
Smart Wristband Monitoring: A Caregiver-Oriented Mobile 

Application for Tracking Cognitive Decline in Mild Cognitive 

Impairment Patients 

Barış Ceyhan1 ,Semai Bek 2 and Tuğba Önal-Süzek 1,*

1 Department of Bioinformatics, Graduate School of Natural and Applied Sciences, Mugla Sitki 

Kocman University, Mugla 48000, Türkiye; 

2 Department of Neurology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla 48000, 

Türkiye;

* Correspondence: tugbasuzek@mu.edu.tr 

Abstract

Mild Cognitive Impairment (MCI) is the transitional phase between the typical expected memory 

problems related to age and the more serious decline of dementia. Therefore, monitoring 

progress from MCI to dementia is critical to slowing down this cognitive deterioration. Research 

shows that proper nutrition, routine brain, and physical exercise accompanied by proper care 

slow down the disease significantly. However, most of the patients do not perform these 

exercises regularly and their vital health data is not monitored properly, leaving patients most of 

the time with only basic care.

In this study, for the first time to our knowledge, we aimed to develop a mobile application that 

will enable caregivers to continuously monitor the vital health, medication, activity, and location 

of the patients with MCI with a smart wristband while enabling them caregivers to track the 
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progress of the disease by a machine learning model that tracks MMSE of the patient using 

speech. Based on our research so far, this caregiver-oriented approach with the ability to track 

progress of the disease using the convenience of a mobile application is a unique attempt in the 

field. Patient profile along with collected data is correlated with tracked MMSE scores of the 

patients to come up with recommendations and findings about the patients. Caregivers are 

relieved to be notified about critical health data thresholds, progress, and condition of their 

patients.

Introduction

Dementia ranks seventh among the leading causes of death and stands out as a significant 

contributor to disability and dependency among older individuals worldwide [1]. While age is a 

critical risk factor in dementia; being physically active, not smoking, controlling weight, a healthy 

diet and maintaining healthy blood pressure, cholesterol and blood sugar levels reduce this risk 

significantly [2]. 

There are studies that research correlation between vital health data and dementia progress. A 

study found out that older adults with Resting High Rate(RHR) >= 80 had a 55% increased risk 

for developing dementia [3]. Another study found sleep problems and duration are indicators of 

quick progress to dementia from MCI [4]. A study conducted with 46 adults with dementia 

demonstrated a direct correlation between MMSE results and walking rates  [5]. In a recent 

systematic review of several medication adherence studies of dementia patients, nonadherence 

correlated with higher hospitalization or mortality rates, with the highest adherence rate 

observed at only 42%; however, telehealth home monitoring and treatment modification were 

identified as the only interventions to improve medication adherence [6].
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Several fitness, location tracking applications are available on the market however there is not 

an application in the market that is caregiver oriented and can track the progress of dementia.

The focus of this paper and the developed application is to analyze the significance of vital 

health data in MCI patients, validated with a speech-based MMSE prediction test that can be 

conveniently conducted by a mobile application to track progress by caregivers. The novelty of 

our work in this study is that it is the first smart wristband based dementia monitoring software 

system according to our knowledge which aims to valuate the significance of health data 

parameters for tracking cognitive status decline rate in MCI patients.

Methods

Dataset

A three-month-long collection of vital health data was conducted on 30 participants aged over 

60 between September 2023 and March 2024 per patient availabilities. All participants were 

equipped with the same smart fitness wristbands (Xiaomi MI Band 7) for the duration of the 

study.  Summary of clinical variables of patients along with their MMSE scores performed within 

a month before the start of the data collection are displayed in Table 1. Ethics committee 

approval issued by Mugla University is supplied as translated from Turkish in S1 File. Patient 

consent form was collected in written format and translated form is supplied in S2 File.  A mobile 

application has been developed that caregivers can register their patients, wristbands and allow 

them to monitor their health data along with their location. medication and activities while 

synchronizing data anonymously to the application database. 

Table 1 Summary of the clinical variables of patients analyzed in the study
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n=30 Age range at the 

start of the study 

(60-69)

Age range at the 

start of the 

study (> 70)

Female MMSE < 20 6 7

Female MMSE > 24 1 2

Female MMSE 20-24 0 3

Total: 20

Male MMSE < 20 1 2

Male MMSE > 24 2 1

Male MMSE 20-24 2 2

Total: 10

Data Collection

Existing tests aimed at diagnosing neurodegenerative diseases often struggle to effectively 

identify deviations from the typical cognitive decline trajectory during the initial stages of the 

disease. Particularly for patients with MCI, the benefits of passive data collection through 

devices such as smart wristbands—such as increased frequency of data acquisition, objectivity, 

and reduced patient burden—result in higher adherence rates and greater precision compared 

to active data collection methods [7]. While mobile phones do track some health data like steps, 

calories; patients older and with dementia symptoms tend to not carry their mobile phones 

continuously everywhere, but also the phones do not track health data like heart rate (HR), 

resting heart rate (RHR) and sleep patterns. While some phones are capable of tracking 

additional health metrics such as blood pressure and include GPS functionality [8], the data 

collection in this study utilized relatively affordable and straightforward Xiaomi MI Band 7 

wristbands. These wristbands track only heart rate, resting heart rate, sleep patterns, steps, and 
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active minutes due to their reasonable price, lightweight design, and ease of wear. In a research 

conducted for adults over 50 years of age, while participants generally found it stressful to use 

smart wristband technology, they found using such wristbands helpful due to their heart rate and 

movement tracking capabilities [9].

In our study, we deployed a mobile application that continuously synchronizes data from the 

wristband to application servers using Google Fit services, which seamlessly integrate with the 

device software. Using Google Fit as the proxy application enabled us to use any other smart 

watch or wristband that can synchronize with Google Fit in the market since most watches 

support Google Fit by default [10]. Google Fit platform allows software developers to build 

applications and services that can access fitness data from wearable devices, fitness apps, and 

health-related sensors. Developers can integrate Google Fit into their apps to access and 

manage user's health and fitness data, including activity tracking, heart rate, sleep patterns, and 

more. This API enables developers to create innovative health and fitness-related applications 

while leveraging Google's infrastructure and data sources. Google fit works with more than 30 

smart watches and wristbands on the market, simply summarizes the data and provides the 

data to consumers with REST API endpoints. Just as it receives health data from the phone as 

an application, it also receives data from many auxiliary applications and provides access to 

them both from the application and through the Google Fit services. We used Google Fit API’s 

functionality to collect and synchronize data from both the phone and the smart wristband in one 

place. This makes it possible for the patient's data to still be collected when he or she is not 

actively using the phone or the smart wristband. A limitation of using the Google Fit was the 

installation steps needed in addition to installing the mobile application. The requirement to have 

a Google Mail account discouraged some older users from installing the application. Moreover, 

whenever older patients needed to restart their phones for some reason, Google Fit did not start 

automatically in the background, and this caused delays in data collection. For future work we 
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plan on adapting our software to the native API of the smart wristband for better patient 

cooperation causing less anxiety to older patients.

The cross-platform mobile application was developed with the assumption that caregivers will 

install the application to the patient’s mobile phone once and track their patients from their 

phone without the need of patient input. The additional software functionality added for 

caregivers like medication and location tracking, scheduling activities, and notifications for 

critical thresholds on health data, mobility and medication were added to encourage more 

patients into the study. For the accurate collection of medications and their Anatomical 

Therapeutic Chemical (ATC) codes, we have developed a scheduled task and a web service to 

update the latest medication names and ATC codes from the Turkish Ministry of Health weekly.  

Google Firebase Cloud Messaging has been implemented for notification services for 

reminders.

Figure 1 Application component diagram

Figure 2  Mobile application front-end example health data summary
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Results

In our analysis we examined the smart wristband based categorical and non-categorical health 

data collected from 30 participants over a three-month period. The statistical summary in Table 

2 outlines the distribution of various health variables, while Figures 3, 4, and 5 illustrate the 

relationships between cognitive scores and health metrics through PCA, correlation coefficient 

analysis, and chi-square analysis, respectively. Additionally, the integration of our previously 

published machine learning model allowed us to predict the MMSE scores, revealing insights 

into the impact of physical activity on cognitive function and overall well-being.

Table 2 Statistical summary of the smart wristband based health data variables of 
the 30 patients

Mean std min 25% 50% 75% max

age 70.69 4.83 63.00 67.00 71.00 74.00 78.00

gender

steps 2195.66 1119.54 679.83 1321.36 1763.12 2903.48 4379.49

HR 70.87 7.11 59.06 64.82 71.08 76.32 82.87
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Sleep 

(mins)

572.69 73.11 422.65 533.69 572.52 617.98 682.23

Move 

Minutes

53.45 27.77 13.58 32.93 44.55 83.92 100.53

Resting 

HR

66.54 5.71 56.84 61.05 67.68 70.33 78.18

Figure 3 A, B and C show aggregated health data classified based on MMSE scores of 30 

Patients from the 3 months of collected data. In another study in literature with an average age 

of 73, a MMSE score of 24 was identified as the threshold indicating severe cognitive 

impairment [11] therefore we clustered each patient into high- and low-cognitive score groups 

based on the MMSE cutoff value of 24. Figure 3.D shows the distribution of diabetes, 

cardiovascular (CV) and nervous system (NS) medication usage among several participants 

based on ATC codes of medication configured in the application by caregivers.

Figure 3 (A) Aggregated statistics on average daily sleep (B) HR and RHR (C) 
daily sleep in minutes (D) number of medications taken by particapants

A.   B. 
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C.   D. 

Principal Component Analysis

We performed a Principal Component Analysis (PCA) to group MMSE items into distinct 

components aimed at addressing cognitive dimensions in inpatients. PCA is particularly suited 

for this study due to its capacity to diminish data dimensionality while conserving the majority of 

variance. The PCA module of the Python sklearn.decomposition library was employed for this 

analysis. Figure 4.A demonstrates that 93% of the variance can be elucidated by the combined 

variations of principal components 1 and 2, suggesting that a 2D graph provides a robust 

approximation of the dataset. In Figure 4.B, where each dot represents the MMSE score of  

individual patients. In the plot patients with scores of ranges 12 and 22 cluster in lower values of 

PC1, while those between 27 and 30 cluster in higher values of both PC1 and PC2. 

The eigenvectors in Figure 4.C indicate the direction in the feature space that captures the most 

variance in the data. Positive values suggest a positive correlation of each health variable with 

the principal component, while negative values suggest a negative correlation of that particular 

health variable with the principal component. Eigenvector percentages in 4.C along the first two 

Principal Components reveal that PC1 Steps and Move minutes positively contribute to this 

primary source of variation while HR and RHR exhibit distinct negative correlations. PC2 

illustrates the negative correlation between sleep, RHR and the principal component. This 

spread distance between the PC1 patients and PC2 patients illustrates a very important 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.31.24307874doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.31.24307874
http://creativecommons.org/licenses/by/4.0/


phenomenon we observed in our results: patients exhibiting greater mobility demonstrate 

improved cardiovascular health, enhanced sleep quality, and are prominently clustered within 

the higher MMSE segment of the plot, indicative of better cognitive function.

Figure 4 (A) Cumulative Explained Variance and Explained Variance Ratio (B) Top 
two dimensions of the PCA analysis based on the smart wristband health data 
variables of patients show the spread between the patients with higher cognitive 
scores (MMSE >= 25) cluster together and away from the patients with lower 
cognitive scores (MMSE < 25) (C) Gender distribution in top two dimensions (D) 
Age distribution in top two dimensions (E) Eigenvectors of the first five principal 
components show that sleep is the highest negative contributor and  Steps and 
Move minutes are the highest positive contributor to the cognitive test

A. 
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B. 

C.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.31.24307874doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.31.24307874
http://creativecommons.org/licenses/by/4.0/


D. 

E. 

Correlation Coefficient Analysis

We plotted the correlation coefficient heatmap for all continuous smart wristband health 

variables in Figure 5 using Python stats.pearsonr package. Heatmap visualization shows that 

RHR is the most affecting variable targeting the cognitive scores.
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Figure 5 Correlation coefficient heatmap of all continuous variables show that 
number of steps and number of minutes of movement are significantly positively 
correlated with higher MMSE score with p-value ≤ 0.05. Resting HR Rate is 
negatively correlated with higher MMSE score with p-value of 0.007 

Chi-square Analysis

In addition to the analysis of non-categorical smart wristband-based health data variables, our 

dataset includes three categorical variables which we could not assess with PCA and 

correlation coefficient analysis: medication taken-or-not for glucose, medication taken-or-not for 

cardiovascular and medication taken-or-not for nervous system problems. For this, we 

computed the chi-square statistics between the smart wristband based health data variables 

using Python scipy.stats.chi2_contingency library and assessed the association between these 

three categorical variables with the cognitive scores. 
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Table 3 displays the chi-square results between taken medication for three disease groups with 

the MMSE scores. For this, we created 3 contingency tables with medication taken-or-not for 

glucose, cardiovascular and nervous system problems against MMSE scores. As expected, p-

value of 0. 00498 along with a chi-square statistic of 7.8869 shows a strong association 

between the nervous system medication variable and MMSE score while other variables’ chi-

square statistics were not significant.

Table 3 Chi-square values between patients using the three disease classed of 
medication and MMSE

Nervous System Medication 

vs MMSE Score

Diabetes Medication vs 

MMSE Score

Cardiovascular 

Medication vs MMSE 

Score

Chi-square statistic: 7.8869

p-value: 0.00498

Degrees of freedom: 1

Chi-square statistic: 3.5253

p-value: 0.06043

Degrees of freedom: 1

Chi-square statistic: 0.56

p-value: 0.4551

Degrees of freedom: 1

The machine learning model  we developed as a part of our previous study [12] was integrated 

into our mobile application to capture the predicted MMSE score of every participant at the 

beginning and end of the data collection period. At the beginning and end of the data collection 

period, each participant was requested to talk about the cookie theft picture used in the Boston 

Diagnostic Aphasia Exam (BDAE) for at most 5 minutes. Each participant’s voice description 

was assessed by our machine learning model and the model’s prediction score is used as the 

MMSE score of each participant. At the end of our study of 30 patients, 8 participants’ MMSE 

scores improved and 4 of these 8 participants had their RHRs dropped as much as 5% while 

increasing the average move minutes and steps by 24%. Figure 6 displays that the average 

increase in MMSE score was 9% for those with a final MMSE score of <= 24, whereas it was 
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around 7% for those below 24. This result suggests that increased activity had a greater impact 

on individuals with lower MMSE scores. Subsequently, we calculated the correlation coefficient 

scores between the average number of steps, average RHR, and MMSE measured in the first 

and last weeks of data collection (see Table 4). The Pearson correlation coefficient between the 

change in RHR and the change in MMSE was found to be -0.48, with a p-value of 0.007. This 

indicates a significant inverse relationship between RHR and MMSE.  The low p-value observed 

in the correlation between the change in average steps and RHR underscores the significance 

of physical activity in promoting improved cardiovascular health. Additionally, caregivers of 

these 8 participants reported enhanced mood and heightened awareness of well-being in their 

relatives, attributing these positive changes to the perceived health-tracking capabilities of smart 

wristbands. 

Figure 6 The rate of MMSE score increase among patients with lower and higher 
cognitive test scores 

Table 4 Pearson correlation coefficients indicating the strength of the correlation 
between changes in average steps, RHR, and MMSE

Pearson Correlation 

Coefficient

p-value
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Average Steps change 

vs MMSE change

0.41 0.03

RHR change vs MMSE 

change

-0.4288 0.007

Average Steps change 

vs RHR change

-90 4.88e-11

Discussion

In our study involving 30 participants aged over 60, we demonstrated a significant improvement 

in cognitive test scores among patients with Mild Cognitive Impairment (MCI) attributed to 

increased physical activity. The cognitive decline in MCI is often subtle and does not 

significantly interfere with daily life, making it hard to distinguish from normal aging. The slight 

changes in memory and thinking skills are not easily captured by standard tests. Digital tests 

offer the advantage of continuous, non-invasive monitoring and behavioral insights, while blood 

tests provide biologically specific data through established clinical methods. Combining both 

approaches could potentially enhance the early detection and monitoring of MCI by leveraging 

the strengths of each method. 

The primary innovation of our research lies in the introduction of a caregiver-oriented smart 

wristband-integrated software, enabling continuous monitoring of participants' health 

parameters and lifestyle habits. Furthermore, our software analyzed both categorical and non-

categorical features of MCI patient data for the first time, revealing that individuals with lower 

cognitive test scores exhibited approximately 50% less activity compared to those with higher 

scores. Another significant finding of our study is that our study unveiled those participants with 

higher cognitive test scores exhibited, on average, a 10% lower heart rate (HR) and resting 
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heart rate (RHR) compared to those with lower scores, underscoring the pivotal role of heart 

health in cognitive decline.

8 patients who increased their activity by increasing their average number of steps and move 

minutes as much as 25% saw improvements in their MMSE tests that were conducted at the 

end of the study. We observed that these patients took wearing the smart wristbands as a 

challenge and continuously increased their activity which decreased their sleep time by 10% in 

average. Caregivers expressed increased positive mood among these 8 patients with a desire 

to continue using the smart wristband after the study.

The primary limitation of our study pertained to the recruitment of patients for the clinical trial. 

We encountered difficulties in persuading older patients, particularly those with MMSE scores 

below a certain threshold, to utilize smart wristbands, with a majority of these participants 

declining participation. Despite our concerted efforts to gather medication data from all 

participants, the incomplete nature of this data, particularly among the 16 patients with lower 

MMSE scores, necessitated the exclusion of this partial data from the statistical analysis.

Numerous earlier studies in the literature have linked health metrics such as Resting Heart Rate 

(RHR) with cognitive decline [3] [13] [14], a correlation our statistical analysis also corroborated 

by identifying RHR as the most influential factor for MMSE scores. Our findings suggest that 

continuous activity monitoring facilitated by devices like smart wristbands could serve as a 

pivotal strategy in monitoring and potentially attenuating the progression of cognitive decline.
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