi-automatic	ML	LR	180	78	_	Training-Validation split
Weng et al. 2021 ⁶⁶	СТ	Non-contrast CT	Semi-automatic	ML	LR	210	91	_	Training-Validation split
Wu et al. 2020 ²⁶	СТ	Contrast-enhanced	Manual	ML	LR	_	_	_	10-fold cross- validation
Xiao et al.	PET/CT	Non-contrast CT	Manual	DL	RF	121	29	_	Training-Validation

2023 ⁹¹				ML					split
Yamazaki et al. 2022 ¹¹¹	СТ	Non-contrast CT	Semi-automatic	ML	RF	_	_	_	_
Yang et al. 2020# ²⁷	СТ	Contrast-enhanced	Semi-automatic	ML	LASSO	130	40	_	Training-Validation split
Yang et al. 2020 ¹¹²	PET/CT	Non-contrast CT	Semi-automatic	ML	RF	139	35	_	Training-Validation split
Yang et al. 2022 <mark>#</mark> ⁶⁷	СТ	Contrast + Non- contrast CT	Manual	ML	LR RF SVM GBT NB	327	66	19	Training-Validation split
Yang et al. 2022 ²³	PET/CT	Non-contrast CT	Semi-automatic	ML	SVM DT RF	218	95	_	Training-Validation split
Yang et al.	СТ	Contrast-enhanced	Manual	ML	LR	176	74	_	Training-Validation

2022 ⁴⁸									split
Yip et al. 2017 ⁸⁹	PET	_	Manual	Classical statistical model	_	_	_	_	_
Zhang et al. 2018 ²⁸	СТ	Non-contrast CT	Manual	ML	LR	140	40	_	Training-Validation split
Zhang et al. 2020# ⁷⁰	PET/CT	Non-contrast CT	Manual	ML	RF SVM LR	_	_	_	10-fold cross- validation
Zhang et al. 2020 ¹¹³	PET/CT	Non-contrast CT	Semi-automatic	ML	LR	175	73	_	Training-Validation split
Zhang et al. 2020## ⁶⁸	СТ	Non-contrast CT	Semi-automatic	DL ML	RF SVM	638	71	205	Training-Validation split
Zhang et al.	СТ	Contrast-enhanced	Semi-automatic	ML	LASSO	_	_	_	Training-Validation

2021 ⁴¹									split
Zhang et al. 2021 ⁶⁹	СТ	Non-contrast CT	Manual	ML	DT LR SVM Multivariate analysis for C- R-R model	294	126	_	Training-Validation split
Zhang et al. 2023 ¹¹⁴	PET	_	Manual	ML	SVM RF LR AdaBoost	_	-	-	10-fold cross- validation
Zhao et al. 2019 ⁸⁶	СТ	Non-contrast CT	Manual	DL ML	LR	348	116	116	Training-Validation split
Zhao et al. 2019 ¹¹⁵	СТ	Non-contrast CT	Manual	ML	LR	322	315	_	Training-Validation split
Zhao et al. 2022 ⁷¹	PET/CT	Non-contrast CT	Semi-automatic	ML	LR	65	23	_	Training-Validation split

Zhu et al. 2022 ³²	СТ	Non-contrast CT	Semi-automatic	ML	LASSO RF SVM	875	217	_	Training-Validation split
Zhu et al. 2021 ²⁹	СТ	Contrast-enhanced	Manual	ML	SVM KNN RF LR	159	40	_	Training-Validation split
Zuo et al. 2023 ⁸⁷	PET/CT	Non-contrast CT	Manual	ML	LGBM XGBoost RF LR	410	170	180	Training-Validation split

*In studies in which PET/CT was performed, only details about contrast were provided for PET acquisition. Consequently, it was assumed that CT scans were non-contrast enhanced.

[†]Not specified but inferred from the methodology and results.

‡Number of cases for training and validation sets not specified; only a total number for both cohorts provided.

§Manual segmentation for PET images; automatic segmentation for CT images.

¶80% Training-Validation split.

CT, computed tomography; CTD, contrast-enhanced diagnostic quality; DL, deep learning; DT, decision tree; ERBB2, v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2;

GBM, gradient boosted machine; GBT, gradient boosting tree; GNB, Gaussian Naives Bayes; GPC, Gaussian processes classification; LASSO, least absolute shrinkage and selection operator; LBP, local binary pattern; LGBM, Light gradient boosted machine; LOOCV, leave-one-out cross-validation; LR, logistic regression; ML, machine learning; MLP, multilayer perceptron; NB, Naive Bayes; KNN, K-nearest neighbors; PET, positron emission tomography; QDA, quadratic discriminant analysis; RBF, radial basis function; RF, random forest; SGD, stocastic gradient descendent; SVM, support vector machine; TP53, tumor suppressor protein 53.

Table 2. Clinical characteristics of the studies (N = 89) included in the systematic review. For those studies with the same name for the first author and published the same year, a hashtag was added to unequivocally indicate those that were included in the different meta-analyses and consequently, that are represented in the forest plots.

	Target		Total	Se	X			Smokin	g status		
Author-Year	oncogene mutation	Design	of patien ts	Female	Male	Age Mean/median	Histology	Current /former smoker	Non- smoker	TNM stage	Treatment
Agüloğlu et al. 2022 ⁹²	EGFR ALK	Unicentric	189	59	130	62/-	NSCLC	130	59	Stages I-IV	Naïve
Aerts et al. 2016 ³⁴	EGFR	Unicentric	47	_	_	_/_	NSCLC	_	_	_	Naïve + post- treatment images
Agazzi et al. 2021 ⁹³	EGFR ALK	Unicentric	84	39	45	-/63	ADC	57	27	_	Naïve
Aide et al. 2022^{30}	EGFR	Unicentric	109	34	75	-/66	ADC	96	13	Stages II-IV	Naïve

Chang et al. 2021# ⁴⁹	EGFR	Unicentric	583	305	278	-/62	ADC	229	354	Stages I-III	Naïve
Chang et al. 2021## ⁷²	ALK	Unicentric	526	272	254	-/58.25	ADC	202	324	Stages I-IV	Naïve
Chen et al. 2021 ⁹⁴	EGFR	Unicentric	223	109	114	64.63/-	NSCLC	55	168	Stages I-IV	Naïve
Chen et al. 2022 ⁹⁵	EGFR	Unicentric	233	105	128	57.5/-	ADC	65	168	Stages I-IV	Naïve
Choe et al. 2021 ⁹⁶	ALK	Unicentric	503	273	230	62.5/-	ADC	200	303	Stages I-IV	Not specified
Dang et al. 2021 ¹⁹	EGFR	Not specified	118	55	63	63.82/	ADC, SCC	_	_	Stages I-III	No treatment*
Digumarthy et al. 2019 ⁹⁷	EGFR	Unicentric	93	50	43	60/-	ADC, SCC	61	32	_	Naïve
Dong et al. 2022 ³³	EGFR	Multicentric	132	64	68	58.8/-	NSCLC	42	90	Stages I-III	Naïve
Dong et al.	EGFR	Multicentric	525	250	275	- /65.5	NSCLC	373	152	_	Not specified

2021 ⁵⁰	KRAS										
Feng et al. 2022 ³⁶	EGFR	Multicentric	168	_	_	_/_	NSCLC	_	_	_	Not specified †
Gao et al. 2023 ⁵¹	EGFR	Unicentric	515	264	251	64/-	ADC	175	_	Stages I-IV	Naïve
Hao et al. 2022 ⁹⁸	ALK	Unicentric	193	102	91	54.26/-	NSCLC	49	144	Stages II and IV	Naïve
He et al. 2022 ⁹⁹	EGFR	Multicentric	758	317	441	55.6/-	NSCLC	358	400	Stages I-IV	Naïve
Hong et al. 2020 ²⁴	EGFR	Unicentric	201	94	107	58.12/-	ADC	64	137	Stages I-IV	Naïve
Huang et al. 2018 ³⁵	EGFR	Unicentric	46	_	_	_/_	NSCLC	_	_	_	Naïve + post- treatment images
Huang et al. 2022 ⁴⁴	EGFR	Unicentric	195	72	123	61.14 –	NSCLC	127	68	_	No treatment*
Huang et al. 2022 ³⁷	EGFR	Unicentric	1074	_	_	_/_	NSCLC	_	_	_	Not specified

Huo et al. 2022 ⁵²	EGFR	Unicentric	608	272	336	61.7/-	ADC	0	335	Stages II and IV	Naïve
Hou et al. 2021 ¹⁰⁰	EGFR	Unicentric	206	120	86	-/59	ADC, SCC, ASC [‡]	57	_	Stages I-IV	Naïve
Jia et al. 2019 ³⁸	EGFR	Unicentric	503	249	254	-/60.5	ADC	80	423	Stages I-IV	Not specified ^{\dagger}
Jiang et al. 2019 ¹⁰¹	EGFR	Unicentric	80	32	48	64/62.5	NSCLC	21	59	_	Naïve
Jiang et al. 2022 ⁵³	EGFR	Unicentric	692	_	_	59/-	ADC	_	_	_	Naïve
Kawazoe et al. 2023 ⁴⁵	EGFR	Unicentric	164	75	89	70.24/-	ADC	102	62	Stages I-IV	No treatment [§]
Kawazoe et al. 2023 ¹⁰²	EGFR	Unicentric	172	77	95	70.76/-	ADC	107	65	Stages I-IV	Naïve
Koyasu et al. 2020 ¹⁰³	EGFR	Unicentric	138	54	84	67.8/-	ADC, SCC	_	_	_	Not specified

Le et al. 2021 ⁵⁴	EGFR KRAS	Multicentric	161	50	111	68.05/-	ADC, NSCLC NOS, SCC	61	100	_	Naïve
Li et al. 2018# ⁵⁸	EGFR	Unicentric	1010	457	553	-/63	ADC	262	748	Stages I-IV	Naïve
Li et al. 2018 ³¹	EGFR	Unicentric	51	19	32	58.1/-	ADC	24	27	Stages I-III	Not specified ^{\dagger}
Li et al 2019# ⁵⁷	EGFR	Unicentric	115	62	53	-/63	NSCLC	36	79	Stages II and IV	Naïve
Li et al. 2019 ¹⁰⁴	EGFR	Unicentric	312	164	148	Freq./Freq. [¶]	ADC, SCC	109	203	Stages II and IV	Naïve
Li et al. 2020 ⁵⁶	EGFR	Multicentric	438	_	_	61.31/-	ADC	_	_	-	Naïve
Li et al. 2021 ¹⁰⁵	EGFR	Unicentric	75	45	30	62/-	Lung cancer ^{**}	34	41	-	Not specified
Li et al. 2022 ⁵⁵	EGFR	Unicentric	179	103	76	61.51/59.5	ADC	65	114	_	Naïve
Liu et al. 2016 ¹⁰⁶	EGFR	Unicentric	298	172	126	-/60	ADC, Others	136	162	Stages II and IV	Naïve

Liu et al. 2020# ³⁹	EGFR	Unicentric	263	121	142	62.5/-	ADC	31	232	_	Not specified ^{\dagger}
Liu et al. 2020 ²²	EGFR	Unicentric	148	63	85	-/61.2	ADC	_	_	Stages II-IV	Naïve
Liu et al. 2022 ⁵⁹	EGFR	Multicentric	346	141	205	66.69/-	ADC, SCC, LCC, PSC	225	121	_	Naïve
Liu et al. 2023 ¹⁰⁷	EGFR	Unicentric	115	62	53	-/62.75	ADC	36	79	Stages I-IV	Naïve
Lu et al. 2020# ⁴⁶	EGFR	Unicentric	104	64	40	58.27/-	ADC	30	74	Stages I-IV	No treatment*
Lu et al. 2020 ¹⁰⁸	EGFR	Multicentric	228 ^{††}	85 ^{††}	120 ^{††}	67.94/-	ADC, SCC, NOS	_	_	Stages 0-IV	Not specified
Lu et al. 2022 ²⁵	EGFR	Unicentric	201	99	102	64.81/-	ADC	84	117	Stages III-IV	Naïve
Ma et al. 2020 ⁷³	ALK	Unicentric	140	87	53	54.19/-	ADC	45	95	Stages II and IV	Naïve
Mei et al. 2018 ⁴⁰	EGFR	Unicentric	296	144	152	58.56/-	ADC	86	210	-	Not specified ^{\dagger}

Mu et al. 2020 ⁸⁵	EGFR	Multicentric	681	303	378	61,83/-	ADC, SCC	315	366	Stages I-IV	Naïve
Nair et al. 2021 ¹⁷	EGFR	Unicentric	50	18	32	_/_	NSCLC	35	15	_	Naïve
Ninomiya et al. 2021 ⁶⁰	EGFR	Multicentric	194	74	120	-/67	NSCLC	128	66	Stages I-IV	Not specified
Ninomiya et al. 2023 ⁶¹	EGFR	Multicentric	154	86	68	-/67	Lung cancer	73	81	Stages I-IV	Not specified
Omura et al. 2023 ²⁰	EGFR	Unicentric	99	65	34	66/	ADC	41	_	Stages I-II	Naïve
Ríos Velázquez et al. 2017 ⁶²	EGFR KRAS	Multicentric	763	459	304	65/-	ADC	548	215	Stages I-IV	Not specified
Rossi et al.	EGFR	Multicentric	170	_	_	_/_	ADC	110	30	-	Naïve

2021 ⁶³											
Ruan et al. 2022 ¹⁰⁹	EGFR	Unicentric	100	42	58	-/ 64.5	NSCLC	33	67	Stages I-IV	Naïve
Shao et al. 2022 ⁹⁰	EGFR	Unicentric	1096	_	_	58.26/-	NSCLC	_	_	_	Naïve
Shiri et al. 2020 ¹⁸	EGFR KRAS	Unicentric	150	_	_	69.1 –	ADC, SCC, NOS [‡]	_	_	_	Not specified
Shiri et al. 2022 ⁸⁸	EGFR KRAS	Multicentric	136	_	_	_/_	ADC, SCC, NOS	_	_	_	Not specified
Song et al. 2021 ⁴²	EGFR	Multicentric	665	336	329	Freq./Freq. [¶]	ADC	334	331	Stages II and IV	Not specified ^{‡‡}
Song et al. 2020 ⁷⁴	ALK	Unicentric	335	196	139	57 /	ADC	103	232	Stages I-IV	Naïve

Trivizakis et al. 2021^{110}	EGFR	Unicentric	112	_	_	_/_	ADC, SCC	_	_	_	Not specified
Tu et al. 2019 ⁶⁴	EGFR	Unicentric	404	211	193	59.95/-	NSCLC	114	290	Stages II and IV	Naïve
Wang et al. 2019 ²¹	EGFR	Unicentric	51	35	16	58.45/-	ADC	9	42	Stages 0-II	Not specified
Wang et al. 2021 ⁴³	EGFR PD-L1	Unicentric	1262	642	620	57.7/-	ADC, SCC, Others [‡]	452	749	Stages I-IV	Not specified ^{§§}
Wang et al. 2022 <mark>#</mark> ⁶⁵	EGFR PD-L1	Unicentric	3629	1674	1955	59.29/-	ADC, SCC, Others	1413	1981	Stages I-IV	Naïve
Wang et al. 2022### ⁴⁷	KRAS	Unicentric	258	78	180	62.35/-	NSCLC	166	92	_	No treatment*
Weng et al. 2021 ⁶⁶	EGFR	Unicentric	301	145	156	64.95/-	NSCLC	110	191	_	Naïve

Wu et al. 2020 ²⁶	EGFR	Unicentric	67	29	38	56.35/-	ADC, SCC	34	33	Stages III-IV	Naïve
Xiao et al. 2023 ⁹¹	EGFR	Unicentric	150	59	91	-/58	NSCLC	64	86	-	Not specified
Yamazaki et al. 2022 ¹¹¹	EGFR	Unicentric	478	190	288	Freq./Freq. [¶]	ADC, SCC, Others [‡]	_	_	Stages II and IV	Naïve
Yang et al. 2020# ²⁷	EGFR	Unicentric	253	155	98	-/62	ADC	105	148	Stages III-IV	Naïve
Yang et al. 2020 ¹¹²	EGFR	Unicentric	174	81	93	61.72/-	ADC	59	115	Stages II and IV	Naïve
Yang et al. 2022# ⁶⁷	EGFR	Unicentric	412	223	189	62/-	ADC, SCC	105	307	_	Naïve
Yang et al. 2022 ²³	EGFR	Unicentric	313	164	149	59.21/-	ADC	105	208	Stages II-IV	Naïve
Yang et al. 2022 ⁴⁸	EGFR	Unicentric	250	_	_	56.35 / -	ADC	_	_	_	Treated with TKIs ^{¶¶}

Yip et al. 2017 ⁸⁹	KRAS	Unicentric	348	214	134	-/65	ADC, NSCLC NOS, SC. Not available for 1 patient [‡]	286	62	Stages I-IV	Naïve
Zhang et al. 2018 ²⁸	EGFR	Unicentric	180	46	134	59.7/-	ADC, SCC, Others	119	61	Stages III-IV	Naïve
Zhang et al. 2020# ⁷⁰	EGFR	Unicentric	173	58	115	60.8/-	ADC SCC, LCC, NSCLC- NOS	_	-	Stages I-IV	Naïve
Zhang et al. 2020 ¹¹³	EGFR	Unicentric	248	113	135	62.23/-	ADC	117	131	Stages I-IV	Naïve
Zhang et al. 2020 ## ⁶⁸	EGFR	Unicentric	914	493	421	59.79/-	ADC	_	_	_	Naïve

Zhang et al. 2021 ⁴¹	EGFR KRAS ERBB2 TP53	Unicentric	134	56	78	63.6/-	ADC, SCC, ASC	28	106		Not specified
Zhang et al. 2021 ⁶⁹	EGFR	Unicentric	420	201	219	57.43/56.5	ADC	147	273	_	Naïve
Zhang et al. 2023 ¹¹⁴	EGFR	Unicentric	115	_	_	_/_	NSCLC	_	_	_	Naïve
Zhao et al. 2019 ⁸⁶	EGFR	Unicentric	579	334	245	60.1/-	ADC	_	_	Stages 0-IV	Not specified
Zhao et al. 2019 ¹¹⁵	EGFR	Unicentric	637	368	269	59.9/-	ADC	49	588	_	Naïve
Zhao et al. 2022 ⁷¹	EGFR	Unicentric	88	39	49	64.23/-	ADC	31	57	Stages II and IV	Naïve
Zhu et al. 2022 ³²	EGFR	Unicentric	1092	648	442	59.59/-	ADC	_	_	Stages I-III	Naïve

Zhu et al. 2021 ²⁹	EGFR TP53	Unicentric	199	86	113	Freq./Freq. [¶]	ADC	94	105	Stages III-IV	Naïve
Zuo et al. 2023 ⁸⁷	EGFR	Multicentric	767	372	395	-/62.04	ADC	_	_	Stages I-IV Others (34 patients)	Not specified

*Patients were excluded if treated with RT or chemotherapy, but targeted therapy is not specified.

†CT scans acquired prior surgery; no information on prior treatments.

[‡]Mainly adenocarcinoma cases.

§Patients did receive target treatment, but no information on the administration of other treatments (immunotherapy and/or chemotherapy) is specified.

These studies provide age data as frequencies establishing an age threshold.

**Inferred that NSCLC patients were included as it is specified that 17 patients had 19Del and 20 cases had L858R mutation; EGFR mutations are very rare in SCLC.

††In this study, there are 23 patients with no information about sex.

##Image acquired 3 months before PCR; no information about treatments.

§§CT images acquired within 1 month before pathological diagnosis.

M Imaging-proven progression on first- or second-generation TKIs; patients underwent chest contrast-enhanced CT at the time of confirmed progression, and the interval between CT and confirmed progression was within 3 days.

ADC, adenocarcinoma; ALK, anaplastic lymphoma kinase; ASC, adenosquamous carcinoma; CT, computed tomography; EGFR, epidermal growth factor receptor; ERBB2, v-erbb2 avian erythroblastic leukemia viral oncogene homolog 2; Freq., frequency; KRAS, Kirsten rat sarcoma viral oncogene homologue; LCC, large cell lung carcinoma; NOS, not otherwise specified; NSCLC, non-small cell lung cancer; PCR, polymerase chain reaction; PD-L1, programmed death ligand 1; PSC, pulmonary sarcomatoid carcinoma; RT, radiotherapy; SCC, Squamous cell carcinoma; SCLC, small-cell lung cancer; TKI, tyrosine kinase inhibitor; TP53, tumor suppressor protein 53.

FIGURES

Figure 1. PRISMA flowchart. AI, artificial intelligence; CLAIM, Checklist for Artificial Intelligence in Medical Imaging; CT, computed tomography; MRI, magnetic resonance imaging.

Figure 2. Forest plots of the included studies developing radiomics models using machine learning and/or deep learning methods for the prediction of EGFR mutation status. Numbers are estimated with 95% CIs in brackets and indicated by horizontal lines. For those studies with the same name for the first author and published the same year, a hashtag was added to unequivocally tag them as done in Tables 1 and 2 and in the reference list. EGFR, epidermal growth factor receptor; CI, confidence interval; DOR, diagnostic odds ration; FPR, false

Figure 3. Forest plots of the included studies developing combined models (radiomics + clinical data) using machine learning and/or deep learning methods for the prediction of EGFR mutation status. Numbers are estimates with 95% CIs in brackets and indicated by horizontal lines. For those studies with the same name for the first author and published the same year, a hashtag was added to unequivocally tag them as done in Tables 1 and 2 and in the reference list. EGFR, epidermal growth factor receptor; CI, confidence interval; DOR, diagnostic odds ration;

Figure 4. Forest plots of the included studies developing radiomics models using machine learning and/or deep learning methods for the prediction of **A**) ALK and **B**) KRAS mutation status. Numbers are estimates with 95% CIs in brackets and indicated by horizontal lines. For those studies with the same name for the first author and published the same year, a hashtag was added to unequivocally tag them as done in Tables 1 and 2 and in the reference list. ALK, anaplastic lymphoma kinase; CI, confidence interval; DOR, diagnostic odds ration; FPR, false

positive rate; KRAS, Kirsten rat sarcoma viral oncogene homologue.

Supplementary Figure S1. Hierarchical sROC curves of included studies for the comparative performance of radiomics models and combined models (radiomics + clinical data) using machine learning and/or deep learning methods for the prediction of EGFR mutation status (n = 24 and n = 23 studies, respectively). EGFR, epidermal growth factor receptor.

False Positive Rate

Supplementary Figure S2. Hierarchical sROC curve of included studies for the performance of radiomics models for the prediction of ALK mutation status (n = 3). ALK, anaplastic lymphoma kinase.

False Positive Rate

Supplementary Figure S3. Hierarchical sROC curve of included studies for the performance of radiomics models for the prediction of KRAS mutation status (n = 4). KRAS, Kirsten rat sarcoma viral oncogene homologue.

False Positive Rate

Supplementary tables

Supplementary Table S1. Search strategy applied for the qualitative analysis (systematic review).

Databases	Search strategy						
MEDLINE (via Pubmed)	("radiomics"[TIAB] OR "radiomic"[TIAB] OR "texture analysis"[TIAB]) AND ("lung neoplasms"[MESH] OR "lung cancer"[TIAB] OR "NSCLC"[TIAB] or "non-small cell lung cancer"[TIAB] OR "lung adenocarcinoma"[TIAB]) AND ("mutational status" OR "mutation" OR "molecular subtype" OR "ALK"[TIAB] OR "anaplastic lymphoma kinase"[TIAB] OR "BRAF"[TIAB] OR "EGFR"[TIAB] OR "Epidermal growth factor receptor"[TIAB] OR "ERRB2"[TIAB] OR "Receptor, ErbB- 2"[MESH] OR "HER2"[TIAB] OR "KRAS"[TIAB] OR "Kirsten rat sarcoma virus"[TIAB] OR "Proto Oncogene Proteins c met"[TIAB] OR "NTRK"[TIAB] OR "ROS"[TIAB] OR "c- ros"[TIAB])						
COCHRANE LIBRARY	 ("radiomics" OR "radiomic" OR "texture analysis") AND ("lung neoplasms" OR "lung cancer" OR "NSCLC" OR "non-small cell lung cancer") AND ("mutational status" OR "mutation" OR "molecular subtype" OR "ALK" OR "anaplastic lymphoma kinase" OR "BRAF" OR "EGFR" OR "ERRB2" OR "Receptor, ErbB-2" OR "HER2" OR "KRAS" OR "Kirsten rat sarcoma virus" OR "Proto Oncogene Proteins c met" OR "NTRK" OR "ROS" OR "c-ros") 						
EMBASE	('radiomics':ab,ti OR 'radiomics'/exp OR 'radiomic':ab,ti OR 'texture analysis':ab,ti) AND ('lung cancer'/exp OR 'lung cancer':ab,ti OR 'NSCLC'/exp OR 'NSCLC':ab,ti OR 'non small cell lung cancer'/exp OR 'non small cell lung cancer':ab,ti OR 'lung adenocarcinoma'/exp OR 'lung adenocarcinoma':ab,ti) AND						

('mutational status':ab,ti OR ('mutational' NEAR/2 'status') OR
'mutation':ab,ti OR 'mutation'/exp OR 'molecular subtype':ab,ti OR
('molecular' NEAR/2 'subtype') OR 'ALK':ab,ti OR 'ALK gene'/exp
OR 'anaplastic lymphoma kinase':ab,ti OR 'anaplastic lymphoma
kinase'/exp OR 'BRAF':ab,ti OR 'BRAF gene'/exp OR 'EGFR':ab,ti
OR 'EGFR gene'/exp OR 'Epidermal growth factor receptor':ab,ti
OR 'Epidermal growth factor receptor gene'/exp OR 'ERRB2':ab,ti
OR 'ERRB2 gene'/exp OR 'epidermal growth factor receptor 2'/exp
OR 'epidermal growth factor receptor 2':ab,ti OR 'HER2':ab,ti OR
'KRAS':ab,ti OR 'KRAS gene'/exp OR 'Kirsten rat sarcoma
virus':ab,ti OR 'Kirsten rat sarcoma virus'/exp OR 'Proto Oncogene
Proteins c met' OR 'MET':ab,ti OR 'MET gene'/exp OR
'NTRK':ab,ti OR 'NTRK gene'/exp OR 'c ros oncogene 1':ab,ti OR
'ROS1':ab,ti OR 'ROS1 gene'/exp)

Supplementary Table S2. Quality assessment results obtained after CLAIM evaluation.

N			Score			
	Study	Reviewer 1 (A.J.P.)	Reviewer 2 (F.B.B.)	Reviewer 3 (A.P.P.)	Mean score	Cut-off
1	Chang et al. 2021 ¹	28	24	27	26	17
2	Chang et al. 2021 ²	26	25	26	26	17
3	Dong et al. 2021 ³	23	22	19	21	18
4	Dong et al. 2022 ⁴	25	22	21	23	18
5	Feng et al. 2022 ⁵	20	22	23	22	18.5
6	Gao et al. 2023 ⁶	22	22	20	21	17.5
7	Huo et al. 2022 ⁷	22	25	25	24	17.5
8	Jia et al. 2019 ⁸	19	19	20	19	17
9	Jiang et al. 2022 ⁹	24	23	22	23	16.5
10	Le et al. 2021 ¹⁰	22	20	21	21	17.5
11	Li et al. 2018 ¹¹	25	28	22	25	19
12	Li et al. 2019 ¹²	23	22	21	22	17
13	Li et al. 2020 ¹³	25	23	22	23	19
14	Li et al. 2022 ¹⁴	21	21	21	21	17

15	Liu et al. 2020 ¹⁵	22	25	23	23	17
16	Liu et al. 2022 ¹⁶	24	23	22	23	17
17	Lu et al. 2020 ¹⁷	27	30	26	28	17.5
18	Lu et al. 2022 ¹⁸	22	25	21	23	17.5
19	Ma et al. 2020 ¹⁹	24	26	22	24	17
20	Nair et al. 2021 ²⁰	21	22	19	21	17.5
21	Ninomiya et al. 2021 ²¹	21	22	21	21	17.5
22	Ninomiya et al. 2023 ²²	21	22	22	22	17
23	Rios Velazquez et al. 2017 ²³	19	23	20	21	18
24	Rossi et al. 2021 ²⁴	20	22	19	20	17.5
25	Song et al. 2020 ²⁵	27	28	27	27	19
26	Tu et al. 2019 ²⁶	19	21	20	20	17
27	Wang et al. 2022 ²⁷	23	26	26	25	18
28	Wang et al. 2022 ²⁸	24	22	22	23	19
29	Weng et al. 2021 ²⁹	24	25	24	24	17.5
30	Wu 2020 ³⁰	20	22	21	21	17
31	Yang 2020 ³¹	22	23	23	23	17
32	Yang 2022 ³²	19	18	18	18	17
33	Zhang 2018 ³³	26	27	23	25	17
34	Zhang 2020 ³⁴	19	19	19	19	17

35	Zhang 2020 ³⁵	22	23	23	23	17
36	Zhang 2021 ³⁶	27	26	26	26	17
37	Zhao 2022 ³⁷	23	24	23	23	19
38	Zhu 2022 ³⁸	22	22	20	21	17.5

Supplementary Table S3. Studies included in the different meta-analyses conducted.

N	EGFR		ALK	KRAS	
	Radiomics models	Combined models	Radiomics models	Radiomics models	
1	Chang et al. 2021 ¹	Dong et al. 2022 ⁴	Chang et al. 2021 ²	Dong et al. 2021 ³	
2	Dong et al. 2021 ³	Gao et al. 2023 ⁶	Ma et al. 2020 ¹⁹	Le et al. 2021 ¹⁰	
3	Feng et al. 2022 ⁵	Huo et al. 2022^7	Song et al. 2020 ²⁵	RiosVelazquez et al. 2017 ²³	
4	Gao et al. 2023 ⁶	Jia et al. 2019 ⁸		Wang et al. 2022 ²⁸	
5	Le et al. 2021 ¹⁰	Jiang et al. 2022 ⁹			
6	Li et al. 2018 ¹¹	Li et al. 2018 ¹¹			
7	Li et al. 2019 ¹²	Li et al. 2019 ¹²			
8	Li et al. 2022 ¹⁴	Li et al. 2020 ¹³			

9	Liu et al. 2020 ¹⁵	Liu et al. 2020 ¹⁵	
10	Liu et al. 2022 ¹⁶	Lu et al. 2020 ¹⁷	
11	Lu et al. 2020 ¹⁷	Lu et al. 2022 ¹⁸	
12	Lu et al. 2022 ¹⁸	Ninomiya et al. 2023 ²²	
13	Nair et al. 2021 ²⁰	Rios Velazquez et al. 2017 ²³	
14	Ninomiya et al. 2021 ²¹	Rossi et al. 2021 ²⁴	
15	RiosVelazquez et al. 2017 ²³	Tu et al. 2019 ²⁶	
16	Tu et al. 2019 ²⁶	Wang et al. 2022 ²⁷	
17	Wang et al. 2022 ²⁷	Weng et al. 2021 ²⁹	
18	Weng et al. 2021 ²⁹	Wu 2020 ³⁰	
19	Yang 2020 ³¹	Yang 2022 ³²	
20	Zhang 2020 ³⁴	Zhang 2018 ³³	
21	Zhang 2020 ³⁵	Zhang 2020 ³⁵	
----	--------------------------	--------------------------	--
22	Zhang 2021 ³⁶	Zhang 2021 ³⁶	
23	Zhao 2022 ³⁷	Zhu 2022 ³⁸	
24	Zhu 2022 ³⁸		

ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma viral oncogene homologue.

Supplementary Table S4. Type of models (radiomic model/deep learning or combined [radiomic features + clinical variables]) developed in the studies for EGFR prediction and the radiomics/clinical features included. EGFR, epidermal growth factor receptor.

Study	Models	Radiomic features	Clinical variables
		ShortRunLowGreyLevelEmphasis_AllDirection_offset1_SDH	N/A
		Percentile85	
		OneVoxelVolume	
		Flatness	
		ShortRunEmphasis_AllDirection_offset_SD	
Chang et al. 2021 ¹	Radiomic	HaralickCorrelation_AllDirection_offset4_SD	
U		Zone Percentage	
		GLCM_Entropy_AllDirection_offset7_SD	
		Correlation_AllDirection_offset7_SD CT_GLCMEntropy_AllDirection_offset1_SD	
		HaralickCorrelation_angle135_offset7	
		LongRunHighGreyLevelEmphasis_angleO_offset 1	
		ShortRunLowGreyLevelEmphasis_AllDirection_offset7_SD	

		HaralickCorrelation_AllDirection_offset1_SD	
		SurfaceVolumeRatio	
Dong et al. 2021 ³	Deep learning	Not specified	N/A
		wavelet-HLL_GLCM_MaximumProbability	Smoking status
		wavelet-LLL_GLCM_MaximumProbability	Histological type
	Combined	original_GLCM_SumEntropy)	
		log-sigma-1-0-mm-3D_GLCM_MaximumProbability	
Dong et al. 2022 ⁴		wavelet-LHL_firstorder_Kurtosis	
		wavelet-LLL_firstorder_Skewness	
		log-sigma-2-0-mm-3D_firstorder_Kurtosis	
		original_shape_Sphericity	
		wavelet-LHL_GLSZM_LargeAreaHighG	
		Skewness.7_firstorder_wavelet-LHL SmallAreaHighGrayLevelEmphasis.7_GLSZM_wavelet-LHL	
5		HighGrayLevelZoneEmphasis.12_GLSZM_wavelet-HHH 90Percentile_firstorder_original	
Feng et al. 2022'	Radiomic	Variance.4_firstorder_square	
		Range.4_firstorder_square	

		GrayLevelVariance.26_GLSZM_wavelet-LHH	
		JointAverage.11_GLCM_wavelet-HLH	
		$MeanAbsolute \ Deviation.4_first order_square \ Robust MeanAbsolute \ Robust \ Robust MeanAbsolute \ Robust \ Robust \ Robust Me$	
		$Gray Level Non Uniform ity. 32_GLSZM_wavelet-LLH \ \ Gray Level Non Uniform ity. 1_girlm_original \\$	
		GrayLevelNonUniformity.4_girlm_logarithm GrayLevelNonUniformity.16_girlm_squareroot	
		HighGrayLevelRunEmphasis.5_girlm_squareroot	
		GrayLevelNonUniformityNormalized.21_GLSZM_wavelet-LLH LowGrayLevelRunEmphasis	
		girlm_original LowGrayLevelRunEmphasis.5_girlm_squareroot GrayLevel	
		Variance.32_GLSZM_wavelet-LLH	
		Minimum.4_firstorder_square SmallArealowGrayLevelEmphasis.11_GLSZM_wavelet-HLH	
		SmallArealowGrayLevelEmphasis.12_GLSZM_wavelet-HHH	
		Mean.12_firstorder_wavelet-HHH SmallArealowGrayLevelEmphasis.9_GLSZM_wavelet-HLL	
		Imc2.12 GLCM wavelet-HHH	N/A
		ADC	
		original_firstorder_Kurtosis	
C_{22} at al. 2022^6	Radiomic	original_firstorder_Median	CEA
Gao et al. 2023	Combined	original_firstorder_Skewness	Sex (male)
		log-sigma-1-0-mm-3D_firstorder_Energy	Nodule type (sub-

		log-sigma-4-0-mm-3D_GLDM_DependenceVariance	solidity)
		wavelet-LHL_GLRLM_LongRunLowGrayLevelEmphasis	
		wavelet-HLL_firstorder_Energy	
			Age
Hup at al. 2022^{7} *	Combined	127 factures (not encoified)	Sex (female)
Huo et al. 2022	Combined	137 features (not specified)	Non-smokers
			Clinical stage (I-II)
Via at al. 2010 ⁸	Combined		Sex
Jia et al. 2019		94 reatures (not specified)	Smoking history
		Skewness	
		Minimum	
ligna at al. 2022^9		Kurtosis	
Julig et al. 2022	Combined	Variance	
		Minimum	Age
		10th percentile	Sex

		SumSquare	Smoking
		SizeZoneNonUniformity	Tumor
		HighGrayLevelZoneEmphasis	Family history
		ZoneVariance	
		LargeDependence HighGrayLevelEmphasis	
		LargeDependenceHighGrayLevel Emphasis	
		DependenceEntropy	
		wavelet-LLLfirstorderEnergy	
		wavelet-LHHGLSZMGrayLevelNonUniformityNormalized	
		wavelet-HHLGLDMSmallDependenceLowGratLevelEmphasis	N/A
Le et al. 2021 ¹⁰	Radiomic	wavelet-HLHGLCM_MCC	
		wavelet-HLHGLSZMSmallAreaLowGrayLevelEmphasis	
		wavelet-HHHGLCMjointEnergy	
		wavelet-HHHGLRLMGrayLevelNonUniformityNormalized	
	Radiomic		Sex
Li et al. 2018 ¹¹	Combined	338 features (not specified)	Smoking status

		CT_GGS_Gray Span	Age
	Padiomia	CT_GGC_Gray Mean	Sex
Li et al. 2019 ¹²	Combined		Smoking status
	Combined		Clinical stage
			Lesion location
			Sex
Li et al. 2020 ¹³	Combined	12 features (not specified)	Age
			Smoking status
Li et al. 2022 ¹⁴	Radiomic	3 features (not specified)	_
		RADIOMIC MODEL:	
		wavelet-HLH_GLDM_DependenceVariance	
Lin et al. 2020^{15}	Radiomic	wavelet-LHL_GLDM_LargeDependenceLowGrayLevelEmphasis	
Liu et al. 2020	Combined	logarithm_GLCM_InverseVariance	
		square_GLDM_DependenceVariance	
		wavelet-HLH_GLDM_LargeDependenceHighGrayLevelEmphasis	

	wavelet-HHH_GLCM_Id	
	log-sigma-0-5-mm-3D_GLSZM_ZoneEntropy	
	square_GLCM_Correlation	Age
	original_GLCM_ClusterShade	Sex
	wavelet-LHH_GLDM_LargeDependenceHighGrayLevelEmphasis	Smoking history
	COMBINED MODEL:	
	wavelet-HLH_GLDM_DependenceVariance	
	custom_PatientSex	
	logarithm_GLCM_InverseVariance	
	square_GLCM_Correlation	
	wavelet-HLL_firstorder_Kurtosis	
	wavelet-LHL_GLRLM_LongRunLowGrayLevelEmphasis	
	wavelet-HLL_firstorder_Median	
	original_GLSZM_SizeZoneNonUniformityNormalized	
	exponential_firstorder_Skewness	

		wavelet-LLH_GLCM_ClusterShade	
		Mean absolute deviation 60 Percentile area Convex	
		Correlation	
		Dissimilarity	
		5-1 Homogeneity 2	
		10-4 Homogeneity 2	
Liu et al. 2022 ¹⁶	Radiomic	-333-7 Information measure corr 1	
		8-1 Information measure corr 1	-
		9-7 Information measure corr 1	
		2-4 Inverse diff norm	
		6-4 Inverse variance	
		8-4 Inverse variance	
		8-1 Max Probability	
		12-7 Max Probability	

		-333 Run length nonuniformity	
Lu et al. 2020 ¹⁷	Radiomic Combined	original_GLSZM_SmallAreaHighGrayLevelEmphasis original_GLSZM_SmallAreaLowGrayLevelEmphasis original_GLDM_LowGrayLevelEmphasis log-sigma-1-0-mm-3D_GLCM_Cluster Prominence log-sigma-3-0-mm-3D_GLDM_DependenceNonUniformityNormalized wavelet- LLL_GLCM_InverseVariance wavelet-LLH_GLCM_Imc2 wavelet-HLL_firstorder_Mean wavelet-HLL_GLSZM_LowGrayLevelZoneEmphasis wavelet-HLL_GLDM_SmallDependenceHighGrayLevelEmphasis wavelet-HLH_GLSZM_SizeZoneNonUniformityNormalized wavelet-HHH_firstorder_Skewness wavelet-HHH_firstorder_Skewness	Sex Smoking status Pathohistological subtype Vascular infiltration status
Lu et al. 2022 ¹⁸	Radiomic	1269 features (not specified)	Age Sex
	Combined		Smoking status Stage of disease

			Serum level of tumor
			markers (CEA,
			CYFRA 21-1, SCC,
			Pro-GRP)
Nair et al. 2021 ^{20†}	Radiomic	NGTDM_600_Complexity Glrl_Saggital_30_ShortRunEmphasis Glrl_Saggital_30_ShortRunHighGrayLevelEmphasis Glrl_Saggital_120_ShortRunHighGrayLevelEmphasis Glrl_Coronal_120_ShortRunHighGrayLevelEmphasis Glrl_Coronal_30_ShortRunEmphasis Glrl_Saggital_120_ShortRunEmphasis Glrl_Axial_30_ShortRunEmphasis	_
		Glrl_Coronal_120_ShortRunEmphasis	
		FirstOrder_HistogramBin2	
		BN MODEL:	
Ninomiya et al. 2021 ²¹	Radiomic	b0_GLCM_Energy_45,	
		b1/b0_GLSZM_ZSN_104	

		b1_GLCM_SumAverage_122	_
		b0_GLRLM_Lrlge_97)	
		OI MODEL:	
		GLRLM_ ShortRunLowGrayLevelEmphasis	
		GLSZM_ LowGrayLevelZoneEmphasis	
		GLSZM_ShortZoneLowGrayEmphasis	
		WD MODEL:	
		GLSZM_ LowGrayLevelZoneEmphasis _LL	
		GLSZM_SmallAreaLowGrayLevelEmphasis	
Ninomiya et al.	Combined	GLSZM_LargeAreaEmphasis	Sex
2023 ²²		Hist.RootMeanSquared	Smoking status
		GLDM_DependenceVariance	
RiosVelazquez et al.	Radiomic	imaging.Wavelet_LHH_GLCM_invDiffmomnor	
2017 ²³	Combined	imaging.LoG_sigma_3_mm_3D_GLSZM_highIntensityLarteAreaEmp	

		-	
		imaging.Wavelet_LLL_GLCM_clusProm	
		imaging.GLCM_maxProb	
		imaging.Wavelet_LLL_stats_energy imaging.Wavelet_HLL_stats_var	
		$imaging. LoG_sigma_3_mm_3D_GLSZM_largeAreaEmphasis imaging. Wavelet_LLH_stats_rangemastrices and the state and t$	Stage
		imaging.Wavelet_LHH_GLCM_clusProm	6
		imaging.Wavelet_LLL_GLSZM_highIntensityLarteAreaEmp	Sex
		$imaging. Wavelet_HLH_GLSZM_lowIntensitySmallAreaEmp \ imaging. Wavelet_HHL_stats_energy$	Smoking status
		imaging.Wavelet_LLH_stats_mean	2
		imaging.Stats median imaging.Wavelet HHL GLCM maxProb	Age
		imaging.LoG_sigma_3_mm_3D_GLCM_clusProm imaging.Shape_spherDisprop	Race
		imaging.Stats_kurtosis	
		imaging.Wavelet_HHH_GLCM_correl1	
		imaging.LoG_sigma_3_mm_3D_rlgl_grayLevelNonuniformity	
		First order_90 Percentile	
		First order Entropy	Sex
			bon
Rossi et al. 2021 ²⁴	Combined	First order_Maximum	Smoking status
		First order_Median	
		First order Robust mean absolute deviation	

First order_Root mean squared	
First order_Skewness	
First order_Uniformity	
GLCM_Correlation	
GLCM_Difference average	
GLCM_Difference entropy	
GLCM_InverseDifference	
GLCM_InverseDifferenceMoment	
GLCM_InverseDifferenceMomentNormalized	
GLCM_InverseDifferenceNormalized	
GLCM_InformationalMeasureCorrelation1	
GLCM_InformationalMeasureCorrelation2	
GLCM_InverseVariance	
GLCM_JointEnergy	
GLCM_JointEntropy	
GLCM_MaximalCorrelationCoefficient	

GLCM_MaximumProbability	
GLCM_SumEntropy	
GLDM_DependenceEntropy	
GLDM_DependenceNonUniformity	
GLDM_Dependence NonUniformityNormalized	
GLDM_DependenceVariance	
GLDM_GrayLevelNonUniformity	
GLDM_LargeDependenceEmphasis	
GLDM_SmallDependenceEmphasis	
GLRLM_GrayLevelNonUniformity	
GLRLM_GrayLevelNonUniformityNormalized	
GLRLM_RunEntropy	
GLRLM_RunPercentage	
GLRLM_ShortRunEmphasis	
GLSZM_GrayLevelNonUniformity	
GLSZM_GrayLevelNonUniformityNormalized	

		GLSZM_SizeZoneNonUniformityNormalized	
		GLSZM_SmallAreaEmphasis	
		GLSZM_ZoneEntropy	
		GLSZM_ZoneVariance	
		NGTDM_Coarseness	
		X0_GLRLM_RunLengthNon-Uniformity	Maximum diameter
Tu et al. 2019 ²⁶	Radiomic Combined	X4_H_median	Location
		X0_GLCM_homogeneity1	Sex
			Age
	Radiomic Combined [‡]		Sex
			Tumor staging
Wang et al. 2022 ²⁷		Not specified	Number
			Size
			Past recurrence
			Medication status

Combined	SmallAreaEmphasis LongRunHigh GreyLevelEmphasis_angle0_offset4 ClusterProminence_All Direction_offset7_SD InverseDifference Moment_All Direction_offset4_SD LowGreyLevel Run Emphasis_All Direction_offset4_SD LongRunLowGrey Level Emphasis_All Direction_offset7_SDCorrelation_angle0_offset7 std Deviation GLCM Energy_All Direction_offset4_SD	Smoking status Spiculation Air bronchogram CEA SCCA
Combined	Not specified	Smoking status Histological subtype
Radiomic	Not specified	-
Radiomic Combined	Nonwavelet-LHH_NGTDM_Strength wavelet-LHH_GLDM_DependenceEntropy wavelet-LLL_GLSZM_LargeAreaLowGrayLevelEmphasis wavelet-LLL_firstorder_Minimum	Sex Emphysema Interstitial lung disease
	Combined Combined Radiomic Combined	SmallAreaEmphasisLongRunHigh GreyLevelEmphasis_angle0_offset4ClusterProminence_All Direction_offset7_SDInverseDifference Moment_All Direction_offset4_SDLowGreyLevel Run Emphasis_All Direction_offset7_SDCorrelation_angle0_offset7std DeviationGLCM Energy_All Direction_offset4_SDCombinedNot specifiedRadiomicNonwavelet-LHH_NGTDM_Strengthwavelet-LHH_GLDM_DependenceEntropywavelet-LLL_GLSZM_LargeAreaLowGrayLevelEmphasiswavelet-LLL_firstorder_Minimum

		wavelet-LLH_NGTDM_Contrast	
		wavelet-LHH_NGTDM_Strength	
		log-sigma-1-5-mm-3D_firstorder_Kurtosis	
		wavelet-LHL_GLCM_ClusterShade	
		wavelet-LHH_NGTDM_Strength	
		wavelet-LLL_GLSZM_LargeAreaLowGrayLevelEmphasis	
		wavelet-LLH_firstorder_Mean	
		original_NGTDM_Contrast	
		original_firstorder_Kurtosis	
		log-sigma-1-5-mm-3D_firstorder_Kurtosis	
		wavelet-LLL_NGTDM_Contrast	
		original_GLCM_MaximumProbability	
		wavelet-LLL_GLSZM_LargeAreaLowGrayLevelEmphasis	
		IIF.range	Histological subtype
Zhang 2018 ³³	Combined	IIF.Skewness	Sex
		W _{LLH} F.IF.mean_absulute_eviation	Smoking status

		W _{LHH} F.IF.median	
		W _{LLH} F.IF.mean	
		W _{LLH} F.GLCM.variance	
		GLRLM_ HighGrayLevelRunEmphasis	
		GLSZM_HighGrayLevelZoneEmphasis	
TI 1 1 1 1 1 1 1 1 1 1	~	GLDM_DependenceVariance	
Zhang 2020 ³⁴	Radiomic	GLSZM_ GreyLevelNon UniformityNormalized	-
		GLSZM_ZoneEntropy	
			Sex
71 202035	Radiomic		Histopathological
Znang 2020	Combined	/84 Teatures (not specified)	Subtype
			Age
		fo_Skewness	Smoking history
Zhang 2021 ³⁶	Radiomic	exp_GLRLM_ShortRunEmphasis	Bubble-like lucency
	Combined	exp_GLRLM_ShortRunHighGrayLevelEmphasis	Pleural attachment
		exp_GLDM_SmallDependenceEmphasis	Pleural retraction

		grad_GLDM_DependenceEntropy	
		LLH_fo_90P	
		LLH_GLCM_SumEntropy	
		LLL-fo_kurtosis	
		LLL-GLCM_ClusterProminence	
		LLL_GLSZM_GrayLevelNonUniformityNormalized	
		LLL_GLSZM_GrayLevelVariance	
		LLL_GLSZM_ZoneEntropy	
		CT_Shape_Sphericity	
	Radiomic	CT_GLRLM_ShortRunEmphasis	
Zhao 2022 ^{37§}		CT_GLRLM_ShortRunHighGreyLevelEmphasis	-
		CT_NGLDM_Busyness	
		CT_GlzIm_ShortZoneEmphasis	
		log_sigma_1.0_mm_3D_GLRLM_RunVariance	Sex
Zhu 2022 ³⁸	Combined	wavelet_LLH_firstorder_RootMeanSquared	Age
		log-sigma-2-0-mm-3D_GLCM_ClusterShade	Emphysema

wavelet_HHH_firstorder_Mean	Pathological subtype

*Combined model also included 14 CT features: location (peripheral), tumor size \geq 3cm, subsolid density, spiculation, lobulation, air bronchogram, air space, necrosis, calcification (presence), vascular convergence sign, pleural retraction sign, pleural effusion, lymphatic metastasis and multiple pulmonary metastasis.

[†]Top 10 selected features. The maximum number of texture features included was determined by maximizing cross-validated accuracy. This value was not the same for each binary group or each machine learning model.

‡Note that this model includes radiomic features + deep features and clinical variables.

§Model 1.

BN, Betti numbers; CEA, carcinoembryonic antigen; CYFRA 21-1, fragment of cytokeratin sub-unit 19; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighbouring gray tone difference matrix; OI, original image; Pro-GRP, pro-gastrin-releasing peptide; SCC, squamous cell carcinoma antigen; WD, wavelet decomposition.

Supplementary Table S5. Type of models (radiomic model or combined [radiomic features + clinical variables]) developed in the studies for ALK prediction and the radiomics/clinical features included. ALK, anaplastic lymphoma kinase.

Study	Models	Radiomic features	Clinical variables
		CT_uniformity	
		CT_LongRunEmphasis_AllDirection_offset4_SD	
		CT_HaraEntropy	
		CT_GLCMEnergy_angle135_offset7	
	Radiomic	CT_LongRunHighGreyLevelEmphasis_angle45_offset1	
Chang et al. 2021^2		CT_LongRunLowGreyLevelEmphasis_AllDirection_offset7_SD	
		CT_Correlation_AllDirection_offset4_SD	
		CT_Percentile70	
		CT_HaralickCorreltion_AllDirection_offset4_SD	
		CT_LongRunLowGreyLevelEmphasis_AllDirection_offset4_SD	_
		CT_LongRunEmphasis_angle135_offset4	
		CT_LongRunHighGreyLevelEmphasis_angle90_offset4	
	1		i i i i i i i i i i i i i i i i i i i

		CT_LongRunLowGreyLevelEmphasis_AllDirection_offset1_SD
		CT_HaralickCorreltion_AllDirection_offset7_SD
		CT_ShortRunEmphasis_AllDirection_offset1_SD
		CT_LongRunHighGreyLevelEmphasis_angle0_offset1
		CT_GLCMEntropy_angle90_offset1
		CT_Percentile30
		CT_LongRunEmphasis_angle90_offset4
		CT_LongRunEmphasis_AllDirection_offset1_SD
		PRE-CONTRAST MODEL:
		wavelet-LLL_GLCM_DifferenceVariance
Ma et al. 2020 ¹⁹		wavelet-LLH_firstorder_Median
Ma et al. 2020 ¹⁹	Kadionnic	wavelet-LLH_NGTDM_Busyness
		wavelet-LHL_GLSZM_LargeAreaLowGrayLevelEmphasis
		wavelet-HHH_GLSZM_LargeAreaLowGrayLevelEmphasis
		wavelet-LHL_firstorder_Energy
	1	

wavelet-HHL_firstorder_90Percentile	
wavelet-HHL_GLCM_JointEntropy	
wavelet-HHL_firstorder_Uniformity	
wavelet-HHL_firstorder_RobustMeanAbsoluteDeviation	
wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis	
wavelet-HLH_firstorder_Median	
wavelet-LHL_GLDM_LargeDependenceLowGrayLevelEmphasis	
wavelet-HHL_GLCM_InverseDifference	
wavelet-HHL_firstorder_InterquartileRange	
wavelet-HHL_GLCM_MaximumProbabiblity	
wavelet-HHH_GLSZM_SmallAreaLowGrayLevelEmphasis	
wavelet-HHL_firstorder_Mean	
wavelet-HLL_GLCM_ClusterShade	
wavelet-HHL_GLSZM_SmallAreaLowGrayLevelEmphasis	
wavelet-LHH_GLCM_MaximalCorrelationCoefficient	
wavelet-LLL_GLSZM_SizeZoneNonUniformityNormalized	

wavelet-LLL_GLSZM_SmallAreaEmphasis	
wavelet-HHL_GLCM_ InverseDifferenceNormalized	
POST-CONTRAST MODEL:	
$wavelet-LHH_GLDM_SmallDependenceHighGrayLevelEmphasis$	
wavelet_HHL_GLSZM_GrayLevelNonUniformity	
wavelet-LLH_firstorder_Mean	
wavelet-LLH_GLSZM_HighGrayLevelZoneEmphasis	
wavelet-LLH_GLSZM_SmallAreaHighGrayLevelEmphasis	
wavelet-LLH_GLSZM_SmallAreaLowGrayLevelEmphasis	
wavelet-HHH_GLCM_MaximumProbability	
wavelet-LLL_GLDM_LargeDependenceLowGrayLevelEmphasis	
wavelet-HLL_GLDM_DependenceVariance	
wavelet-HHH_firstorder_Mean	
wavelet-HHH_GLDM_LowGrayLevelEmphasis	
wavelet-LLH_firstorder_90Percentile	

		wavelet-HHL_GLDM_DependenceVariance	
		wavelet-HHH_GLCM_MaximalCorrelationCoefficient	
		wavelet-HHH_NGTDM_Contrast	
		wavelet-original_GLCM_InverseVariance	
		wavelet-LLH_firstorder_Range	
		wavelet-HHL_GLCM_MaximalCorrelationCoefficient	
		wavelet-HLL_GLSZM_GrayLevelNonUniformityNormalized	
		RADIOMIC MODEL:	
	Radiomic		
		Original_Firstorder_90Percentile	
		Original_Firstorder_Entropy	
Song et al. 2020 ²⁵		Original_Firstorder_Maximum	
	Combined	Wavelet-LHH_Firstorder_10Percentile	
		Wavelet-HLL_Firstorder_Median	Age
		Wavelet-HHH_Firstorder_Mean	Sex
		LoG-sigma-1-0-mm-3D_Firstorder_Median	Smoking history

LoG-sigma-1-0-mm-3D Firstorder RootMeanSquared	Smoking index
LoG-sigma-1-0-mm-3D_Firstorder_Minimum	Clinical stage Distal
LoG-sigma-2-0-mm-3D_Firstorder_10Percentile	Pathological
LoG-sigma-3-0-mm-3D_Firstorder_90Percentile	tumor
LoG-sigma-5-0-mm-3D_Firstorder_Skewness	
Wavelet-LHH GLCM Correlation	
Wavelet-LHL_GLCM_InverseDifferenceNormalized	
Wavelet-HHH_ GLCM _InformationalMeasureofCorrelation1	
LoG-sigma-1-0-mm-3D_GLCM _Autocorrelation	
LoG-sigma-2-0-mm-3D_GLCM _InverseVariance	
Wavelet-HHH_ GLSZM _ SmallAreaHighGrayLevelEmphasis	
Wavelet-HLL_ GLSZM _ZoneEntropy	
Wavelet-HLH_ GLSZM _ZoneEntropy	
LoG-sigma-2-0-mm-3D_GLSZM _ZoneEntropy	

LoG-sigma-3-0-mm-3D_GLSZM _ SmallAreaEmphasis	
LoG-sigma-3-0-mm-3D_GLSZM _ Size-ZoneNonUniformityNormalized	
LoG-sigma-5-0-mm-3D_GLSZM _ GrayLevelNonUniformityNormalized	
Wavelet-LHH_GLDM_ LargeDependenceHighGrayLevelEmphasis	
LoG-sigma-1-0-mm-3D_GLDM _ HighGrayLevelEmphasis	
LoG-sigma-3-0-mm-3D_GLRLM_RunPercentage	
LoG-sigma-4-0-mm-3D_GLRLM _ LongRunLowGrayLevelEmphasis	
COMBINED MODEL:	
Current smoker	
Stage I	
Male	
Local lymphadenopathy	
Pericardial effusion	
Left Lower Lobe lesion	
No cavity in the lesion	
	I

Lobulated margin	
No pleural retraction sign	
No local lymphadenopathy	
Wavelet-HHL_Firstorder_Kurtosis	
Wavelet-HLL_Firstorder_Median	
Wavelet-LHH_Firstorder_Skewness	
Wavelet-LLL_Firstorder_Minimum	
Wavelet-HLH_Firstorder_Median	
LoG-sigma-1-0-mm-3D_Firstorder_Minimum	
LoG-sigma-2-0-mm-3D_Firstorder_Minimum	
Wavelet-LLL_GLCM_ClusterShade	
Wavelet-LLH_GLCM _InformationalMeasureofCorrelation2	
Wavelet-HLH_GLCM _InformationalMeasureofCorrelation2	
Wavelet-HLH_GLCM_InformationalMeasureofCorrelation1	
LoG-sigma-1-0-mm-3D_GLCM_InformationalMeasureofCorrelation1	
LoG-sigma-3-0-mm-3D_GLCM_InformationalMeasureofCorrelation2	

LoG-sigma-5-0-mm-3D_GLCM_InformationalMeasureofCorrelation2
Original_Shape_MajorAxisLength
Wavelet-HLH_GLSZM_SizeZoneNon-Uniformity
LoG-sigma-4-0-mm-3D_GLSZM_GrayLevelNonUniformityNormalized
Wavelet-HLH_GLDM_ LargeDependenceHigh GrayLevelEmphasis
Wavelet-HHH_GLDM_ LargeDependenceHigh GrayLevelEmphasis
Original_GLRLM_HighGrayLevelRunEmphasis

GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighbouring gray tone difference matrix.

studies for	medRxiv preprint doi: https://doi.o (which was not certified by pee
riables	org/10.1 er revie
	101/2024.05.31.24308261; this version posted May 31, 2024. The copyright holder for this v) is the author/funder, who has granted medRxiv a license to display the preprint in perpet All rights reserved. No reuse allowed without permission.
103	ity.

Supplementary Table S6. Type of models (radiomic model or combined [radiomic features + clinical variables]) developed in the studies for KRAS prediction and the radiomics/clinical features included. KRAS, Kirsten rat sarcoma viral oncogene homologue.

Study	Models	Radiomic features	Clinical varial
Dong et al. 2021 ³	Radiomic	Not specified	-
Le et al. 2021 ¹⁰	Radiomic	wavelet-LLHGLSZMLargeAreaEmphasis wavelet-LLLGLDMDependenceEntropy wavelet-LHHGLDMLargeDependenceLowGrayLevelEmphasis ori-firstorderkurtosis wavelet-HLHGLCMInverseVariance wavelet-HLLGLSZMSmallAreaHighGrayLevelEmphasis wavelet-LHHGLCMId wavelet-HHLGLCMDifferenceEntropy	_

	wavelet-LLLGLSZMGrayLevelinonUniformityNormalized		
		wavelet-HHHGLCMDifferenceAverage	
		wavelet-HHHGLDMDependenceEntropy	
		imaging.LoG_sigma_3_mm_3D_GLSZM_highIntensityLarteAreaEmp	
		imaging.Wavelet_LHH_GLCM_clusProm imaging.Wavelet_LHH_GLCM_energy	
		imaging.Wavelet_LLL_stats_energy imaging.Wavelet_LLL_stats_median	
		imaging.LoG_sigma_3_mm_3D_GLSZM_largeAreaEmphasis	
		imaging.Wavelet_HHH_GLSZM_lowIntensitySmallAreaEmp	
		imaging.Wavelet_HHH_GLCM_correl1 imaging.LoG_sigma_3_mm_3D_GLCM_clusProm	
		imaging.Wavelet_LLL_GLSZM_highIntensityLarteAreaEmp imaging.Wavelet_HHL_stats_energy	
RiosVelazquez et al.	Radiomic Combined	imaging.Wavelet_HLL_stats_var imaging.Wavelet_HLH_GLSZM_lowIntensitySmallAreaEmp	Stage
2017 ²³		imaging.Wavelet_LHH_rlgl_GrayLevelNonuniformity	Suge
		imaging.LoG_sigma_3_mm_3D_GLSZM_lowIntensitySmallAreaEmp imaging.GLCM_clusShade	Sex
		imaging.Wavelet_LHH_GLCM_invDiffmomnor imaging.Wavelet_HLL_stats_min	Smoking status
		$imaging. Wavelet_LLL_rlgl_longRunHighGrayLevEmpha\ imaging. Wavelet_LLH_stats_mean$	
			Age
			Race
		CT_square_GLSZM_SizeZoneNonUniformityNormalized	
Wang et al. 2022 ²⁸	Radiomic		_
		C1_wavelet-LHH_GLDM_DependenceNonUniformityNormalized	

	CT_wavelet-HHL_firstorder_Skewness	
	CT wavelet-HHL GLDM DependenceNonUniformityNormalized	

GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix.

medRxiv preprint doi: https://doi.org/10.1101/2024.05.31.24308261; this version posted May 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Supplementary Table S7. Results of the meta-regression analyzing the effects of age, type of segmentation (manual/semi-automatic/automatic), type of model (radiomics/combined [radiomic features + clinical data) and artificial intelligence methodology (machine learning/deep learning).

AGE Fixed-effects coefficients					
	Estimate	SE	Z	<i>p</i> -value	CI 95%
tsens.(Intercept)	4.488	2.181	2.058	0.040	[0.214, 8.762]
tsens.AGE	-0.052	0.035	-1.483	0.138	[-0.121, 0.017]
tfpr.(Intercept)	-0.156	2.288	-0.068	0.946	[-4.640, 4.328]
tfpr.AGE	-0.012	0.037	-0.318	0.750	[-0.084, 0.061]

Variance components: between-studies Std. Dev and correlation matrix

	SD	tsens	tfpr
tsens	0.395	-	0.819
tfpr	0.431	0.819	-

TYPE OF SEGMENTATION

Fixed-effects coefficients

	Estimate	SE	Z	<i>p</i> -value	CI 95%
tsens.(Intercept)	1.217	0.127	9.599	0.000	[0.968, 1.465]
tsens.SegmentationSemiautomatic	-0.086	0.241	-0.356	0.722	[-0.558, 0.387]

medRxiv preprint doi: https://doi.org/10.1101/2024.05.31.24308261; this version posted May 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

tsens.SegmentationUnknown	0.347	0.708	0.491	0.624	[-1.040, 1.734]
tfpr.(Intercept)	-0.984	0.133	-7.426	0.000	[-1.244, -0.725]
tfpr.SegmentationSemiautomatic	0.272	0.254	1.067	0.286	[-0.227, 0.770]
tfpr.SegmentationUnknown	0.397	0.697	0.569	0.569	[-0.970, 1.763]

Variance components: between-studies Std. Dev and correlation matrix

	SD	tsens	tfpr
tsens	0.465	-	0.827
tfpr	0.511	0.827	-

CONTRAST

Fixed-effects coefficients

	Estimate	SE	Z	<i>p</i> -value	CI 95%
tsens.(Intercept)	1.244	0.608	2.045	0.041	[0.052, 2.437]
tsens.Contrastcontrast-enhanced	0.151	0.650	0.232	0.817	[-1.124, 1.425]
tsens.Contrastnon-contrast CT	-0.096	0.620	-0.156	0.876	[-1.312, 1.119]
tfpr.(Intercept)	-0.619	0.638	-0.970	0.332	[-1.870, 0.632]
tfpr.Contrastcontrast-enhanced	-0.509	0.683	-0.745	0.456	[-1.848, 0.829]
tfpr.Contrastnon-contrast CT	-0.309	0.650	-0.476	0.634	[-1.584, 0.965]

Variance components: between-studies Std. Dev and correlation matrix

medRxiv preprint doi: https://doi.org/10.1101/2024.05.31.24308261; this version posted May 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

	SD		tsens		tfpr	
tsens	0.468				0.889	
tfpr	0.511		0.889		-	
TYPE OF MODEL						
Fixed-effects coefficients						
	Estimate	SE	Z	<i>p</i> -value	CI 95%	
tsens.(Intercept)	1.281	0.133	9.603	0.000	[1.020, 1.543]	
tsens.Modelrad	-0.193	0.197	-0.980	0.327	[-0.579, 0.193]	
tfpr.(Intercept)	-0.939	0.146	-6.413	0.000	[-1.226, -0.652]	
tfpr.Modelrad	0.006	0.222	0.026	0.979	[-0.429, 0.441]	
Variance components: between-studies Std. Dev and correlation matrix						
	SD		tsens		tfpr	

AI METHODOLOGY

tsens

tfpr

Fixed-effects coefficients

	Estimate	SE	Z	<i>p</i> -value	CI 95%
tsens.(Intercept)	1.215	0.232	5.2240	0.000	[0.761, 1.670]
tsens.TypeML	-0.022	0.257	-0.087	0.930	[-0.526, 0.481]

0.434

0.524

0.828

-

_

0.828
tfpr.(Intercept)	-0.898	0.257	-3.489	0.000	[-1.403, 0.394]
tfpr.TypeML	-0.052	0.285	-0.184	0.854	[-0.610, 0.505]
Variance components: between-studies Std. Dev and correlation matrix					
	SD		tsens		tfpr
tsens	0.442		-		0.795

AI, artifical intelligence; CI, confidence interval; ML, machine learning; rad, model including only radiomic features; SE, standard error; SD, Standard deviation; z, standard score in a gaussian distribution; tsens, logarithmic transformation of sensitivity; tfpr, logarithmic transformation of false positive rate.

REFERENCES

- 1 Chang C, Zhou S, Yu H et al. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. *Eur Radiol*. 2021; 31(8): 6259-6268.
- 2 Chang C, Sun X, Wang G et al. A machine learning model based on PET/CT radiomics and clinical characteristics predicts ALK rearrangement status in lung adenocarcinoma. *Front Oncol.* 2021; 11: 603882.
- 3 Dong Y, Hou L, Yang W et al. Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images. *Quant Imaging Med Surg.* 2021; 11(6): 2354-2375.
- 4 Dong Y, Jiang Z, Li C et al. Development and validation of novel radiomicsbased nomograms for the prediction of EGFR mutations and Ki-67 proliferation index in non-small cell lung cancer. *Quant Imaging Med Surg.* 2022; 12(5): 2658-2671.
- 5 Feng Y, Song F, Zhang P et al. Prediction of EGFR mutation status in non-small cell lung cancer based on ensemble learning. *Front Pharmacol.* 2022; 13: 897597.
- 6 Gao J, Niu R, Shi Y et al. The predictive value of [(18)F]FDG PET/CT radiomics combined with clinical features for EGFR mutation status in different clinical staging of lung adenocarcinoma. *EJNMMI Res.* 2023; 13(1): 26.
- 7 Huo JW, Luo TY, Diao L et al. Using combined CT-clinical radiomics models to identify epidermal growth factor receptor mutation subtypes in lung adenocarcinoma. *Front Oncol.* 2022; 12: 846589.
- 8 Jia TY, Xiong JF, Li XY et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. *Eur Radiol*. 2019; 29(9): 4742-4750.
- 9 Jiang M, Yang P, Li J et al. Computed tomography-based radiomics quantification predicts epidermal growth factor receptor mutation status and

efficacy of first-line targeted therapy in lung adenocarcinoma. *Front Oncol.* 2022; 12: 985284.

- 10 Le NQK, Kha QH, Nguyen VH et al. Machine learning-based radiomics signatures for EGFR and KRAS mutations prediction in non-small-cell lung cancer. *Int J Mol Sci.* 2021; 22(17).
- 11 Li XY, Xiong JF, Jia TY et al. Detection of epithelial growth factor receptor (EGFR) mutations on CT images of patients with lung adenocarcinoma using radiomics and/or multi-level residual convolutionary neural networks. *J Thorac Dis.* 2018; 10(12): 6624-6635.
- 12 Li X, Yin G, Zhang Y et al. Predictive power of a radiomic signature based on (18)F-FDG PET/CT images for EGFR mutational status in NSCLC. *Front Oncol.* 2019; 9: 1062.
- 13 Li S, Luo T, Ding C et al. Detailed identification of epidermal growth factor receptor mutations in lung adenocarcinoma: Combining radiomics with machine learning. *Med Phys.* 2020; 47(8): 3458-3466.
- 14 Li S, Li Y, Zhao M et al. Combination of (18)F-fluorodeoxyglucose PET/CT radiomics and clinical features for predicting epidermal growth factor receptor mutations in lung adenocarcinoma. *Korean J Radiol.* 2022; 23(9): 921-930.
- 15 Liu G, Xu Z, Ge Y et al. 3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma. *Transl Lung Cancer Res.* 2020; 9(4): 1212-1224.
- 16 Liu Y, Zhou J, Wu J et al. Development and validation of machine learning models to predict epidermal growth factor receptor mutation in non-small cell lung cancer: a multi-center retrospective radiomics study. *Cancer Control.* 2022; 29: 10732748221092926.
- 17 Lu X, Li M, Zhang H et al. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. *Phys Med Biol.* 2020; 65(5): 055012.

- 18 Lu J, Ji X, Wang L et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. *Dis Markers*. 2022; 2022: 2056837.
- 19 Ma DN, Gao XY, Dan YB et al. Evaluating solid lung adenocarcinoma anaplastic lymphoma kinase gene rearrangement using noninvasive radiomics biomarkers. *Onco Targets Ther.* 2020; 13: 6927-6935.
- 20 Nair JKR, Saeed UA, McDougall CC et al. Radiogenomic models using machine learning techniques to predict EGFR mutations in non-small cell lung cancer. *Can Assoc Radiol J.* 2021; 72(1): 109-119.
- 21 Ninomiya K, Arimura H, Chan WY et al. Robust radiogenomics approach to the identification of EGFR mutations among patients with NSCLC from three different countries using topologically invariant Betti numbers. *PLoS One*. 2021; 16(1): e0244354.
- 22 Ninomiya K, Arimura H, Tanaka K et al. Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients. *Comput Methods Programs Biomed*. 2023; 236: 107544.
- 23 Rios Velazquez E, Parmar C, Liu Y et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. *Cancer Res.* 2017; 77(14): 3922-3930.
- 24 Rossi G, Barabino E, Fedeli A et al. Radiomic detection of EGFR mutations in NSCLC. *Cancer Res.* 2021; 81(3): 724-731.
- 25 Song L, Zhu Z, Mao L et al. Clinical, conventional ct and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients. *Front Oncol.* 2020; 10: 369.
- 26 Tu W, Sun G, Fan L et al. Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. *Lung Cancer*. 2019; 132: 28-35.
- 27 Wang C, Ma J, Shao J et al. Predicting EGFR and PD-L1 status in NSCLC patients using multitask ai system based on CT images. *Front Immunol.* 2022; 13: 813072.

- 28 Wang J, Lv X, Huang W et al. Establishment and optimization of radiomics algorithms for prediction of KRAS gene mutation by integration of NSCLC gene mutation mutual exclusion information. *Front Pharmacol.* 2022; 13: 862581.
- 29 Weng Q, Hui J, Wang H et al. Radiomic feature-based nomogram: a novel technique to predict EGFR-activating mutations for EGFR tyrosin kinase inhibitor therapy. *Front Oncol.* 2021; 11: 590937.
- 30 Wu S, Shen G, Mao J et al. CT radiomics in predicting EGFR mutation in nonsmall cell lung cancer: a single institutional study. *Front Oncol.* 2020; 10: 542957.
- 31 Yang C, Chen W, Gong G et al. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. *Transl Cancer Res.* 2020; 9(11): 6683-6690.
- 32 Yang X, Liu M, Ren Y et al. Using contrast-enhanced CT and non-contrastenhanced CT to predict EGFR mutation status in NSCLC patients-a radiomics nomogram analysis. *Eur Radiol*. 2022; 32(4): 2693-2703.
- 33 Zhang L, Chen B, Liu X et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. *Transl Oncol.* 2018; 11(1): 94-101.
- 34 Zhang M, Bao Y, Rui W et al. Performance of (18)F-FDG PET/CT radiomics for predicting EGFR mutation status in patients with non-small cell lung cancer. *Front Oncol.* 2020; 10: 568857.
- 35 Zhang B, Qi S, Pan X et al. Deep CNN model using CT radiomics feature mapping recognizes EGFR gene mutation status of lung adenocarcinoma. *Front Oncol.* 2020; 10: 598721.
- 36 Zhang G, Cao Y, Zhang J et al. Predicting EGFR mutation status in lung adenocarcinoma: development and validation of a computed tomography-based radiomics signature. *Am J Cancer Res.* 2021; 11(2): 546-560.

- 37 Zhao HY, Su YX, Zhang LH et al. Prediction model based on 18F-FDG PET/CT radiomic features and clinical factors of EGFR mutations in lung adenocarcinoma. *Neoplasma*. 2022; 69(1): 233-241.
- 38 Zhu H, Song Y, Huang Z et al. Accurate prediction of epidermal growth factor receptor mutation status in early-stage lung adenocarcinoma, using radiomics and clinical features. *Asia Pac J Clin Oncol.* 2022; 18(6): 586-594.