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Abstract

We present a dynamical model of the onset and severity of cyclical
epidemic disease taking account not only of seasonal boosts during the
infectious season, but also of residual immunity remaining from one season
to the next. After studying the mathematical properties of the model and
the role of its parameters, we focus on the effect of titers remaining after
one season on the timing and severity of the onset of the next season’s
epidemic. Suppressing the epidemic for one season, or witnessing a strong
surge for one season, both have lasting effects for a number of successive
seasons.

1 Introduction

Determining the onset of epidemic outbreak, whether of an emerging, newly
recognized, virulent pathogen [1] or of a recurrent seasonal infection [2, 3, 4], is
a vexing problem both for epidemiological research and for population health
planning. This has been stressed for a variety of recurrent viral epidemics
worldwide [5, 6, 7].

In a previous study [8] of the residual immunity remaining after each cycle,
often annual, of a recurrent infectious disease, we modelled the yearly trajectory
of antibody titre as a function solely of the waning process and the functional
form, namely the temporal distribution of infections over an infectious season.
With this minimal model, purely analytic closed-form solutions separating the
effects of the few parameters involve were derived.

One result of simulating that model over 100 successive epidemic cycles,
with the output of one cycle serving as the input of the next, was a strong
result predicting residual titre as a function of shift of peak infection from one
season to the next.

In the present paper, we investigate the other component of the reciprocal
connection between titre and seasonality, namely the effect of titre remaining
after one season on the timing and severity of the onset of the next season’s
epidemic.

Our model, which already incorporates a probabilistic determination of peak
seasonality, is naturally adaptable to our goal through the linking of the peak
probabilities to the pre-season titres. And the severity, or amplitude, which in
our model is linearly predictive of post-season titres, can be linked in the same
way to the pre-existing titres.

Epidemiological study focuses on the individuals in a population, whether
they are susceptible to infection, exposed to the pathogen, symptomatic, hospi-
talized, in ICU, recovered or deceased. Populations are subdivided by age, sex,
socioeconomic level and geographical location. Epidemic models calculate the
number of individuals with different statuses and account for their movements
from one compartment to another. Nevertheless, the population average titre
of antibodies against the pathogen implicated in the epidemic should track the
overall progression of the epidemic. A titre-based model can avoid the numerous
parameters required in compartmental models.
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The onset and severity of an epidemic are largely unpredictable. But there
was widespread prediction that the lowering of antibody levels against influenza
[9] and RSV [10] as a side-effect of non-pharmaceutical interventions during
the covid-19 pandemic (masking, testing, lockdown, isolation,...) would lead
to early onset and increased severity of epidemics of theses diseases after the
pandemic. And this prediction was validated in subsequent seasons.

Many other factors may enter into the timing of the induction of an infectious
season, such as climate, demographic changes, antigenic shift in the pathogen,
changes in transmission patterns [5], and others. Nevertheless low residual titre
levels remain a likely driver of early onset time and severity.

2 The model

2.1 The infectious cycles

Our model contains a minimum of elements, namely a probability distribution
representing the time course of the infectious period, including parameters for
peak infections, severity and duration, as well as a waning parameter. In ad-
dition, the I-th season requires an input titre, associated with a reference time
TI−1, which we take as the end of the I − 1-st infectious season.

Figure 1: Concept of basic model.

As in Figure 1, the change of antibody titre between reference times TI−1

and TI is represented by the equation:

XTI
= XTI−1

e−ω(TI−TI−1) +

∫ TI

TI−1

AIfµ(t)e
−ω(TI−t)dt, (1)

where

• TI−1 is end of the previous cycle (in months),

• XTI−1
is the titre (in practice the log of the measured titre) at time TI−1,

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.31.24308217doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.31.24308217
http://creativecommons.org/licenses/by-nc-nd/4.0/


• µ or µI is the peak month of the current infectious season,

• TI is end of the current cycle,

• XTI
is the titre (or log titre) at end of the current cycle

• ω is the decay parameter for exponential waning,

• AI is the amplitude or severity of the infectious season,

• fµ(t) is a probability density; our example this paper is based on a raised
cosine, between onset date to = µ− π

a and end date te = µ+ π
a :

fµ =
a

2π
(1 + cos a(t− µ)) (2)

for t ∈ [to, te], and fµ = 0 elsewhere, with dispersion a−1.

Equation (1) may be rewritten

XTI
= XTI−1

e−ω(TI−TI−1) +AIe
−ωTI

∫ te

to

fµ(t)e
ωtdt. (3)

The integral in this formula is∫ te

to

fµ(t)e
ωtdt = eµw

sinh(πθ)

πθ(1 + θ2)
, (4)

where θ = ω
a , so that Equation (1) becomes

XTI
= XTI−1

e−ω(TI−TI−1) +AIe
−ω(TI−µ) sinh(πθ)

πθ(1 + θ2)
. (5)

2.2 Studying a recurrent epidemic

Using initial titre inputXT0
to calculateXT1

by Equations 1 or 5, and continuing
the same way for XT2 , XT3 , · · · , we have defined a discrete dynamical system,
at times T0 < T1 < · · · . We can assume TI − TI−1 > ∆ > 0, for all I ≥ 1. For
two initial titres XT0

and YT0
, we can see that

∥XTn
− YTn

∥ = ∥XTn−1
− YTn−1

∥e−ω(Tn−Tn−1) (6)

since the integral is constant, for n = 1, 2, · · · . Since e−ω∆ < 1, this process is
contractive, with Lipschitz constant e−ω∆. It has a fixed point

AIe
−ωδ sinh(πθ)

πθ(1+θ2)

1− e−ω∆
, (7)

in the simplest case, where δ = TI − µ and ∆ = Ti − TI−1 for all I.
For example, we may examine the default parameters A = 1, ω = 1

24 , µ =
12, a−1 = 2

π ,∆ = TI − TI−1 = 12, δ = TI − µ = 3, to determine the fixed point
X = 2.24. This may be compared to the numerical results in Figure 2 tracking
two trajectories of the model over 20 seasons.
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Figure 2: Convergence to fixed point from two initial points.

2.3 The role of the parameters

Waning, in limiting residual immunity in a seasonally recurring infectious dis-
ease, is an essential component of our model. Figure 3(a) shows the effect of
this parameter. For very high waning rates, the output titre is decreased, while
lower values of ω result in XTI

conserving much of the input titre and even
surpassing it.

(a) (b)

Figure 3: (a) Effect of the waning parameter ω on XTI
. (b) Effects of early or

delayed season.

As for the parameter representing seasonality, namely the peak infectivity
date µ, an early or late season will increase or decrease the time until TI , as
seen in Figure 3(b), increasing or decreasing waning time, respectively. This
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effect follows a largely linear response, and is substantial.

3 Long-term trends

3.1 Random peaks

As a benchmark experiment, we concatenated successive instances of the model
of a single cycle described in Section 2 to carry out a simulation of 20 recurrent
infectious seasons interspersed with quiescent periods for the rest of each cycle
(i.e., year).

(a) (b)

Figure 4: (a) Sample trajectories of 20 seasons produced by iterating the model,
five replicates. (b) Association of titre change with length of inter-season times.
From [1]

Initialized with a random titre at date T1 corresponding to the end of a
typical infectious period, the peak infection date m was chosen from a uniform
probability over a wide range, September (month 9) to April (month 16), and
the first iteration was performed with T2 set to be m+ π

a , with output XT2 .
The output XT2 at time T2 from the first cycle, is then used as the starting

titreXT3
at time T3 of the second cycle. The peak of infections is again randomly

chosen from September to April.
This calculation is repeated for the third and subsequent cycles. Figure 4(a)

shows five typical trajectories of XT over the 20-year span. The randomness
in the choice of peaks, and the small amount of noise added to the input every
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year, meant that the process did not simply degenerate into a fixed point limit
cycle, but maintained a stable pattern of random variation indefinitely.

We plotted the change in titre ∆X = XTI
− XTI−1

as a function of ∆µ =
µI −µI−1, the shift in peak infections between the I − 1-st and I-th cycle. The
results in Figure 4(b) show a tight linear relation between the two quantities.
The slope is -0.9 titre units/12 months differential, or 0.075 units/month. This
compares to logω = 0.042/month.

3.2 Training for seasonality

The negative correlation between the change of output titre and the time elapsed
between successive peaks in Figure 4(b) must be seen as a function only of the
waning time between two seasons, since there is no mechanism within the model
to affect one year’s peak µ as a direct function of the previous year’s output
titre XTI−1

. Such a mechanism, however, is widely thought to be of importance
to recurrent epidemics.

To train the model as a predictor of seasonality, we made use of the results
of the experiment described in Section 3.1. Based on each year’s XT2 , a random
choice of next year’s peak month was effected. This choice involved two steps:
The first was the deterministic choice of one of four bins, B1, · · · , B4, with B1

containing the highest values ofXT2
, and B4 containing the lowest values ofXT2

.
The second step was a uniform random choice among four consecutive months.
The months in each bin overlapped those in the adjacent bins, with B1 con-
taining December through March, B2 containing November through February,
B3 containing October through January and B4 containing September through
December.

A 200-season experiment could then be initiated by a random choice of XT2
.

Unlike the experiment in Section 3.1, there was no further addition of noise or
other intervention over the length of the experiment. Because setting a new
peak month determines a different fixed point for XT2 , each iteration of the
model gives an different output from the previous season’s.

Figure 5(a) shows one aspect of the outcome, comparing the titres of each
pair of successive seasons. The extent of the scatter is largely the effect of the
large overlapping bins from which to choose the peak month.

3.3 Using the model to predict the peak of the next epi-
demic season

We regress the peak date chosen against the input titre for the data in Section
3.2. This produces the following result:

peak month = 2.815× titre− 0.068 + ϵ (8)

where the normal error ϵ has a standard deviation of 0.45.
This result can then be used as a predictive tool. Given an end-of-season

titre XT2
, Equation (8) can predict the likely peak month and the shape of
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(a)

(b)

Figure 5: (a) Effect of training on titres of successive seasons. (b) Effect of
training on choice of peak month, with regression line.

the titre distribution during the season. For example, using the parameters in
Figure 5(b), an end-of-season titre of 4.7 predicts an early January peak, but
distributed with a standard deviation of about two weeks.

3.4 Lasting effects of a missing season

The dramatically diminished influenza epidemic resulting from the covid pandemic-
inspired non-pharmaceutical interventions in 2020-22 was followed by an early
onset and severe influenza season in 2022-2023. This was predictable [9], given
the lack of newly acquired immunity during the pandemic.

From the modeling viewpoint, this aspect of the seasonality-titre relation-
ship, can be expressed by simply introducing a single missing (zero-amplitude)
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(a) (b)

Figure 6: (a) End-of-season titre trajectories with an 8-year pattern of a missing
season (blue), a 4-year pattern (black) and with no missing seasons. (red). (b)
Change of titre from one season to the next. Displaced clusters represent the
immediate effect of the missing boost.

season, and following the trajectory of the process in subsequent years.
To accomplish this we started with the model in Section 3.2. In one ex-

periment over fifty years, we introduced an ”A = 0” year every eighth year.
In a second experiment we introduced an ”A = 0” year every four years. We
then compared the trajectory from these two experiments with that from the
original, unmodified, experiment, where A = 1 for every season.

The results in Figure 6 show that for the experiment with an 8-year cycle,
the effect of a reduced titre persisted over five to seven years, before catching
up to the sequence of unmodified seasons. On the other hand, with a four-year
cycle, the output titre never quite caught up .

Figure 6(a) summarizes the differences among these trajectories.
Figure 6(b) shows how the titres of the two missing-seasons trajectories

gradually increase towards the unmodified (no missing seasons) pattern.

3.5 Lasting effects of a severe season

In a way analogous to the method in the Section 3.4, we can model the after-
effects of a severe season, by setting A = 2 for one season out of four, or one
season out of eight, while A = 1 for all the remaining seasons. The results of this
experiment mirror those of the “missing season” experiment, but in the opposite
direction. Figure 7 (a) shows how the titres in the 8-year pattern eventually
settle down to rates comparable to the unmodified sequence, while the 4-year
pattern retains elevated titres throughout.

Figure 7(b) shows how the titres of the two missing-seasons trajectories
gradually decrease towards the unmodified (no severe seasons) pattern.
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Figure 7: (a) End-of-season titre trajectories with an 8-year pattern of severe
seasons (blue), a 4-year pattern (black) and with no severe seasons (red). (b)
Change of titre from one season to the next. Displaced clusters represent the
immediate effect of the amplified boost.

4 Discussion and conclusions

The core of our experimental model takes into account only titre increases during
a few months-long season of an infectious disease with fixed infectivity peak µ,
plus a continuous process of waning, expressed by a negative exponential with
parameter ω. These two processes can reproduce the cycle of boosting and
waning characteristic of recurrent seasonal infectious disease.

Iterating this model, however, is not suitable for generating long term tra-
jectories of an epidemic. Mathematically, it is a contractive process that will
quickly converge towards a sequence of identical seasons.

Replacing the assumption of fixed peak times with a random choice among
several months, however, nullified the contractive tendency, so that we could
explore the variation in titre as a function of the peak location parameter µ.
This revealed a strong association between shift of peak month and change of
titre at the end of the season.

Introducing an element of causality into this association, we trained the
model so that a lower titre in the previous year would lead to a early onset in
of the epidemic in the current year, via a slight bias in the random selection of
the peak month, while a larger titre would delay the season.

The pattern that emerged from this training then allowed us to establish a
prediction rule so that from the titre at the end of one season, we can predict
the timing of the next one, in terms of a probability distribution of the timing
of the peak month.

Inspired by the dramatic drop of infections by non-covid respiratory viruses
like influenza and RSV in the 2021-2022 season, followed by a strong resurgence
in the following year, we adapted our model by setting the amplitude (severity)
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parameter A to zero for one year out of four or one year out of eight and observed
how such perturbations affected subsequent years.

These experiments showed that after each of the “missing” years, the trajec-
tories of the post-season titres inevitably recovered towards the usual pattern,
largely in the case of the four-year cycle, but completely in the case of the
eight-year cycle. This timing is of course dependent on our choice of parameters
and protocols: ω,A, the training protocol, and predicting the distribution of µ.
Nevertheless, it illustrates the kind of investigation possible with our titre-based
modelling.

Our discussion has been phrased in terms of antibody titres, but the gener-
ality of our model means that it is not specifically limited to any specific aspect
of the infectious disease season or yearly cycle, such as exposures, infections,
symptoms, seroprevalence or antibody levels, as long as the annual boost can
be represented by a distribution.

In this work, we have not assumed anything about viral strains. Apparent
waning over several seasons may reflect mutational drift or selection in the
antigen, rather than immunological processes per se. This does not distract
from the pertinence of our model as a basis for analyzing the cyclical behaviour
of boosting and waning.
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