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Abstract 

 

Repetitive transcranial magnetic stimulation (rTMS) therapy could be improved by better and 

earlier prediction of response. Latent class mixture (LCMM) and non-linear mixed effects 

(NLME) modelling have been applied to model the trajectories of antidepressant response (or 

non-response) to TMS, but it is not known whether such models can predict clinical outcomes. 

We compared LCMM and NLME approaches to model the antidepressant response to TMS in a 

naturalistic sample of 238 patients receiving rTMS for treatment resistant depression (TRD), 

across multiple coils and protocols. We then compared the predictive power of those models. 

LCMM trajectories were influenced largely by baseline symptom severity, but baseline 

symptoms provided little predictive power for later antidepressant response. Rather, the optimal 

LCMM model was a nonlinear two-class model that accounted for baseline symptoms. This 

model accurately predicted patient response at 4 weeks of treatment (AUC = 0.70, 95% CI = 

[0.52-0.87]), but not before. NLME offered slightly improved predictive performance at 4 weeks 

of treatment (AUC = 0.76, 95% CI = [0.58 – 0.94], but likewise, not before. In showing the 

predictive validity of these approaches to model response trajectories to rTMS, we provided 

preliminary evidence that trajectory modeling could be used to guide future treatment decisions. 

 

Keywords. Latent class analysis, nonlinear mixed model, Patient-Specific Modeling, Depressive 

Disorder, Treatment-Resistant 
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1. Introduction.  

Repetitive transcranial magnetic stimulation (rTMS) of the prefrontal cortex (PFC) is effective in 

treatment resistant depression (TRD) (McClintock et al., 2018; O’Reardon et al., 2007). 

However, response to rTMS varies greatly (Kaster et al., 2020, 2023; Schilberg et al., 2017), 

with a 40-50% non-response rate in clinical practice (Sackeim et al., 2020; Taylor et al., 2017). 

Furthermore, a typical course of rTMS is 5 days a week for 4-6 weeks (Sackeim et al., 2020), a 

significant time burden for patients. Novel protocols offer the possibility of more rapid response 

(Cole et al., 2020), but require even greater time investment and clinical staffing. At the same 

time, for many centers, demand outstrips the available treatment slots, leading to waiting lists. 

Those lists might be shortened if treatment could be stopped (or altered) earlier for non-

responders. Therefore, there is a need to understand who will respond to rTMS and when 

(Baeken et al., 2019). Modeling inter-individual variability may allow for earlier detection of 

treatment (non)response, and eventually, more personalized treatment (Baeken et al., 2019). 

A critical first step is moving beyond response at a single post-treatment timepoint, and 

recognizing that clinical response evolves over several weeks in stereotypical patterns. Latent 

class mixture modeling (LCMM), or growth mixture modeling (GMM) (Muthén & Asparouhov, 

2008; Muthén & Shedden, 1999) has been used to model the trajectories of depression response 

to treatments: pharmacological (Smagula et al., 2015; Uher et al., 2010), pharmacological plus 

psychotherapy (Stulz et al., 2010), and rTMS (Kaster et al., 2019, 2020, 2023). LCMM and 

GMM identify “latent classes”: groups of patients whose response trajectories are similar and 

can be captured by a simple function. Trajectory modeling approaches could allow early 

discrimination of individuals who are on paths leading to (non)response (Uher et al., 2010). 
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Two studies from the same group have identified multiple trajectories of response to 

rTMS for depression (Kaster et al., 2020, 2019). Non-response trajectories were identified in 

both studies, and non-responders had higher baseline symptoms than patients on response 

trajectories. Both studies identified various linear response trajectories, differing in baseline 

symptoms (intercept) or level of improvement (slope), as well as a rapid response trajectory in 

one model (Kaster et al., 2019). Response rates differed among the trajectories at week 3 in the 

absence of a rapid response group (Kaster et al., 2020), and as early as week 1 with rapid 

responders (Kaster et al., 2019).  

However, neither of these studies analyzed whether the trajectories could predict future 

treatment response during a TMS treatment course. Further, modelling was run with clinical trial 

data, which had much stricter exclusion criteria and control of treatment protocols than in typical 

clinical practice. It is unknown whether these trajectories generalize to a more heterogeneous, 

naturalistic sample. Finally, these studies did not cross-validate their models’ predictive 

performance. Cross-validation is a standard method for assessing how well a model might 

generalize to new patients (Cawley & Talbot, 2010) and has been repeatedly identified as 

necessary for biomarker studies (Grzenda et al., 2021; Poldrack et al., 2020; Widge et al., 2019). 

As an alternative approach, Berlow et al. (2023) modelled response trajectories using 

nonlinear mixed effects (NLME) models which treat symptom response to TMS as an 

exponential decay of symptom severity over the course of treatment. That study, which did 

cross-validate, reported high sensitivity/specificity for response prediction as early as the first 

week of treatment. If replicated, that capacity for early prediction could substantially alter TMS 

treatment practices.   
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Here, we perform an independent predictive validation of trajectory modeling in TMS, 

comparing both approaches above. We used LCMM/NLME to model response trajectories in a 

naturalistic sample containing multiple coils and treatment protocols. For each approach, we 

identified the optimal level of model complexity, which in part replicate and in part diverge from 

prior studies.  Given the optimal models, we tested and compared the clinical predictive power of 

each method, by predicting response of a held-out sample using the first few weeks of clinical 

data.  

 

2. Methods. 

2.1. Sample. 

Data were derived from a registry of 238 patients receiving rTMS for TRD at a clinic in 

Minnesota. If a patient completed more than one series of rTMS, only the data from their first 

treatment series was used. Retrospective review of patient data related to their TMS treatment 

was approved by the University of Minnesota Institutional Review Board. See Table 1 for 

demographic information. 

Patients received TMS using either a Brainsway H1 coil (H1; n = 71) or Magstim air-

cooled figure of 8 coil (Horizon® Performance and Horizon® Light; F8; n = 144) targeted by the 

Beam-F3 method (Beam et al., 2009). Some patients also switched coils during their treatment (n 

= 23). Among those who did not switch coils, we assessed for differences in demographic 

characteristics between those receiving H1 or F8 treatment (using linear regression for numeric 

variables, and logistic regression for binary variables).  

F8 treatment included 10 Hz (n = 10; high frequency), 1 Hz (n = 12; low frequency), and 

intermittent theta burst stimulation (iTBS, n = 104) protocols. H1 treatment used an 18 Hz 
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protocol (n = 71; high frequency). Some patients switched protocols during the treatment course 

(n = 41). All protocols involved treatment 5 days a week, with 36 treatments in a full series.  

 

Table 1. Patient characteristics for the whole sample, and for each of the identified trajectories.  

*Race excludes 15 patients for whom there was no race recorded. 

**Responder is defined as >50% reduction in PHQ-9 after 6 weeks of treatment. 
***ICD Diagnosis excludes 24 patients for whom there were no diagnoses recorded. 

****Treatment year is based on the year the clinic began treating patients. 

    All Patients 

Assigned 

Improvement 

Trajectory 

Assigned Non-

Response 

Trajectory 

Trajectory Modeling 

Data 
n 238 97 141 

 % of total sample 100 40.76 59.24 

  Posterior Probability NA 0.89 0.84 

Demographics Age- M (SD) 44.90 (15.26) 45.45 (14.32) 44.52 (15.91) 

 Sex- n males (%) 87 (36.55) 34 (35.05) 53 (37.59) 

 *Race- n minority (%) 18 (8.07) 8 (8.25) 10 (7.09) 

 Antianxiety use - n yes (%) 144 (60.5) 56 (57.73) 88 (62.41) 

 
Antidepressant use – n yes 

(%) 
225 (94.54) 94 (96.91) 131 (92.91) 

 
Antipsychotic use – n yes 

(%) 
115 (48.32) 47 48.45) 68 (48.23) 

 Stimulant use - n yes (%) 119 (50) 46 (47.42) 73 (51.77) 

 
Other psychotherapeutic use 

– n yes (%) 
19 (7.98) 6 (6.19) 13 (9.22) 

 Number of treatments- M 

(SD) 
57.35 (19.71) 56.74 (12.54) 57.77 (23.44) 

 Baseline PHQ9- M (SD) 17.86 (4.56) 18.01 (4.47) 17.76 (4.63) 

 Final PHQ9- M (SD) 12.76 (6.58) 11.14 (5.75) 15.71 (5.37) 

  **Responder- n (%) 44 (18.49) 40 (41.24) 4 (2.84) 

ICD-10 Diagnosis*** 

Disorders due to known 

physiological conditions 

(F01-F09) - n (%) 

3 (1.4) 0 (0) 3 (2.13) 

 Substance use disorders 

(F10-F19) - n (%) 

36 (16.82) 14 (14.43) 22 (15.6) 

 Primary psychoses (F20-F29) 

- n (%) 

2 (0.93) 0 (0) 2 (1.42) 

 
Mood disorders (F30-F39) – 

n (%) 

214 (100) 88 (100) 126 (100) 

 

Anxiety, stress, and 

somatoform disorders (F40-

F48) – n (%) 

128 (59.81) 54 (55.67) 74 (52.48) 

 

Behavioral disorders with 

physical factors (F50-F59) – 

n (%) 

41 (19.16) 16 (16.49) 25 (17.73) 

 
Personality and behavioral 

disorders (F60-F69) – n (%) 

24 (11.21) 14 (14.43) 10 (7.09) 
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Intellectual disabilities (F70-

F79) – n (%) 

0 (0) 0 (0) 0 (0) 

 
Developmental disorders 

(F80-F89) – n (%) 

7 (3.27) 5 (5.15) 2 (1.42) 

 
Behavioral and emotional 

disorders with onset in 

childhood (F90-F98) – n (%) 

41 (19.16) 14 (14.43) 27 (19.15) 

  
Total comorbid with mood 

disorders (F30-F39) - n (%) 

153 (71.5) 64 (65.98) 89 (63.12) 

Treatment Year**** Year 1- n (%) 57 (23.95)  27 (27.84) 30 (21.28) 

 Year 2- n (%) 72 (30.25) 30 (30.93) 42 (29.79) 

 Year 3- n (%) 60 (25.21) 21 (21.65) 39 (27.66) 

 Year 4- n (%) 40 (16.81) 14 (14.43) 26 18.44) 

  Year 5- n (%) 9 (3.78) 5 (5.15) 4 (2.84) 

Treatment coil F8- n (%) 144 (60.50) 53 (54.64) 91 (64.54) 

 H1- n (%) 71 (29.83) 36 (37.11) 35 (24.82) 

  Switch- n (%) 23 (9.66) 8 (8.25) 15 (10.64) 

Treatment protocol High frequency- n (%) 83 (34.87) 41 (42.27) 42 (29.79) 

 Low frequency- n (%) 12 (5.04) 6 (6.19) 6 (4.26) 

 iTBS- n (%) 104 (43.70) 40 (41.24) 64 (45.39) 

 Switch- n (%) 39 (16.39) 10 (10.31) 29 (20.57) 

 

2.2. Depression outcome measure and data curation. 

The Patient Health Questionnaire - 9 Item (PHQ-9; Kroenke et al., 2001) was the primary 

outcome measure. PHQ-9 scores were automatically extracted from the electronic health record. 

Treatment and demographic information were automatically extracted, then verified manually. 

Discrepancies between the automated pull and manual verification were resolved via detailed 

review of the clinician notes by a second reviewer.  

We modeled weekly PHQ-9 scores, calculated as the average of all the daily scores in a 

given week, with weeks defined based on the day of the week of the first treatment for each 

patient. Week 0 was the patient’s PHQ-9 score just before their first TMS treatment.  
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51 patients were excluded from analysis (see Figure 1). For patients who received fewer 

than six weeks of treatments (n = 9), the PHQ-9 score for their final week was carried forward. 

Only 13 data points out of 1666 were interpolated in this way.  

 

 

Figure 1. CONSORT diagram of patients included in the study. Second to last level indicates 

which coil patients received, last level indicates which protocol within a given coil. Switches at 

the protocol level indicated a protocol switch within the same coil. All coil switches were also 

labeled as protocol switch. 

2.3. Trajectory modeling and model selection. 

2.3.1. Latent class mixture modeling  

Modelling was run using R (R Core Team, 2016) and scripts used to run the analyses in this 

report can be obtained at https://doi.org/10.5281/zenodo.11398885. LCMM used the hlme 

function in the lcmm package (v2.1.0; Proust-Lima et al., 2017). We modeled weeks 0 to 6, and 

tested the fit of 1 to 5 class models with linear only (L), linear and quadratic (LQ), and linear, 
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quadratic, and cubic (LQC) polynomials. We tested model fit using 5-fold cross validation 

(holding out 20% of patients as a test set). Given that class assignment by LCMM can be 

sensitive to baseline symptom severity and that patients with different baseline symptoms may 

follow the same trajectory, it is possible that models may capture response trajectories better if 

the influence of baseline score is removed. Thus, we compared latent class models fit to raw 

PHQ-9 scores with models fit to baseline-corrected data. Baseline correction was performed by 

subtracting the baseline score from each observed PHQ-9 score.  

We used multiple indicators to assess the fit of the latent class models (Chng et al., 2016; 

Kaster et al., 2019, 2020; Smagula et al., 2015). First, on the training data, we used BIC 

(Schwarz, 1978), and SABIC (Sclove, 1987), both of which perform well at selecting the correct 

number of classes (Tein et al., 2013).  

Second, we examined how well each model generalized to new data, by examining the 

trained model’s predictions on the held-out test set for each fold. We predicted the scores and 

posterior probability of class membership for the held-out test sample. We then calculated a 

subject-specific trajectory by taking the weighted average of the predicted scores in each class, 

weighted by the posterior probability of being in that class. We assessed prediction fit with 

Pearson’s correlations between the observed and predicted scores.  

Third, we took into account the modeled trajectories, selecting the most parsimonious 

model with conceptually meaningful trajectories that could be easily interpreted, and that 

matched known truth (Chng et al., 2016; Nylund et al., 2007). For instance, since it is clear that 

some TMS patients do not respond, we only accepted models that contained a nearly flat non-

response trajectory. We also considered group size, rejecting models with trajectories containing 

less than 5% of the sample (Kaster et al., 2020, 2019; Smagula et al., 2015). 
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Once the optimal polynomial degree (L, LQ, LQC) and number of classes (1-5) was 

selected, we reran that model on the full dataset to visualize the final trajectories, and to compare 

descriptive and demographic information. The model using the full dataset was also used for 

analyses examining the factors associated with membership in the different classes (see 

Treatment coil and protocol effects below). Using the optimal model of the full dataset, subjects 

were assigned to LCMM response trajectories based on the class that yielded the highest 

posterior probability of class membership.  

2.3.2. Nonlinear mixed effects modelling 

The trajectory of MDD symptom severity may also be modelled by an exponential decay 

function as in Equation 1 (Berlow et al., 2023): 

Equation 1: 𝑃𝐻𝑄9(𝑡) = 𝑃𝐻𝑄9𝐶ℎ𝑎𝑛𝑔𝑒  ×  𝑒(
−𝑡

𝐵
)
 + 𝑃𝐻𝑄9𝐸𝑛𝑑 

Where PHQ-9 scores at a given time point t are expressed as the magnitude of PHQ-9 

score reduction over the course of treatment (𝑃𝐻𝑄9𝐶ℎ𝑎𝑛𝑔𝑒), which decays at a constant rate (B), 

and approaches a minimum score at the end of treatment (𝑃𝐻𝑄9𝐸𝑛𝑑). NLME models (Pinheiro 

& Bates, 2000) were fit to the data using the nlme package (v3.1-164; Pinheiro et al., 2023), with 

𝑃𝐻𝑄9𝐶ℎ𝑎𝑛𝑔𝑒, B, and 𝑃𝐻𝑄9𝐸𝑛𝑑 set as group fixed effects and patient random effects. We 

compared the fit of this model, using BIC, and a likelihood ratio test, to a simpler model which 

fit only 𝑃𝐻𝑄9𝐶ℎ𝑎𝑛𝑔𝑒 and 𝑃𝐻𝑄9𝐸𝑛𝑑 as patient random effects.  

2.4. Predictive Power. 

We assessed whether trajectory models might predict response before treatment completion. We 

trained each of the raw LQC-4 class LCMM and baseline corrected LQC-2 class LCMM models 
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on weeks 0-6 of the training set data, using 5-fold cross validation. New folds were generated 

independently from the previous cross validation and were stratified across trajectory classes so 

that each fold maintained the same proportion of subjects within each class as that of the full 

dataset. Using the selected model, we then predicted PHQ-9 scores and posterior probability of 

class membership for the test set by giving the model data for an increasing number of weeks, 

from week 0 to all 7 weeks of data. For the supplied weeks, we calculated subject specific 

predicted scores, using the weighted average described above for LCMM. For predictions of the 

future (hidden) weeks, we calculated a weighted average of the group level predicted scores from 

the training model, weighted by each test set patient’s probability of being in each class. The 

model-generated random effects for each patient were then added to those scores, producing 

patient-specific score predictions for the un-modeled weeks.  

Similarly, using 5-fold cross validation, and supplying increasing weeks of data, we 

trained the NLME model on weeks 0-6 of training set data to estimate the time constant B at the 

population level. Then, we predicted PHQ-9 scores at the completion of treatment for the test set 

by rearranging Equation 1 as: 

Equation 2: 
𝑃𝐻𝑄9(𝑡)−𝑃𝐻𝑄9(0)× 𝑒

(
−𝑡
𝐵 )

1− 𝑒
(

−𝑡
𝐵 )

= 𝑃𝐻𝑄9𝐸𝑛𝑑 

For each subject we then entered the predicted 𝑃𝐻𝑄9𝐸𝑛𝑑 from Equation 2 into Equation 

1 to produce a predicted trajectory of PHQ-9 scores. Re-entering the predicted 𝑃𝐻𝑄9𝐸𝑛𝑑 into the 

exponential decay model allowed us to examine correlations between predicted and observed 

PHQ-9 scores along the entire trajectory time-series, which equates with the LCMM approach 

we adopted. This approach differs slightly from that employed by Berlow et al., (2023), who 

evaluated only the predicted value of PHQ9End as the definition of predicted response.  
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In each fold, we also trained the optimal LCMM model. Then, after obtaining predicted 

PHQ-9 scores of the test set via NLME, we entered those scores into the LCMM model and 

assigned participants to a predicted class based on the class that yielded the greatest posterior 

probability. 

For both LCMM and NLME models, we tested models’ capability to predict both 

continuous (PHQ-9 score) and dichotomous (response) outcomes. For continuous PHQ-9 scores, 

we calculated the Pearson’s correlation (and 95% CI of that correlation) of observed versus 

predicted scores. For dichotomous (non)response, we compared modeling using two response 

definitions. First, we considered the traditional clinical criterion of a 50% or greater reduction in 

observed/predicted PHQ-9 scores at week 6. Second, after running the optimal LCMM model on 

the full dataset, we assigned participants to response trajectories based on the class for which the 

posterior probability was greatest and defined response as being assigned membership in a PHQ-

9 improvement class (trajectories representing clinical improvement, but not the research 

definition of response). These class assignments were compared to the class assignments 

predicted during cross validation of the LCMM and NLME models. Consistent with best 

practices in biomarker research (Grzenda et al., 2021; Widge et al., 2019) we calculated 

sensitivity, specificity, and AUC for (non)response prediction. 95% confidence intervals were 

estimated in each fold using 2000 stratified bootstrap replicates. For both categorical and 

continuous analyses, all measures were calculated for each fold, and then averaged across folds 

to yield summary statistics.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.30.24308258doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.30.24308258
http://creativecommons.org/licenses/by/4.0/


2.5. Treatment coil and protocol effects. 

Multinomial logistic regression weighted by probability of class membership (Kaster et al., 2019, 

2020; Smagula et al., 2015; Uher et al., 2010) was used to determine whether coil, protocol, and 

other patient or treatment characteristics were associated with the different trajectories.  

The predictive factors tested were coil (F8 or H1), protocol (high frequency, low 

frequency, or iTBS), baseline PHQ-9, age, sex, any comorbid disorder, antianxiety use, and 

treatment year. Given that coil and protocol were highly colinear, analyses were run separately 

for coil and protocol. Patients who switched coils (n = 23) or protocols (n = 41) were excluded 

from the coil and protocol analysis, respectively. We used synthetic minority over-sampling 

(SMOTE; Chawla et al., 2002), as implemented in the SmoteClassif function in the UBL package 

(v0.0.7; Branco et al., 2016) to oversample the minority class and produce a balanced dataset. 

Data were oversampled separately for coil and protocol analyses.  

Forward selection with BIC minimization (as in our prior work in Widge et al., 2016) 

was used to select the predictors to be included in the final model. Predictors were kept in the 

final model if they showed a reduction in BIC of greater than 5 on a given step (Jones et al., 

2001).  

 

3. Results. 

3.1. Trajectory modeling and model selection.  

3.1.1. Latent class mixture modeling of raw PHQ-9 scores 

The patient sample was overall comparable to other naturalistic, registry-based TMS studies 

(Carpenter et al., 2012; Sackeim et al., 2020). It was slightly female-biased and had a mean 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.30.24308258doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.30.24308258
http://creativecommons.org/licenses/by/4.0/


baseline PHQ-9 of 17.86. Patients may have had a higher degree of treatment resistance – mean 

PHQ-9 at end of treatment was 13.85, compared to 9.6 in Sackeim et al. (2020) and Carpenter et 

al. (2012). 

There was a clear benefit for LQ over L models on BIC, SABIC, and test set prediction 

(Table 2). BIC, SABIC, and test set predictions also improved in the LQC models over LQ. 

Further, in 4 of the 5 folds, even the 3 class LQ model contained a class representing less than 

5% of the population. Therefore, we selected the LQC model. 

Within the LQC models, there was a slight improvement in SABIC as more classes were 

entered into the LQC models. For the 3 class and 5 class LQC models, BIC was slightly worse, 

but increased in the 2 and 4 class models. Finally, there was almost no difference in test set 

prediction when increasing the number of classes. Given that the BIC improvement plateaued at 

4 classes, and that model is similar to that reported by another group on an independent dataset 

(Kaster et al., 2020), we selected the 4 class LQC model.  

The final model (LQC, 4 class) was rerun on the full dataset. We labeled the resulting 

trajectories: lower baseline symptoms with minimal improvement (n = 112), rapid improvement 

(n = 38), gradual improvement (n = 25) and non-response (n = 63; Figure 2A). Patients assigned 

to “improvement” trajectories got better, but did not always meet the 50% threshold for response, 

hence the terminology. For example, only 13.39% of the patients in the minimal improvement 

group met the traditional 50% threshold. Two of the three improvement trajectories are not 

completely linear. The slope of the gradual improvement group begins shallow, and then 

steepens around week 2. The slope for the rapid improvement trajectory begins steeper and then 

levels off, indicating a good initial effect that may plateau. The lower baseline symptoms with 

minimal improvement group have a modest linear reduction in symptoms. We assigned this 
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group as an “improvement” trajectory because the slope of a linear model fit to the trajectory was 

steeper (-0.54) than that for the non-response trajectory (-0.26), which tended to have higher 

baseline symptoms that remained high throughout treatment. None of those patients in the non-

response trajectory met the traditional 50% reduction threshold. 

 

 

Figure 2. The final trajectories of the LQC 4 (A) and Baseline Corrected LQC 2 (B) class 

models. PHQ-9 scores are the average actual scores across the week for all the patients in each 

class. Error bands are SEM of the data for patients assigned to that class. *Baseline corrected 

LQC 2 was the final model selected and used for subsequent latent class mixture model analyses.  

 

3.1.2. Latent class modelling of difference from baseline scores 

Given that LCMM can be sensitive to baseline symptom severity (i.e., PHQ-9 scores at week 0), 

and that patients with different baseline symptom severity may follow the same trajectory, it is 

possible that models may capture response trajectories better if the influence of baseline score is 

removed. Thus, we ran additional LCMMs with PHQ-9 scores computed as a difference from 
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baseline. Similar to raw PHQ-9 scores, BIC, SABIC, and test set predictions improved as 

quadratic and cubic polynomials were added to the model (Table 2). Thus, we selected the LQC 

model for baseline corrected scores.  

 Within the LQC models, BIC improved when the number of classes was increased from 1 

to 2. BIC did not improve any further with the addition of more classes. SABIC improved as 

more classes were included, but the improvement of SABIC was modest after 2 LQC classes. 

Test set predictions showed little change as classes were added to the models. Given the plateau 

of BIC and SABIC improvement at 2 classes, and little change in test set prediction, we settled 

on the 2 class LQC model for baseline corrected PHQ-9 scores.  

We ran the final model of baseline corrected PHQ-9 scores (LQC, 2 class) on the full 

dataset, labelling the resulting trajectories: improvement (n = 97), and non-response (n = 141; 

Figure 2B). The patients assigned to the “improvement” trajectory had a mean (SD) reduction in 

PHQ-9 scores of -6.87 (6.03), but did not always meet the traditional 50% criterion for response 

– only 41.23% of patients in the improvement trajectory met this criterion. Patients assigned to 

the non-response trajectory showed a smaller reduction in PHQ-9 scores at week 6 of treatment 

(M (SD) = -2.05 (2.52)), and only 2.84% of those patients met the traditional 50% criterion for 

response. Table 1 contains the patient characteristics for each trajectory. Overall, correlations 

between test set predictions and observed data were largely comparable between the raw PHQ-9 

LCMM model and the baseline corrected one. However, within polynomials in the baseline-

corrected model, there were clear improvement in both BIC (range = 5504.28 - 5943.45) and 

SABIC (5412.02 - 5924.44) in comparison to the model fit to raw PHQ-9 scores (BIC range = 

6232.66 - 6395.14; SABIC range = 6119.54 - 6345.22). Therefore, we selected the baseline-

corrected LQC 2 class model as the optimal LCMM.    
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Table 2. Model fit statistics are used to select the final trajectory model. All values were 

calculated for each of the 5 folds and then averaged across folds to yield the values seen here. 

Changes in information criteria (ΔBIC and ΔSABIC) were calculated by subtracting the more 

complex model from the less complex model. Therefore, positive numbers indicate that the more 

complex model provided a better fit to the data. ΔBIC and ΔSABIC were calculated between the 

lower order polynomial and next higher order polynomial (L and LQ, LQ and LQC) within the 

models with the same number of classes (ΔBIC and ΔSABIC polynomial within class number). 

ΔBIC and ΔSABIC were also calculated between models with increasing number of classes (1 

class to 2, 2 classes to 3, etc.) within the same level of polynomials (ΔBIC and ΔSABIC class 

number within polynomial). The models highlighted in gray were the final models selected for 

each approach. Models were tested independently on both raw weekly PHQ-9 scores and weekly 

scores that were calculated as a difference from baseline. The optimal LCMM selected was the 

Baseline Corrected LQC-2 model.   
 

Raw PHQ-9 Scores 

Polynomials 

Number 

of 
Classes BIC 

ΔBIC 

(polynomial 

within class 
number) 

ΔBIC (class 

number 

within 
polynomial) SABIC 

ΔSABIC 

(polynomial 

within class 
number) 

ΔSABIC 

(class 

number 

within 
polynomial) 

Test set 

actual 

versus 

predicted 

score 
correlation 

Minimum 

% of 

sample in 
a class 

L 1 6364.23 NA NA 6345.22 NA NA 0.67 100 

L 2 6367.03 NA -2.81 6335.36 NA 9.86 0.67 42.33 

L 3 6375.44 NA -8.4 6331.09 NA 4.27 0.66 11.24 

L 4 6383.99 NA -8.55 6326.97 NA 4.12 0.66 8.82 

L 5 6395.14 NA -11.15 6325.45 NA 1.52 0.63 5.88 

LQ 1 6279.6 84.63 NA 6247.92 97.3 NA 0.79 100 

LQ 2 6277.64 89.4 1.96 6230.12 105.24 17.8 0.79 16.26 

LQ 3 6285.81 89.62 -8.18 6222.46 108.63 7.66 0.77 6.18 

LQ 4 6292.72 91.27 -6.9 6213.53 113.44 8.93 0.75 6.51 

LQ 5 6305.38 89.76 -12.66 6210.35 115.1 3.18 0.74 3.88 

LQC 1 6247.14 32.46 NA 6199.63 48.3 NA 0.86 100 

LQC 2 6233.96 43.67 13.18 6167.44 62.68 32.18 0.85 11.21 

LQC 3 6240.8 45.01 -6.84 6155.28 67.18 12.16 0.84 10.36 

LQC 4 6232.66 60.06 8.14 6128.13 85.4 27.15 0.83 11.13 

LQC 5 6243.07 62.31 -10.42 6119.54 90.81 8.59 0.81 5.26 

 

Baseline Corrected PHQ-9 Scores 

L 1 5943.45 NA NA 5924.44 NA NA 0.67 100 

L 2 5923.04 NA 20.41 5891.36 NA 33.08 0.66 28.23 

L 3 5927.15 NA -4.11 5882.8 NA 8.56 0.66 7.67 

L 4 5933.12 NA -5.97 5876.1 NA 6.7 0.64 5.78 

L 5 5940.75 NA -7.63 5871.07 NA 5.04 0.66 2.52 

LQ 1 5690.32 253.13 NA 5658.64 265.8 NA 0.8 100 

LQ 2 5663.92 259.12 26.4 5616.4 274.96 42.23 0.78 43.28 

LQ 3 5672.67 254.48 -8.75 5609.32 273.48 7.08 0.78 5.25 
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LQ 4 5687.75 245.37 -15.08 5608.56 267.54 0.76 0.76 9.66 

LQ 5 5703.45 237.3 -15.7 5608.42 262.64 0.14 0.76 3.35 

LQC 1 5560.04 130.27 NA 5512.53 146.11 NA 0.87 100 

LQC 2 5493.8 170.12 66.24 5427.28 189.13 85.25 0.85 40.12 

LQC 3 5504.28 168.4 -10.48 5418.75 190.57 8.53 0.85 13.14 

LQC 4 5521.85 165.9 -17.58 5417.32 191.24 1.43 0.84 9.46 

LQC 5 5535.56 167.89 -13.71 5412.02 196.4 5.3 0.83 2.42 

 

3.1.3. Nonlinear mixed effects modelling of PHQ-9 scores 

We fit the exponential decay function to data using NLME models which included 𝑃𝐻𝑄9𝐶ℎ𝑎𝑛𝑔𝑒, 

B, and 𝑃𝐻𝑄9𝐸𝑛𝑑 as random effects at the patient level. This model yielded an AIC = 8042.47, 

BIC = 8097.05, and a log likelihood of -4011.43. These values indicated a better fit than a 

simpler model which included only 𝑃𝐻𝑄9𝐶ℎ𝑎𝑛𝑔𝑒 and 𝑃𝐻𝑄9𝐸𝑛𝑑 as random effects, with an AIC 

= 8357.46, BIC = 8395.38, and log likelihood of -4171.73. The more complex model also 

yielded a significant likelihood ratio test over the simpler one, LRT = 320.59, p < .001. Thus, we 

included all random effects in the final nonlinear mixed model.   

3.2. Predictive Power. 

Trajectory modeling using LCMM had acceptable predictive power (Table 3). When given raw 

PHQ-9 scores for week 0 (and up), the correlation between predicted and observed scores was 

high. When response was defined by assignment to an improvement trajectory, the AUC 

exceeded chance at week 0 for raw PHQ-9 scores. These results are likely due to the large 

contribution of baseline PHQ-9 to final trajectory in the raw score modeling approach. When 

response was defined as a >50% reduction in PHQ-9, the AUC did not exceed chance until the 

model was given raw PHQ-9 scores for weeks 0-4. Specificity was high, starting at week 0, but 

sensitivity improved when given data for an increasing number of weeks. This indicates that the 
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model is biased to predict non-response initially, becoming less so when given more weeks of 

data.  

 When removing the influence of baseline scores on LCMM trajectories, correlations of 

predicted with observed scores were generally lower than those of raw scores, particularly when 

0 or 1 weeks of data were provided. In comparison to raw scores, the AUC of predicting a 50% 

PHQ-9 score reduction was greater when given just one week of data, and remained consistently 

higher as more weeks of baseline-corrected data were entered. However, AUC did not exceed 

chance until 0-4 weeks of data were entered, for both the raw and baseline-corrected score 

models. When predicting improvement trajectory assignment, AUC was lower for baseline 

corrected scores when only the first two weeks of data were entered. This is again likely due to 

the influence of baseline scores on trajectory assignment when modelling raw PHQ-9 scores. 

However, AUC improved beyond raw scores when three or more weeks of baseline corrected 

data were entered.  

 The NLME approach also yielded acceptable predictive power. Across the five folds of 

training, estimates of B at the population level had a mean (SD) = 2.11 (0.09). Predicted values 

of 𝑃𝐻𝑄9𝐸𝑛𝑑 on test sets were highly correlated with observed values, r [95% CI] = .71[.68 - 

.73], p < .001. Correlations of observed PHQ-9 scores to predicted scores using the exponential 

decay function were generally lower than those obtained from the LCMM approach. AUC for 

predicting a 50% score reduction was numerically higher for NLME than for LCMM-based 

models. However, similar to the LCMM models, AUC did not exceed chance until weeks 0-4 

were entered into the model. When response was defined as assignment to an LCMM 

improvement trajectory based on predicted scores, AUC was lower in comparison to the LCMM 

models, even though the NLME model reached significance (AUC confidence interval excluding 
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0.5) at week 1 compared to week 2 for the baseline-corrected LCMM. This suggests that the 

exponential decay model is useful at predicting larger reductions in PHQ-9 scores during 

treatment, but less so when symptom improvement is smaller and does not meet the traditional 

50% reduction criterion.  
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Table 3. Predicting response with trajectory modeling. Max modeled week indicates the 

maximum week number of test set data that was given to the model to make predictions, up to 6 

(treatment completion). Pearson correlations (r) and 95% confidence intervals compare the 

predicted versus observed scores of the test set. Sensitivity, specificity and AUC quantify 

categorical (non)response prediction when response was defined as: 1) the traditional method of 

50% or greater reduction in score, and 2) assigned membership in the improvement trajectory of 

the latent class mixture model of baseline corrected scores.  

Raw Scores Latent Class Model 

Max 

Modeled 

Week 

 Correlation (r) 

Response = >50% reduction in score Response = membership in an improvement trajectory 

Sensitivity Specificity              AUC Sensitivity Specificity              AUC 

Estimate 95% CI 
  

Estimate 95% CI 
  

Estimate 95% CI 

0 0.76 0.71-0.8 0 1 0.5 0.5-0.5 0.65 0.76 0.71 0.62-0.79 

1 0.83 0.8-0.86 0.04 0.98 0.51 0.45-0.56 0.64 0.75 0.7 0.62-0.78 

2 0.89 0.86-0.91 0.2 0.94 0.57 0.43-0.71 0.75 0.74 0.74 0.65-0.83 

3 0.93 0.91-0.94 0.28 0.95 0.62 0.46-0.78 0.78 0.75 0.77 0.68-0.85 

4 0.95 0.94-0.96 0.44 0.95 0.7 0.53-0.87 0.78 0.77 0.77 0.7-0.85 

5 0.97 0.96-0.98 0.58 0.95 0.77 0.59-0.94 0.8 0.77 0.79 0.71-0.86 

6 0.98 0.98-0.99 0.82 0.99 0.91 0.78-1 0.84 0.75 0.8 0.72-0.86 

 

Baseline-Corrected Scores Latent Class Model 

0 0.34 0.25-0.44 0 1 0.5 0.5-0.5 0.4 0.6 0.5 0.5-0.5 

1 0.59 0.51-0.66 0.2 0.96 0.58 0.44-0.72 0.3 0.91 0.6 0.49-0.72 

2 0.76 0.71-0.8 0.28 0.89 0.59 0.44-0.74 0.6 0.86 0.73 0.6-0.86 

3 0.85 0.81-0.87 0.35 0.94 0.64 0.48-0.8 0.77 0.9 0.84 0.73-0.94 

4 0.91 0.89-0.93 0.52 0.93 0.72 0.57-0.87 0.84 0.91 0.88 0.78-0.97 

5 0.95 0.93-0.96 0.62 0.94 0.78 0.61-0.95 0.93 0.91 0.92 0.84-0.99 

6 0.97 0.96-0.98 0.96 1 0.98 0.95-1 0.96 0.93 0.95 0.89-0.99 

Exponential Decay Model 

 Max 

Modeled 

Week 

  Response = >50% reduction in score Response = membership in an improvement trajectory 

Correlation (r) Sensitivity Specificity              AUC Sensitivity Specificity              AUC  

Estimate 95% CI   Estimate 95% CI   Estimate 95% CI 

0 0.68 0.62-0.73 1 0 0.5 0.5-0.5 0.2 0.78 0.49 0.48-0.5 

1 0.81 0.78-0.85 0.33 0.81 0.57 0.39-0.75 0.23 0.98 0.6 0.51-0.7 

2 0.88 0.85-0.9 0.36 0.86 0.61 0.43-0.79 0.43 0.72 0.58 0.51-0.64 

3 0.91 0.89-0.93 0.4 0.93 0.67 0.49-0.85 0.31 1 0.66 0.56-0.75 

4 0.91 0.89-0.93 0.6 0.92 0.76 0.58-0.94 0.47 1 0.73 0.64-0.83 

5 0.91 0.9-0.93 0.76 0.96 0.86 0.73-0.98 0.46 0.8 0.72 0.6-0.83 
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6 0.9 0.87-0.92 1 0.96 0.98 0.95-1 0.33 0.79 0.65 0.54-0.76 

 

 

Figure 3. Area under the receiver operating characteristic curve for model predictions of 

treatment outcomes with increasing observations. The dashed line in each plot shows chance 

(AUC = 0.5), and error bars denote the 95% CI of each estimate (see Table 3).  Top row shows 

AUC for prediction of traditional definition of response (50% PHQ-9 score reduction). Bottom 

row shows AUC for prediction of assignment to the LCMM improvement trajectory. Left 

column shows prediction results for LCMM of raw data. Middle row shows prediction results for 

LCMM of baseline-corrected data. Right column shows prediction results for NLME.  

 

3.3. Treatment coil and protocol effects. 

None of baseline PHQ-9, age, sex, treatment year, or antianxiety use differed between patients 

treated with the F8 or H1 coil. Both coil and protocol increased BIC from the null model in 
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logistic regressions of trajectory class assignment. The stepwise addition of baseline PHQ-9, age, 

sex, treatment year, and antianxiety medication use increased BIC from the null model in each 

case.  Thus, in this dataset, neither standard clinical factors nor treatment coil influenced the 

overall probability of response. 

 

4. Discussion. 

We modeled trajectories of TMS response in a naturalistic sample, demonstrating that prior 

results in well characterized clinical trial samples can generalize to more heterogeneous 

populations. When modelling raw PHQ-9 scores, a linear-quadratic-cubic, four class latent 

mixture model provided the best fit while also being the most parsimonious. Those trajectories 

largely replicated prior trajectory modeling in TMS (Kaster et al., 2020, 2019). However, we 

found that baseline scores may have a large influence on the classes that are derived, while 

providing little information on the final symptom trajectory. For example, patients with different 

baseline symptom severity, but following the same trajectory, may be incorrectly dichotomized 

into separate response classes. In support of this, a latent class model that accounted for baseline 

symptom severity yielded a superior fit to data, along with greater performance in predicting 

treatment response. The optimal latent class model for those data was a linear-quadratic-cubic 2 

class model. This suggests that when accounting for baseline symptom differences, there are two 

nonlinear trajectories underlying response to TMS – those who receive benefit and those who do 

not. This contrasts previous suggestions that antidepressant response trajectories reveal 

subgroups of responders that may be biologically separable (Kaster et al., 2020, 2019).  

 In addition, we compared a separate approach which defines antidepressant symptom 

trajectories as an exponential decay function (Berlow et al., 2023). This approach does not 
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impose explicit subgroups on response trajectories, but rather, denotes response as an 

individual’s magnitude, rate, and outcome of treatment response. Here also, our results partially 

replicated and partially diverged from the original report. We confirm the exponential model’s 

predictive power, and show that it can exceed categorical trajectory models in some situations 

(numerically higher AUCs when predicting 50% drop in PHQ-9). We did not replicate the 

original finding that exponential models can predict response as soon as week 1; in our dataset, 

prediction above chance was only possible from week 4 onward. Similarly, the exponential 

decay approach substantially underperformed the latent class (categorical) model when 

predicting assignment to an overall improvement trajectory, at all modeled timepoints. This may 

reflect the fact that the trajectory concept is built in to the latent class approach, and thus these 

models are more able to consider small symptom improvements that may be meaningful to the 

patient, but do not reach traditional response definitions.  

 A larger point is that both models can predict clinical outcomes before completion of the 

TMS course. In predicting the traditional criterion of a 50% score reduction, all models we 

evaluated could predict response better than chance after 4 weeks of treatment. When predicting 

assignment to an “improvement” trajectory, the latent class model of raw PHQ-9 scores 

exceeded chance when given only baseline scores. However, with increasing weeks of data, 

predictive performance of this model showed little improvement. This suggests that baseline 

scores are overly-influential in latent class models and that those scores provide little benefit in 

defining the final symptom trajectory. Rather, the predictive performance of the baseline 

corrected latent class model suggests that baseline scores should be accounted for when 

modelling antidepressant response trajectories to TMS with latent class mixture models. When 
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accounting for baseline symptom severity, the latent class model could predict assignment to a 

(non)improvement trajectory when given data from only 2 weeks of treatment. 

The clearest clinical use of trajectory modeling would be identifying (non)responders 

without needing to provide a full 6-week treatment series. Using a standard definition (>50% 

improvement), all models we evaluated could predict response better than chance after 4 weeks 

of treatment. This may be of limited practical value; with two thirds of the treatment course 

completed, there is only modest cost savings from identifying non-responders. Response 

prediction at 4 weeks may be more useful if conclusive evidence emerges that a coil or protocol 

switch can “rescue” a patient into response. This is a strong anecdotal belief among TMS 

clinicians, but has not been empirically validated. Using simpler modeling, researchers have 

shown that symptom improvement at 10 sessions is predictive of ultimate clinical response to 

TMS (Feffer et al., 2018), suggesting the possibility of a more optimal method of predicting 

response early in treatment. Importantly, although both latent class and exponential models had 

only modest predictive power, they far exceeded the predictive power of easily observed factors 

such as concomitant medication, age/sex, or type of treatment coil used. This highlights that, in 

general, such modeling is valuable. Another potential value of response trajectory models might 

lie in biomarker discovery. Although the models have modest predictive power to predict the 

future from clinical data alone, the trajectories/exponential parameters remove some of the noise 

present in raw mood ratings from the PHQ-9. By providing a lower-noise dependent variable, 

trajectory models might enable discovery of baseline or treatment-emergent physiologic markers 

to alter TMS treatment. Similar denoising approaches have led to the discovery of new 

biomarkers for invasive brain stimulation (Basu et al., 2023; Sani et al., 2018). 
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There are several limitations in our study, mainly due to the naturalistic sample. For 

example, many patients were treated with multiple coils, or with multiple protocols. While we 

included these patients, it is critical to understand how these switches may alter outcomes. Our 

current dataset contains too few observations of each switch type to reliably perform this 

analysis. Further, switches occurred based on a subjective clinician recommendation, and at 

variable time points. The present research provides evidence for a more systematic means by 

which clinicians can determine whether a coil or protocol switch might be warranted. Further, we 

believe that the “messiness” inherent in a naturalistic sample is also a strength, given that the 

long-term goal of this type of modeling is for it to be used in clinical practice. 

In summary, we have demonstrated that previously suggested subgroups of 

antidepressant response to TMS may be better defined as simple response/non-response 

trajectories. We compared two approaches of modelling response trajectories and show that 

treatment response can be reliably predicted given 4 weeks of treatment data, and symptom 

severity changes along an improvement trajectory can be predicted given two weeks of treatment 

data. Thus, we provide preliminary evidence that trajectory modeling might be viable for guiding 

treatment decisions. This would require a clearer understanding of reasonable stepped-therapy 

TMS algorithms, an area of active research. It is not yet clear if similar modeling could guide the 

use of more compressed TMS protocols, e.g. if these same trajectories might appear during a 

course of TMS given over a week (Cole et al., 2020). Longitudinally measured biomarkers 

should show similar trajectories that precede the clinical response, which would provide strong 

evidence of causality. 
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