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ABSTRACT 

Social affective and communication symptoms stand at the center of autism, and usually become apparent 

within the first 1-3 years of life. Symptom severity differs widely across toddlers and clinical outcomes, 

ranging from near-neurotypical to poor. The biological bases of this early and wide symptom diversity are 

largely unknown. While more than two dozen studies have attempted to subgroup early-age clinical 

heterogeneity, most studies fail to rigorously validate discovered subtypes using multiple methods, and 

none linked observed clinical subtypes with underlying functional neural signatures. Using a well-

established approach for precision medicine patient subtyping (Similarity Network Fusion) and multiple 

rigorous validation methods, we integrated thoroughly replicated measures of social neurofunctional 

activation and social and language ability in 137 toddlers at early ages. Results identified three distinct 

social neural-clinical ASD subtypes, validated using multiple methods. One subtype was consistent with a 

‘profound’ autism profile with negligible social neural activation, severe social and language symptoms, 

low social interest, and little clinical improvement.  Another ASD subtype had a contrasting pattern with 

only mildly reduced social neural activity, near neurotypical social and language abilities, and substantial 

age-related clinical improvement.  One principal implication of these results is that the “spectrum” of ASD 

heterogeneity is not truly a continuous spectrum from the neurobiological and clinical perspective. The 

profound autism subtype is the neurofunctional, clinical and developmental opposite of the mild ASD 

subtype, suggesting different etiological mechanisms. A second implication is that neurobiological and 

clinical subtype differences highlight the need to develop subtype-specific treatments, particularly for the 

profound subtype. Third, treatment studies with an undetermined mix of subtypes could fail or succeed 

based on how many patients from each subtype are included in the mix. 
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INTRODUCTION 

 

Social affective and communication symptoms appear in the first years of life in autism spectrum 

disorder (ASD) and give rise to pervasive developmental challenges, yet to differing degrees. Some ASD 

toddlers have outcomes considered good or “high” ability while many do not, but neurofunctional reasons 

for differential outcomes are neither known nor predictable at the youngest ages. Children with the most 

severe symptoms, or so-called “profound” autism1,2, are at the greatest risk for a poor outcome, including 

life-long struggle with ASD symptoms. However, due to low levels of their inclusion in imaging research 

studies, particularly in functional brain imaging studies that require holding still, little is known about the 

neural basis of social and language symptoms in this important group of autistic toddlers. Because 

impairments in social perception and reactivity are early and specific signs of ASD, there is a particular 

necessity to uncover the exact neurobiological differences that underlie different ASD clinical subgroups.  

Over 25 studies of ASD toddlers used exclusively clinical diagnostic, psychometric and/or behavioral 

measures to cluster patients, commonly finding 2 to 4 clusters3. All were weakly validated by only one or 

two methods (e.g., cross-method replication) and some used no validation at all3. None of these 25 studies 

incorporated into the clustering both neurobiological measures relevant to social affective and 

communication symptoms and clinical scores. Thus, these studies provide no insight into the neural bases 

of clinical social subgroups, and only weak understanding of clinical subgroups since rigorous cluster 

validations were absent. Further, many clustering designs used only a single clinical measure, such as the 

ADOS, which limits the insights generated to a single dimension.  

To gain insight into the neural bases of clinical social subgroups, one strategy utilizes experimenter-

defined clinical stratification in conjunction with neurobiological measures relevant to social affective and 

communication symptoms4. To assess social neural functional variability across all ability levels at the age 

of first social symptoms, in our studies we leveraged sleep functional imaging and passive listening to social 

affect speech. In this design, we stratified ASD toddlers into two groups based on language ability and 

found that ASD toddlers with good language outcomes had strong temporal cortex activation to social 

speech, and that those with poor outcomes have much weaker activation. This stratification design showed 

that underlying social symptoms in autism is temporal cortex dysfunction in response to social stimuli.  

A different strategy is to use unbiased, unsupervised precision medicine methods such as Similarity 

Network Fusion (SNF) to objectively discover patient subtypes. SNF is a well-established method that 

integrates any type of multimodality data (e.g., clinical, biological) to reveal distinct multimodal subtypes 

among patient and/or control groups, wherein the multimodality profile of patients in a cluster are 

maximally similar to each other and maximally different from those of patients in other clusters5. Using 

SNF, we integrated measures of fMRI social activation in temporal and frontal cortices with clinical 

measures in ASD and typically developing (TD) toddlers6. We showed temporal cortex measures of fMRI 

activation to social stimuli are positively correlated with clinical measures in ASD and TD toddlers, 

specifically social and language abilities. There were three distinct social neural-clinical subtypes among 

ASD subjects, one with slightly reduced temporal cortex activation and high clinical ability, another with 

both moderately reduced activation and ability, and a third with weak social activation and low social 

ability. To our knowledge, this was the first unsupervised precision social brain-behavior study in ASD6.  

This discovery of dysfunctional social activation of temporal cortex in ASD at the earliest ages has 

major importance because temporal cortex is a hub of social information processing in the typical brain7-14. 

Moreover, ASD temporal cortex anatomical enlargement is a feature predictive of early age language 

outcome15. ASD temporal cortex is also the only cortical region that is persistently enlarged across ASD 

ages from toddlers to adults15-17. Remarkably, ASD temporal cortex along with visual regions are the top 

two cortical hot spots for differentially expressed (DE) genes, with 2,733 and 3,264 DE genes, respectively, 

both of which are far more than all other cortical regions (e.g., 409 DE genes in frontal, 0 DE genes in 

fusiform)18.  

 Knowledge of ASD social neural and clinical subtypes is vital for advances towards understanding 

subtype-specific etiology, neurobiology, and especially treatment in this heterogenous disorder. As such, 

recently identified social neural-clinical subtypes must be rigorously validated. Here, using a sample that 
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is more than three times the size of our initial study6, we rigorously validate social neural-clinical subtypes 

of ASD using data-driven SNF methods5 with a large dataset of deeply phenotyped ASD, typically 

developing, and neurodevelopmentally delayed subjects. We leverage state of the art bioinformatic 

methodology and multimodal SNF analyses (behavioural, cognitive, and neurofunctional) to reveal 

clinically meaningful toddler-age social-neural subtypes of ASD. With this approach, we identified ASD 

neural-clinical subtypes that have categorically opposite clinical developmental trajectories: profound 

autism and mild autism. Then to contextualize ASD subtypes in relation to the broader non-ASD toddler 

population, we mapped them with comparable data from a range of typical and developmentally delayed 

subjects again using unsupervised SNF which revealed a potential “optimal” outcome subtype within the 

mild ASD subtype. 

 

 

METHODS 

 

Participants 

This study was approved by the University of California, San Diego Institutional Review Board. 

Informed consent was obtained from parents or guardians of toddlers. Participants were recruited via the 

GET SET Early Approach19. Sleep fMRI and social eye tracking data were collected from a total of 139 

toddlers (2 were excluded for head motion during fMRI scan). Of the remaining 137 toddlers, 81 were 

diagnosed with ASD and 56 were non-ASD control toddlers, including 33 with typical development (TD) 

and 23 with a delay (7 with ASD features, 3 with language delay (LD), and 13 with global developmental 

or other delays). Of the 20 non-LD delayed toddlers, 6 had features of “late talkers”20, namely low clinical 

scores at intake driven by low expressive language (mean EL score: 66.09), followed by improvements on 

the order of 1-4 standard deviations (mean EL score: 95.94) to near neurotypical clinical profiles about a 

year later. 

Initial clinical data were collected around 1 – 3 years of age, including the Autism Diagnostic 

Observation Schedule (ADOS-2; Module T, 1, or 2)21, the Mullen Scales of Early Learning (MSEL)22, and 

the Vineland Adaptive Behavior Scales (VABS)23. The same clinical data were collected again from all 

subjects longitudinally about a year after intake, around 2 – 4 years of age.  

Clinical, behavioral, and neuroimaging data were collected between 2008 and 2014; part of the 

neuroimaging data were reported in previous studies4,24,25 and eye-tracking data were included in previous 

publications.26,27 For demographic characteristics and clinical measures at intake and outcome, see 

Supplementary Table S1. SNF analyses of these data in the present work are reported here for the first time. 

 

Affective language paradigm  

The affective language paradigm was identical to our previous studies4,6,24,25,28, and included three 

types of stimuli: age-matched forward speech, age-advanced forward speech, and backward speech. Stimuli 

were presented in a block design, with each stimulus presented 20 sec and followed by 20 sec of rest (9 

blocks, 6 min 24 sec). As activation to forward and backward speech stimuli did not differ in previous 

studies using the identical paradigm4,6,24,25 nor in this work, we combined forward and backward speech 

stimuli in the analysis, with speech versus rest as the main contrast of interest. 

 

Imaging data acquisition and analyses 

All fMRI data were collected using a 1.5 Tesla GE MRI scanner (GE High-Definition 1.5 T twin-

speed EXCITE scanner) from all toddlers during natural sleep at the University of California, San Diego. 

Functional images were acquired with echoplanar imaging (TE = 35ms; TR = 2500ms; flip angle = 90°; 

matrix size = 64 × 64; resolution = 4 × 4 mm; slice thickness = 4 mm; FOV = 256 mm; 31 slices; 154 

volumes). Structural images were acquired using a T1-weighted MPRAGE sequence (FOV = 228 mm; 

matrix size = 256 × 256; resolution = 0.89 × 0.89 mm; slice thickness = 1.5 mm; 128 slices). 
 Functional imaging data were preprocessed using AFNI29, including motion correction, normalization 

to Talairach space, and smoothing with a 8 mm FWHM Gaussian kernel. The first-level and second-level 
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whole-brain activation analyses were modeled with the general linear model in 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm8/). Events in first-level models were modeled with the canonical 

hemodynamic response function and its temporal derivative, with motion parameters as covariates of no 

interest. High-pass temporal filtering was applied with a cutoff of 0.0078 Hz (1/128 s) to remove low-

frequency drift in the time series.  

 Analysis of head motion via framewise displacement (FD) showed two subjects had considerable head 

motion (mean FD > 0.5) and were excluded in the sample. For the remaining subjects, head motion was 

minimal (mean FD < 0.25) for nearly all subjects across diagnostic groups (ASD, mean = 0.08 mm, s.d. = 

0.09; TD: mean = 0.07 mm, s.d. = 0.03; ASD Features, mean = 0.06 mm, s.d. = 0.04; DD/Other, mean = 

0.1 mm, s.d. = 0.07; LD: mean = 0.12 mm, s.d. = 0.11), and groups did not differ in mean FD (F(4, 169) = 

0.93, p = 0.45). Percent signal change (speech versus rest) was extracted based on beta maps from the first-

level models for frontal and temporal language regions using Neurosynth ROIs (with the term ‘language’) 

as those used in previous studies4,6,24. 

 

SNF Analyses  

 We used early-age fMRI brain activation to speech once with outcome clinical measures and again 

with intake clinical measures to design two separate outcome and intake SNF analyses5 (‘SNF’ function in 

the ‘SNFtool’ package). Then, we used a spectral clustering algorithm (‘spectralClustering’ function in the 

‘SNFtool’ package) to detect clusters of the similarity network with the ASD sample. In these analyses, we 

included fMRI activation data (four variables: bilateral frontal and temporal ROI percent signal change) as 

well as outcome or intake clinical data respectively (three variables: MSEL standardized age equivalent 

scores for receptive and expressive language subscales, and VABS adaptive behavior composite) for all 81 

ASD subjects. We determined three to be the optimal number of clusters using various indices and 

clustering methods in several R packages, including NbClust30, mclust31, and SNFtool. 

  For the whole sample (n = 137) including 81 ASD subjects and 56 non-ASD controls, we ran the SNF 

and clustering analysis using the same approach as for the ASD-only sample. We then analyzed how 

subjects in each of the ASD Outcome clusters, as identified by SNF, mapped onto each of the Mixed clusters 

with the whole sample of ASD and non-ASD subjects. Correlation analyses were conducted among the four 

fMRI activation scores and MSEL receptive and expressive standardized age equivalent scores for both 

Outcome and Mixed SNFs. 

 

Validation strategies for ASD Outcome subtypes and Mixed subtypes 

 We used five methods3 to validate obtained clusters from Outcome SNF and six to validate Mixed 

SNF.  First, we tested cluster separation based on each variable included in SNF to determine if any factors 

were driving cluster assignment, and to quantify the degree of certainty with which patients are assigned to 

specific clusters. Second, to establish external validity, cluster separation was also tested on clinical and 

social attention variables not used in the SNF, including MSEL Early Learning Composite (ELC), ADOS 

total score, and fixation on social images during eye tracking. Third, we ran a prediction analysis with the 

5-fold cross-validation approach on Outcome and Mixed SNF. Specifically, the whole sample was 

randomly divided into 5 equal-sized parts: one part was used as the left-out test dataset, and the rest was 

used as the training dataset. Then, using the label propagation method, the cluster labels were predicted for 

the left-out samples. This process was repeated five times, using each of the five parts as the left-out test 

set once. The cluster label prediction was performed using the ‘groupPredict’ function in the ‘SNFtool’ 
package in R. The 5-fold cross-validation procedure was repeated 10 times. The prediction accuracy was 

calculated as the percent of the accurate labels predicted by the label propagation.  Fourth, we ran robustness 

analysis through 100 iterations with 95%, 90%, 80%, 70%, 60%, and 50% of the total sample using the 

SNF and clustering analysis as described above. The Normalized Mutual Information (NMI) index, 

calculated by the ‘calNMI’ function in ‘SNFtool’ package, was used to measure the similarity of two 

clustering outcomes.  For the Mixed SNF, we also used a fifth validation: independent cohort replication.  

This was conducted on an independent cohort of ASD and non-ASD toddlers from Xiao et. al6. The same 

SNF design with identical clinical and fMRI measures were used to test Mixed subtype replication.  
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Analyses of ASD subtype differences in language and adaptive behavior developmental trajectories 

 To test for ASD subtype-specific differences in trajectories of longitudinal clinical language and 

adaptive behavior abilities, we tested whether longitudinal changes between each child’s intake and 

outcome clinical scores (the latter of which were used in SNF and best estimated the child’s relatively 

ultimate phenotype) differed by subtype cluster. 

 

RESULTS 

 

Result 1: Three distinct subtypes based on 

SNF integration of three clinical measures 

and fMRI response to social speech at early 

ages in ASD 

 

 First, we tested the hypothesis, based on 

our previous paper6, that greater fMRI 

activation to social speech in temporal cortex is 

correlated with greater receptive and expressive 

language ability in ASD toddlers, as is 

illustrated in Figure 1A. In our 81 ASD 

toddlers, right temporal cortex activation was 

significantly correlated with receptive (r=0.26, 

p=0.021) and expressive language (r=0.24, 

p=0.028), as was frontal cortex activation (RL: 

r=0.33, p=0.003; EL: r=0.26, p=0.017). Left 

temporal cortex activation was significantly 

correlated with receptive language (r=0.27, 

p=0.016) and showed a trending correlation 

with expressive language (r=0.21, p=0.066, see 

Supplementary Table S2).  

  Next, leveraging clinical scores at outcome 

and temporal cortex fMRI activation to social 

speech, SNF identified three ASD Outcome 

clusters delineating distinct neural and clinical 

subtypes as shown in Figure 1B and Table 1. 

The fMRI activation in temporal cortex and clinical ability scores averaged for each cluster support the 

hypothesis illustrated in Figure 1A and are consistent with the significant group level correlations 

mentioned above (also see Supplementary Table 2).  ASD Outcome cluster 1 subjects (n=35) showed 

relatively high adaptive behavior and language scores, as well as near neurotypical brain activation in 

response to social speech. In contrast, ASD Outcome cluster 3 subjects were the exact opposite, with social 

and language scores consistently more than 2 standard deviations below average, and markedly low brain 

activation in response to speech (Table 1, Figure 1B). Clinical scores for cluster 3 subjects are consistent 

with clinical characteristics of profound ASD: namely, highly impacted language (e.g., -3SD below average 

mean), severe social symptoms, and very low adaptive behavior abilities1 (Table 1). Subjects in ASD 

Figure 1. ASD Outcome SNF Clustering. Relationship 

between fMRI activation in temporal cortex and various clinical 

ability scores in ASD toddlers. (A) Schematic representation of 

hypothesized relationship. (B) Observed left and right 

hemisphere percent signal change in response to speech 

compared to clinical measures (expressive language, receptive 

language, and adaptive behavior), all of which were used in SNF 

clustering. See Tables 2 and 3 for statistical differences across 

cluster separation, all together and pairwise.  
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Outcome cluster 2 (n=30) fell in the middle and had clinical scores 1-2 standard deviations below 

neurotypical means and reduced neural responses.  

 

 Validation of ASD Outcome Clusters. Review of 156 ASD clinical clustering studies showed most 

reported clusters were weakly validated by only 0 to 2 methods and none had robust validation3. Here, we 

used multiple validation approaches. First, we tested cluster separation using omnibus ANOVA and 

multiple pairwise comparisons, as shown in Tables 2 and 3. There was significant separation between all 

three clusters across all clinical variables in the SNF. For fMRI variables, such as activations in the right 

frontal and left temporal cortices, the low and high clusters were separated; for right temporal cortex 

activation, both low and medium clusters were separated from the high ability cluster. We could not observe 

any separation of clusters for left frontal cortex activation. Second, clinical and social attention variables 

not used in the SNF, including MSEL overall IQ, ADOS total score, and fixation on social images during 

eye tracking, were used to examine external validation. The results showed significant cluster separation 

for MSEL ELC and separation of medium and high ability clusters from the low cluster for ADOS total 

score, but no cluster separation for the eye tracking score (see Table 2 and 3). As illustrated in Figure 2A, 

mean scores for each of these variables showed a similar linear profile across clusters to variables included 

in SNF, as illustrated when compared to temporal cortex fMRI activation.  

 Third, 5-fold cross-validation resulted in a mean cluster classification of 0.85 + 0.1SD (Figure 2B). 

Fourth, NMI indexing after random removal of 5% to 50% of the sample resulted in high cluster robustness 

even after removal of up to 30% of the total sample (i.e., leaving only 56 total subjects for clustering) 

(Figure 2C).  

 Clinical Change of ASD Outcome Clusters. To test for subtype-specific differences in trajectories of 

longitudinal clinical language and adaptive behavior abilities, we tested whether longitudinal changes 

Figure 2. ASD Outcome SNF Validation and Longitudinal Clinical Change. (A) Comparing temporal lobe activation 

scores to clinical measures excluded from SNF clustering (IQ, social attention during eye tracking, and severity on the 

ADOS). See Tables 2 and 3 for statistical differences across cluster separation, all together and pairwise. (B) 5-fold cross 

validation of outcome clustering. (C) NMI index scores for clustering after random removal of 5% to 50% of the sample. 

(D) Longitudinal clinical scores for clusters across intake (circle) and outcome (diamond) assessments with arrows to 

indicate direction and magnitude of clinical change, showing ASD Outcome cluster 1 subjects have significant age-related 

clinical improvement, but ASD Outcome cluster 3 subjects have no clinical improvement. Significant change over time is 

denoted with an asterisk (p<0.05). 
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between each child’s intake and outcome clinical scores (the latter of which were used in SNF and best 

estimated the child’s relatively ultimate phenotype) differed by cluster. Figure 2D shows significant intake-

to-outcome clinical differences between the three ASD clusters. For ASD Outcome cluster 1, language 

scores improved substantially, while for ASD Outcome cluster 3 (the profound autism cluster) clinical 

scores changed little or decreased.  Table 4 details statistical effects. Most importantly, this analysis 

revealed that patients in the mild ASD subtype improved substantially between intake and outcome 

assessments, but those in the profound autism subtype do not, highlighting the important clinical 

translational potential of multimodality subtyping.  

 

Result 2: ASD subtypes in the context of non-ASD toddlers  

 Having delineated and 

validated three ASD Outcome 

clusters with distinct brain-

clinical subtypes of ASD, 

including a profound autism 

subtype, we further investigated 

how these three ASD subtypes 

compare to typically developing 

(TD) and developmentally 

delayed (Delay) toddlers, such 

as language delay or global 

developmental delay. To do so, 

we expanded the cohort from 

the previous ASD-only analysis 

to include an additional 33 TD 

and 23 Delay subjects for an 

overall total of 137 toddlers. The 

analysis revealed three neurofunctional and clinically distinct SNF clusters, referred to here as “Mixed” 

clusters (Figure 3). Only 17% of higher ability ASD Outcome cluster 1 were in Mixed cluster 1 which is 

comprised of largely higher ability TD and Delay subjects (n=17 and n=3, respectively) (Figure 3; Table 

5). The majority of ASD Outcome cluster 1 (74%) along with a subset of ASD Outcome cluster 2 (33%) 

were in Mixed cluster 2 (n=69), otherwise comprised of somewhat lower ability TD and Delay subjects 

(n=16 and n=17, respectively). Since 17% of ASD Outcome cluster 1 were in the high ability Mixed cluster 

1, this suggests the importance of our Mixed cluster approach in identifying, among the best outcome ASD 

toddlers, the subset who may have not just a good outcome but possibly an optimal outcome given their 

clinical scores. Thus, a large percentage of good ability ASD toddlers clustered either with lower ability 

TD and Delayed toddlers or with high ability TD.  

 In contrast, 100% of the profound ASD subjects from ASD Outcome cluster 3 were also in the lowest 

ability Mixed cluster 3. This was notably the only Mixed cluster to contain profound ASD subjects based 

on ASD Outcome clusters. 67% of moderate clinical ability ASD Outcome cluster 2 also fall into this lowest 

ability Mixed cluster 3. Mixed cluster 3 subjects (which included all profound autism subjects) had 

cognitive and language scores about 2 standard deviations below average and near zero brain activation in 

response to speech. On the other hand, Mixed cluster 1 showed average or above average clinical scores 

and high neural responses. Subjects in Mixed cluster 2 were in the mid to low average range across clinical 

and neural scores (Figure 4A, Table 5). Generally, in the Mixed clusters, activation of both the right and 

left temporal cortices, as well as the right frontal cortex, was significantly correlated with MSEL receptive 

and expressive language scores (Supplementary Table 2). There was no correlation between the left frontal 

cortex and language scores. 

 

Figure 3. Schematic representation of mapping between clustering ASD subjects 

alone (blue) and clustering subjects across diagnostic categories (red). Pie charts 

indicate the proportion of subjects from each diagnostic category that make up 

each mixed cluster.  
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 Validation of Mixed Clusters. As for the ASD Outcome clusters, we next validated SNF Mixed 

clusters in multiple ways by testing cluster separation, external variables, 5-fold cross validation and 

robustness. Both SNF variables and external variables contributed individually to significant separation of 

the three Mixed clusters, except for the left frontal lobe activation (see Tables 6 and 7). The ANOVA and 

pairwise comparisons showed clear separation between clusters with respect to SNF clinical variables as 

well as two external clinical variables (ADOS total score and MSEL ELC). Regarding the activation of the 

right and left temporal cortices and the external eye tracking score, the Mixed cluster 3 was distinctly 

separated from both the medium and high ability Mixed clusters 2 and 1. For right frontal cortex activation, 

only Mixed cluster 3 was significantly different from Mixed cluster 2. External clinical and social attention 

scores are shown in relation to temporal cortex fMRI activation in Figure 4B. 5-fold cross-validation shows 

mean cluster classification is 0.79 + 0.1SD (see Supplemental Figure 1). NMI indexing after random 

removal of 5% to 50% of the sample showed robustness even after removal of up to 40% of the total sample 

(i.e., leaving only 82 total subjects for clustering) (Supplemental Figure 1).  

 Clinical Change in Different Diagnostic Groups in Mixed Clusters. Next, we tested whether changes 

between each child’s intake and outcome clinical scores (the latter of which were used in SNF, and best 

estimated the child’s stable preschool outcome phenotype) differed by cluster.  Subjects in Mixed cluster 1 

showed significant improvement in language scores between intake and outcome ages, while subjects in 

Mixed cluster 3 showed nearly null change or a decrease. Subjects in Mixed cluster 2 showed slight 

improvement. (Supplemental Figure 1, see statistical results in Supplemental Tables 3-4).  When intake-to-

outcome clinical change scores are considered separately for ASD, TD and Delayed subjects within each 

Mixed cluster (Figure 4C, Supplemental Tables 5-6), we find that ASD subjects in Mixed cluster 1 show 

significant clinical improvement in the range of 2-4 standard deviations from their initial scores. ASD 

subjects in Mixed cluster 2 showed improvement to a lesser degree, around 0 to 2 standard deviations. ASD 

subjects in Mixed cluster 3 showed insignificant changes, including slight decline in some clinical 
measures. TD subjects in Mixed cluster 1 showed greater improvements than those in Mixed cluster 2, 

however the TD subjects were overall more stable across visits and only showed improvement or decline 

less than a standard deviation from their baseline scores. Delay subjects in Mixed cluster 1 showed 

A. SNF of Clinical and fMRI Measures B. External Validation: C. Standardized Clinical Change by Diagnostic Group

* * *

#

Mixed 
Cluster

Figure 4. Mixed SNF Clustering. Observed relationship between temporal brain activation and clinical scores (A) in Mixed-

Cluster SNF and (B) external validation using clinical scores excluded from Mixed-Cluster SNF (for specific details, see 

Figure 1). (C) Longitudinal clinical scores for each diagnostic group in each cluster, each separated by Mixed cluster 

assignment. Zero standardized difference indicates no group level change across visits. Statistical significance of cluster 

separation based on each variable through nonparametric ANCOVAs are denoted with an asterisk (p<0.05) or a pound sign 

(p<0.1), detailed in Supplemental Tables 2 and 3.  
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improvement in most areas achieving neurotypical scores, and those in Mixed cluster 2 showed minimal 

change with trending improvement. The few Delay subjects in Mixed cluster 3 showed some clinical 

measures declined and others neither improved nor declined. 

 

Result 3:  Independent 

replication dataset further 

validates Mixed Cluster 

results 

 To assess the 

reproducibility of our Mixed 

cluster findings, we repeated 

SNF with a completely 

independent cohort of ASD, 

TD, and Delay subjects from 

our laboratory’s previous work 

(Xiao et. al., Nature Human 

Behaviour6), referred to here 

as “NHB” clusters. Despite an 

overall sample of only 42 

subjects with all required 

measurements, the replication 

clustering resulted in three 

clusters with similar diagnostic distributions as was found in Mixed clustering (Figure 5A). Both NHB and 

Mixed cluster 3 were 87-93% ASD and 7-13% Delay, with no TD subjects. In contrast, NHB and Mixed 

cluster 1 were 62-65% TD with only 23% ASD subjects. NHB and Mixed cluster 2 were both equally ASD 

(50-52%) and non-ASD, with a slightly higher level of Delay (25-36%) than TD (14-23%) subjects. These 

clusters also depicted brain-behavior subtypes with a similar pattern of features, including NHB cluster 1 

(n=13) with high clinical scores and high brain activation, NHB cluster 3 (n=15) with low clinical scores 

and low brain activation, and NHB cluster 2 (n=14) that falls in the average range both clinically and 

neurologically (Figure 5C, Table 8).  

 

Result 4: Subtyping ASD at 

toddler-ages yields less 

translationally reliable clusters: 

Temporal instability 

  Pierce et al (2019)32 

reported that once a toddler is 

diagnosed with ASD, there is high 

stability of that ASD diagnosis at 

follow-up ages. On the other hand, 

Pierce et al also found that 24% of 

12 to 24 month olds diagnosed with 

ASD later, at ages 2 to 4 years, had 

clinical characteristics of typical or 

mildly delayed toddlers at their 

earlier ages of 12 to 24 months. 

Thus, some later-age diagnosed 

ASD toddlers showed pronounced age-related shifts in phenotype. Longitudinal validation analyses of the 

three ASD Outcome clusters above showed striking differences between clusters in longitudinal change 

scores from intake ages to outcome ages, with ASD Outcome 1 patients having substantial improvement in 

clinical scores as opposed to profound ASD Outcome 3 remaining low across intake to outcome. Thus, the 

Figure 5. Independent SNF Cluster Replication. (A) Proportion of subjects with 

each diagnosis assigned to each cluster in mixed clustering (red outline) and NHB 

clustering (green outline). (B) Schematic representation of independent cohort 

clustering. (C) Observed relationship between temporal brain activation and clinical 

scores used in SNF for NHB clusters (for specific details, see Figure 1B). 

Figure 6. Schematic representation of SNF clustering using Intake scores (pink), 

and how individual subjects map to SNF clusters based on Outcome scores (blue).  
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Pierce et al study and our present evidence warrant the hypothesis that using some types of early age clinical 

data to cluster toddlers with SNF may lead to results poorly aligned with later SNF outcome clusters, which 

utilize scores at ages 2 – 4 years as a “best estimate” of a child’s stable clinical phenotype. To test this 

hypothesis in an unbiased manner separately from the Pierce et al study, SNF was repeated for the same 81 

ASD subjects using clinical scores at intake rather than outcome to test if identical unsupervised clustering 

based on a younger timepoint would be predictive of outcome subtype. The resulting three intake clusters 

failed to identify a clear relationship between neural activation and clinical ability, and cluster membership 

at Intake poorly matched ASD Outcome cluster membership. This early-age cluster instability is also 

indicated by a Jaccard index of only 31% when Intake and Outcome clusters are compared and is illustrated 

in Figure 6, showing that most ASD toddlers in each Intake cluster switch to different Outcome clusters. 

For instance, only 40% of Intake cluster 3 stay in Outcome cluster 3. Thus, some clinical scores at very 

early ages are in flux and are neither stable nor reliable clustering indicators of whether a child will improve 

or decline across development (Supplemental Figure 2, Supplemental Table 7-9). 

 

 

DISCUSSION 

 

 Once the critical leap from treatment based purely on an operant model (e.g., Discrete Trial Training) 

to more naturalistic behavioral interventions occurred33, interventions for children with ASD have not 

changed substantially at a conceptual level in the past 30 years. Some children with ASD thrive in response 

interventions, and some do not; yet it is not predictable before treatment which children will do well and 

why, particularly at the early ages of 1 to 3 years when treatment has the potential to be most beneficial. As 

one study concluded, it is only possible to know which child may benefit until after one sees treatment 

outcome34. Precision medicine efforts to find rigorously validated ASD social neural subtypes currently do 

not exist, in part due to the field’s limited understanding of the biological drivers of early social 

heterogeneity. Of 25 clinical clustering studies of ASD toddlers3, none incorporated both neurobiological 

measures relevant to social communication symptoms and clinical scores into objective data-driven 

clustering, and so, none have provided insight on what might be the neural bases of social subtypes.  

  Here, we take advantage of current deep knowledge about the role of temporal cortex in typical social 

brain10,11 and its anatomical15-17, functional4,6,24,28 and gene expression18 differences in ASD by incorporating 

measures of temporal cortex activation by social speech with clinical scores in a within-ASD child 

unsupervised SNF clustering design. Additionally, the clustering results were rigorously validated using 

this social fMRI activation and deep phenotyping in a large sample of ASD and non-ASD toddlers. Results 

identified three ASD Outcome social neural-clinical subtypes with distinctly different temporal cortex 

social activation and clinical developmental trajectories. Subtypes were thoroughly validated, something 

missing from previous ASD studies, and clinically important developmental trajectories quantitatively 

assessed. Each ASD Outcome subtype had a different characteristic level of social and language ability and 

early-age developmental trajectory.  

 As compared to other ASD subtypes, toddlers in the “high” ASD Outcome subtype had the most robust 

superior temporal cortical activation by social language, the highest social and language abilities, and the 

greatest longitudinal clinical improvement.  In contrasting subtype, toddlers in the “low” ASD subtype had 

the opposite phenotype, namely, weak temporal cortex social speech activation, very low social and 

language abilities, and persistently low clinical abilities across age. This clinical profile is consistent with 

profound autism1. As such, the SNF-derived high and low ASD Outcome subtypes were not simply 

quantitatively different from each other, but rather were categorically opposite clinical and neurofunctional 

types of ASD with one showing strong age-related improvement and the other persistently low clinical 

ability and severe social symptoms indicative of profound autism.  

 There are three principal implications of these results and one major new avenue of research opened. 

First, the “spectrum” of ASD heterogeneity is not truly a continuous spectrum from the neurobiological and 

clinical perspectives. The profound autism subtype is arguably the neurobiological opposite of the high 

ability and optimal outcome ASD subtype. Whereas profoundly affected toddlers have notably weak and 
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in some cases absent neural response to social affective communications in temporal cortex (a key hub of 

social information processing), the high ability subtype has near neurotypical and in some cases 

neurotypical neural responses in right temporal cortex. Neural functional organization in profound and high 

ASD appear to be different from each other, a difference that highlights the need to conduct experiments 

specifically designed to uncover their neural organizational differences from each other, not just from 

neurotypical temporal cortex neural structure and function. 

 Moreover, profound autism is definitively the clinical opposite of the high ability and optimal outcome 

ASD subtype. Whereas profoundly affected toddlers have persistent and severely low language, social and 

cognitive abilities (in some cases even declining further with age), the high ability subtype often shows 

improving, even substantially improving, language and cognitive abilities; yet, patients in this subtype have 

minimally changing social symptoms despite near neurotypical social neural responses in temporal cortex 

at early ages and improving language across ages.   

 A second implication is that neurobiological and clinical subtype differences highlight the need to 

develop subtype-specific treatments, particularly for the profound subtype. It is unlikely that the same 

behavioral or pharmaceutical treatment of core autism symptoms will have the same beneficial effect on 

both profound and mild autism. The disappointing lack of significant advances in treatment strategies in 

the past 30 years could be due to the uncontrolled admixture of these opposite types of ASD. For example, 

one recent intervention meta-analysis noted: “When effect estimation was limited to RCT designs and to 

outcomes for which there was no risk of detection bias, no intervention types showed significant effects on 

any outcome.”35 Results from the overwhelming majority of treatment studies in that meta-analysis and 

elsewhere report outcomes only at the group (not subtype) level. The proportion of each subtype in any 

given sample likely explains why some studies find better or poorer treatment effects.   

 Thus, a third implication is that treatment studies with an undetermined mix of subtypes could fail or 

succeed based on how many patients from each subtype are included in the mix. The only path forward is 

by starting with knowing what subtype a toddler is and addressing each subtype separately. Treatment 

studies –whether behavioral or pharmaceutical-- that persist in ignoring a priori subtype differences may 

be persisting in a failed approach to ASD treatment and should be discouraged. 

 The new avenue of research comes from two new ASD studies, a brain cortical organoid (BCO) study 

of an embryogenesis model of ASD36 and a toddler-age blood gene expression study (Zahiri, in progress).  

BCOs derived from profound autism toddlers have extreme and accelerated embryonic overgrowth and 

accelerated neurogenesis. These patients have substantial cortical growth differences in temporal cortex as 

well as other social, language, face, and sensory processing regions.  Embryonic BCO size predicted the 

ASD social symptom severity. Thus, even at the early age of embryogenesis in these models, profound 

ASD neurobiology differs from mild ASD neurobiology.  At toddler ages, profound ASD toddlers – but 

not mild ASD – have blood gene expression dysregulation of five pathways that govern embryonic cell 

proliferation, neurogenesis, and growth, again highlighting the important different neurobiology of 

profound autism as compared with mild ASD. This evidence suggests that ASD treatment research that 

incorporates subtyping and studying profound and high ASD separately can be properly interpreted. 

To contextualize these three ASD Outcome subtypes within the broader non-ASD toddler 

population, we mapped and validated them with comparable data from a range of typical and developmental 

delayed subjects again using data driven SNF. We found that even for non-ASD groups, diagnostic category 

was not exclusively indicative of cluster assignment. TD and delayed groups displayed heterogeneity just 

as did the ASD group, each splitting into two or three subtypes: high and somewhat lower ability TD 

subtypes with differing temporal social activation; delayed subtypes with rapid improvement and those 

without. The three ASD Outcome subtypes persist, even among this range of non-ASD toddlers. 74% of 

those in the high ASD Outcome subtype overlapped with typical toddlers albeit with lower ability, 

potentially indicating a relatively good outcome long term. Importantly, overlapping with high ability 

typical toddlers were 17% of the high ability ASD Outcome subtype; these high ability ASD toddlers may 

eventually prove to be “optimal” outcome ASD individuals, a previously clinically described subgroup of 

5-10% of the ASD population37,38.   
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At the opposite end of optimal ASD outcome, is profound autism estimated in the literature to be 

between 20% and 30% of the ASD population2,39. Here, 20% of our total ASD sample had a profound 

clinical phenotype. Profound autism subjects in the present study had negligible social language activation 

of temporal social cortex. Thus, data driven multimodal SNF performed both within ASD alone and among 

a range of non-ASD development provided precision information at early preschool ages about which ASD 

child has the potential to achieve the best outcomes and which may struggle with profound autism across a 

lifetime. Knowledge of an ASD child’s subtype is of the utmost importance for parents, professionals and 

service providers40, and would help each child according to their individual needs. Currently such precision 

knowledge does not exist in clinical practice for ASD41,42 and affected children and families suffer as a 

result. Yet, obtaining that subtype information by 3 years of age is possible based the present SNF brain-

clinical data.  

Although our earliest age-point yielded clusters less clinically reliable as predictors when 

considered independently, this intake clustering could still provide meaningful insight to a toddler’s short-

term trajectory. For instance, toddlers in the high ASD Intake cluster are very unlikely to end up in the low 

ASD Outcome cluster and instead are more likely to show a good chance of improvement. Conversely, 

about half the toddlers in the low ASD Intake cluster map to the low ASD Outcome cluster; however, many 

others ended up among higher ability ASD subtypes, suggesting that at the earliest ages, some delayed 

clinical abilities might not necessarily be a precursor of a negative outcome. This group is similar to so-

called “late-talkers”20 and discrimination of toddlers showing these targetable delays from those showing 

early signs of severe ASD symptomology warrants further investigation. It can be hypothesized that many 

toddlers in this cluster would benefit most from very early treatments, and perhaps the failure to detect this 

subtype early on contributes to the lack of improvement at later ages. 

In conclusion, we think the three social neural-clinical ASD subtypes will be found to have different 

underlying molecular pathobiology and thus, will benefit from different biological treatments. Research to 

develop clinical translation of multimodal SNF patient subtyping may one day lead to precision methods 

for determining which subtype an individual ASD toddler patient belongs to. Objective data-driven 

separation has the potential5,43 to improve early-age subtype-specific detection, treatment, understanding of 

mechanisms via ASD iPSC models, and ultimately causal factors. Lastly, it can be anticipated that with 

larger sample sizes and with the addition of molecular data and other imaging, behavioral, and clinical data 

types, these 3 neural-clinical subtypes are likely to be more precisely and accurately characterized at still 

earlier ages and perhaps subdivided into additional subtypes. That would advance clinical care, treatment 

development and selection, and discovery of underlying biological causes and processes. At this stage in 

our ASD knowledge, subtypes should not be considered fixed or immutable, but rather a powerful step 

towards advancing knowledge of the underlying neural biological condition and increasing clinical benefit 

for patients with ASD. 
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TABLES 

 

Table 1. Average fMRI activation in temporal cortex and clinical ability scores for each ASD Outcome 

cluster. Cluster language means differ by more than 1SD. 

 MSEL Receptive 

Language 

MSEL Expressive 

Language 

ADOS 

Total Score 

Left Temporal 

Lobe Activation 

Right Temporal 

Lobe Activation 

ASD Outcome 1 91.27 ± 15.08 93.26 ± 16.75 16.86 ± 5.02 0.0353 ± 0.04 0.0487 ± 0.05 

ASD Outcome 2 67.92 ± 13.21 62.35 ± 13.14 18.23 ± 3.65 0.0158 ± 0.05 0.0063 ± 0.08 

ASD Outcome 3 46.59 ± 12.37 40.26 ± 17.09 21.88 ± 3.98 -0.0091 ± 0.04 0.0005 ± 0.05 

 

 

 

Table 2.  Separation Validation and External Validation in ASD Outcome SNF variables.  

Note. * = P < .05, DFn = Degrees of freedom for numerator, DFd = Degrees of freedom for denominator, 

GES = Generalized Eta Squared (effect size). 

 

 

Table 3. Separation Validation. Cluster pairwise comparisons in ASD Outcome SNF variables and 

external variables  
Variable  P-values  

 Outcome Cluster 1 – 2 2 – 3 1 – 3 

SNF Left Frontal Lobe Activation 0.893 0.158 0.158  

Right Frontal Lobe Activation 0.104 0.249 0.030*  

Left Temporal Lobe Activation 0.097 0.097 0.003*  

Right Temporal Lobe Activation 0.024* 0.768 0.008*  

VABS Adaptive Behavior Composite 0.000* 0.000* 0.000* 

 MSEL Receptive Language 0.000* 0.000* 0.000* 

 MSEL Expressive Language 0.000* 0.000* 0.000* 

External ADOS Total Score 0.193 0.015* 0.003* 

 MSEL Early Learning Composite 0.000* 0.000* 0.000* 

 GeoPref Social Fixation 0.891 0.195 0.195 

Note. Multiple pairwise comparisons were corrected by FDR, * = P < .05. 

 

 
Variable Effect F-ratio DFn DFd GES P-value 

SNF Left Frontal Lobe Activation Clusters 1.84 2 78 - 0.165  
Right Frontal Lobe Activation Clusters 5.21 2 78 0.12 0.008*  
Left Temporal Lobe Activation Clusters 5.53 2 78 0.12 0.006*  

Right Temporal Lobe Activation Clusters 5.09 2 78 0.12 0.008* 

 VABS Adaptive Behavior Composite Clusters 38.84 2 78 0.50 0.000* 

 MSEL Receptive Language Clusters 60.94 2 78 0.61 0.000* 

 MSEL Expressive Language Clusters 71.48 2 78 0.65 0.000* 

External ADOS Total Score Clusters 7.3 2 78 0.16 0.001* 

 MSEL Early Learning Composite Clusters 49.52 2 78 0.56 0.000* 

 GeoPref Social Fixation Clusters 1.69 2 69 - 0.193 
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Table 4. Longitudinal Clinical Change – intake to outcome change in clinical variables 

Note. * = P < .05, a: t-test, b: Exact Wilcoxon signed rank test 

 

 

Table 5.  Average fMRI activation in temporal cortex and clinical ability scores for each Mixed cluster 

and for diagnostic groups within each cluster. 

 

 MSEL Receptive 

Language 

MSEL Expressive 

Language 

ADOS 

Total Score 

Left Temporal 

Lobe Activation 

Right Temporal 

Lobe Activation 

Mixed 1 112.67 ± 15.56 113.52 ± 12.93 5.04 ± 6.20 0.0432 ± 0.05 0.0595 ± 0.06 

ASD (n=6) 101.49 ± 14.82 113.21 ± 6.09 15.17 ± 4.62 0.0081 ± 0.03 0.0546 ± 0.06 

Delay (n=3) 110.89 ± 23.04 106.39 ± 16.96 3.33 ± 1.15 0.0403 ± 0.05 0.0601 ± 0.04 

TD (n=17) 116.93 ± 13.29 114.89 ± 14.22 1.76 ± 1.68 0.0562 ± 0.05 0.0611 ± 0.06 

Mixed 2 89.13 ± 15.24 87.39 ± 15.65 11.04 ± 7.67 0.0342 ± 0.05 0.0356 ± 0.08 

ASD (n=36) 86.74 ± 14.83 85.70 ± 15.01 17.44 ± 3.70 0.0370 ± 0.05 0.0333 ± 0.07 

Delay (n=17) 87.35 ± 17.71 84.37 ± 19.99 4.41 ± 4.56 0.0254 ± 0.06 0.0439 ± 0.12 

TD (n=16) 96.39 ± 11.49 94.41 ± 9.44 3.69 ± 2.60 0.0372 ± 0.03 0.0319 ± 0.07 

Mixed 3 56.94 ± 15.12 51.35 ± 17.57 18.79 ± 6.02 0.0053 ± 0.04 0.0062 ± 0.06 

ASD (n=39) 57.59 ± 15.36 51.64 ± 18.13 19.69 ± 5.16 0.0047 ± 0.05 0.0096 ± 0.06 

Delay (n=3) 48.60 ± 9.14 47.59 ± 8.11 7.00 ± 3.61 0.0138 ± 0.02 -0.0370 ± 0.03 

TD (n=0) -- -- -- -- -- 

 

 

 

 

 

 

 

 

 

 

 

Cluster Subscale Statistic P-value 

ASD Outcome 1 VABS Adaptive Behavior Composite 4.44a 0.000* 

 MSEL Receptive Language 5.79a 0.000* 

 MSEL Expressive Language 1.93a 0.062 

ASD Outcome 2 VABS Adaptive Behavior Composite 354b 0.011* 

 MSEL Receptive Language 212b 0.685 

 MSEL Expressive Language 91.5b 0.005* 

ASD Outcome 3 VABS Adaptive Behavior Composite 82b 0.495 

 MSEL Receptive Language -0.6a 0.556 

 MSEL Expressive Language 0.0b 0.000* 
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Table 6. Mixed Cluster Separation Validation and External Validation in Mixed SNF variables  

Note. * = P < .05, DFn = Degrees of freedom for numerator, DFd = Degrees of freedom for denominator, 

GES = Generalized Eta Squared (effect size). 

 

Table 7. Separation Validation. Mixed Cluster pairwise comparisons in Mixed SNF variables and 

external variables  
Variable  P-values  

 Mixed Cluster 1 - 2 2 - 3 1 - 3 

SNF Left Frontal Lobe Activation 0.165 0.165 0.746  

Right Frontal Lobe Activation 0.432 0.022* 0.142  

Left Temporal Lobe Activation 0.409 0.003* 0.003* 
 

Right Temporal Lobe Activation 0.144 0.015* 0.001* 
 

VABS Adaptive Behavior Composite 0.000* 0.000* 0.000* 

 MSEL Receptive Language 0.000* 0.000* 0.000* 

 MSEL Expressive Language 0.000* 0.000* 0.000* 

External ADOS Total Score 0.001* 0.000* 0.000* 

 MSEL Early Learning Composite 0.000* 0.000* 0.000* 

 GeoPref Social Fixation 0.815 0.001* 0.017* 

Note. Multiple pairwise comparisons were corrected by FDR, * = P < .05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Variable Effect F-ratio DFn DFd GES P-value 

SNF Left Frontal Lobe Activation Clusters 2.03 2 134 - 0.135  
Right Frontal Lobe Activation Clusters 3.28 2 134 0.05 0.041*  
Left Temporal Lobe Activation Clusters 6.87 2 134 0.09 0.001*  

Right Temporal Lobe Activation Clusters 4.7 2 134 0.07 0.011* 

 VABS Adaptive Behavior Composite Clusters 135.04 2 134 0.67 0.000* 

 MSEL Receptive Language Clusters 115.75 2 134 0.63 0.000* 

 MSEL Expressive Language Clusters 134.42 2 134 0.67 0.000* 

External ADOS Total Score Clusters 33.73 2 134 0.34 0.000* 

 MSEL Early Learning Composite Clusters 150.01 2 134 0.69 0.000* 

 GeoPref Social Fixation Clusters 8.07 2 123 0.12 0.001* 
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Table 8. Average fMRI activation in temporal cortex and clinical ability scores for each NHB cluster and 

for diagnostic groups within each cluster. 

 

 MSEL Receptive 

Language 

MSEL Expressive 

Language 

ADOS 

Total Score 

Left Temporal 

Lobe Activation 

Right Temporal 

Lobe Activation 

NHB 1 103.99 ± 13.02 108.20 ± 17.19 7.31 ± 6.75 0.0465 ± 0.03 0.0787 ± 0.06 

ASD 93.43 ± 8.96 115.09 ± 6.43 18.67 ± 4.04 0.0307 ± 0.02 0.0364 ± 0.06 

Delay 106.90 ± 8.11 101.52 ± 3.71 4.50 ± 0.71 0.0479 ± 0.05 0.1181 ± 0.06 

TD 107.22 ± 14.01 107.28 ± 21.42 3.75 ± 1.16 0.0521 ± 0.03 0.0848 ± 0.05 

NHB 2 88.94 ± 16.03 94.99 ± 17.04 10.93 ± 8.21 0.0259 ± 0.03 0.0425 ± 0.04 

ASD 89.54 ± 18.71 101.94 ± 17.53 18.43 ± 3.46 0.0163 ± 0.01 0.0310 ± 0.01 

Delay 85.69 ± 16.12 80.91 ± 7.28 3.80 ± 1.92 0.0294 ± 0.03 0.0456 ± 0.04 

TD 94.99 ± 8.51 105.86 ± 12.44 2.50 ± 0.71 0.0509 ± 0.06 0.0748 ± 0.11 

NHB 3 72.39 ± 17.72 64.47 ± 19.18 16.40 ± 6.65 0.0221 ± 0.02 0.0232 ± 0.03 

ASD 73.84 ± 17.99 64.60 ± 20.51 18.31 ± 4.70 0.0207 ± 0.02 0.0212 ± 0.03 

Delay 62.93 ± 17.49 63.63 ± 10.12 4.00 ± 0.00 0.0311 ± 0.04 0.0363 ± 0.04 

TD -- -- -- -- -- 
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