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Abstract 
Oral tumors necessitate a dependable computer-assisted pathological diagnosis system 
considering their rarity and diversity. A content-based image retrieval (CBIR) system using deep 
neural networks has been successfully devised for digital pathology. No CBIR system for oral 
pathology has been investigated because of the lack of an extensive image database and feature 
extractors tailored to oral pathology. This study uses a large CBIR database constructed from 30 
categories of oral tumors to compare deep learning methods as feature extractors. The highest 
average area under the receiver operating curve (AUC) was achieved by models trained on 
database images using self-supervised learning (SSL) methods (0.900 with SimCLR; 0.897 with 
TiCo). The generalizability of the models was validated using query images from the same cases 
taken with smartphones. When smartphone images were tested as queries, both models yielded 
the highest mean AUC (0.871 with SimCLR and 0.857 with TiCo). We ensured the retrieved 
image result would be easily observed by evaluating the top-10 mean accuracy and checking for 
an exact diagnostic category and its differential diagnostic categories. Therefore, training deep 
learning models with SSL methods using image data specific to the target site is beneficial for 
CBIR tasks in oral tumor histology to obtain histologically meaningful results and high 
performance. This result provides insight into the effective development of a CBIR system to 
help improve the accuracy and speed of histopathology diagnosis and advance oral tumor 
research in the future. 
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Introduction 
Oral tumors are generally composed of diverse and rare tumor types, except for major categories 
like squamous cell carcinoma. Distinguishing oral tumor types is difficult except for well-
experienced oral pathologists. The rarity of oral tumors and the diverse tissue types in the oral 
region make obtaining reference images for diagnosis and research a challenge, potentially 
leading to delayed diagnosis and a significant burden on pathologists [1]. Consequently, a 
diagnostic system is needed to improve the speed and accuracy of histopathological diagnosis of 
these tumors [2]. Artificial intelligence (AI) is a promising solution for efficient 
histopathological diagnosis of oral tumors. 

AI development for oral tumor diagnosis is limited and focused only on a few tumor types. 
Classification methods have been developed to predict the diagnosis, such as ameloblastoma or 
odontogenic keratocysts, to which a histopathological image may belong [3,4]. These approaches 
are helpful in common cases. However, a computer-aided diagnostic system that covers a 
broader spectrum of tumor types would be more practical and would help narrow the differential 
diagnoses. Therefore, content-based image retrieval (CBIR) is suitable. CBIR regards 
histopathological images as query images to find similar images from a database based on their 
similar morphology [2,5]. This system is useful as a diagnostic aid for finding case references, 
especially where diagnostic expertise is challenging to find, such as in low- to middle-income 
countries [1]. The involvement of human intervention is crucial in diagnosis. Conventionally, 
pathologists diagnose directly after H&E-stained slide analysis or optionally use different 
methods as diagnostic aids: referring atlases, consulting subspecialist experts, or conducting 
ancillary tests. An automatic image search can complement these options to expedite image 
reference search (Figure 1). With scarce pathological expertise, a tool that could provide urgently 
needed information for rapid diagnosis before conducting tests to raise a definitive one would be 
significant [6]. CBIR provides interpretability because it presents multiple candidate images, 
which is beneficial when distinguishing between categories based on histopathological images 
alone is challenging, such as when information on dental infections or radiographic findings is 
needed. With CBIR, the retrieved results are to be evaluated by pathologists, reducing the risk of 
misdiagnosis owing to inaccurate results, especially for categories with very similar histology. 
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Figure 1: CBIR’s place in the pathological diagnosis workflow  
CBIR optionally providing an interpretable automatic reference search that is fast and easily followed up with more 
thorough study with atlases, discussions, or ancillary tests. CBIR could help point out similar features from the 
previously diagnosed image in the database that may lead to testable differential diagnoses more swiftly than 
directly consulting atlases or senior experts, which may cause the patient delayed treatment. (Image created with 
BioRender) 

The CBIR system consists of two aspects: image feature extraction and nearest-neighbor search. 
Feature extraction is crucial because it must adequately capture complex histological features 
such as staining patterns, tissue structures, and cellular morphology to create histologically 
relevant image representation [2,7,8]. The extracted features must be robust to irrelevant color 
variations, such as different hematoxylin and eosin (HE) stain brands, glass slide color 
degradation, and image-capturing devices ranging from whole-slide image (WSI) scanners to 
smartphone cameras [5,8,9]. At the early stage of CBIR development, traditional image features 
such as shape, color, texture, or a combination were used. Recent developments showed that 
deep learning models outperformed traditional features [6,7]. Several deep learning methods, 
such as supervised learning where models are pre-trained on general images or fine-tuned on 
histopathological images, have been used to train feature extractors [9–13], and self-supervised 
learning (SSL), which allows learning from unlabeled images [14–16]. However, no studies have 
reviewed which method is most suitable for CBIR in oral tumors. 

This study aimed to investigate the performance of different deep learning models for oral tumor 
CBIRs by developing a large dataset of whole-slide images from 541 cases with 51 tumor types 
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and evaluating the retrieval accuracy by comparing different representational learning 
techniques. 

Materials & Methods 
Dataset 
We collected diagnostic slides of the oral tumor categories described in Chapters 7 and 8 of the 
WHO Classification of Head and Neck Tumors, 4th Edition [17]. Patients were diagnosed in 
2001–2022 and underwent surgery at Tokyo Medical and Dental University (TMDU) Hospital. 
Patients or their surrogates had the option to withdraw from this study through public notices 
according to the approved protocols. This study was approved by the Institutional Review Board 
(IRB) of TMDU (No. D2019-087). Some slides that were lost, broken, or required diagnostic 
confirmation with immunohistochemistry (IHC) staining were remade from the paraffin-
embedded tissue blocks. Additional IHC staining was done for the secretory carcinoma and the 
atypical acinic cell carcinoma cases older than 2017. Categories with fewer than five cases were 
excluded. All slides that fulfill the inclusion criteria were scanned using a NanoZoomer S210 
slide scanner (C13239-01; Hamamatsu Photonics, Japan) at 40× magnification. The tumor areas 
were annotated by a pathology resident and verified by board-certified pathologists. We included 
the tumor areas that are typical to the tumor category while excluding the normal tissue and the 
severe artifacts such as torn or folded tissue. Image patches were then randomly extracted from 
the annotated tumor areas with three different sizes: 905 µm, 453 µm, and 226 µm. Twenty 
image patches were extracted with each magnification. The use of three different sizes was to 
accommodate different magnification levels and preserve the histologic information at the tissue 
and cellular level as much as possible. The dataset comprises 49,243 image patches from 51 
categories, covering approximately 50% of the oral tumor categories (Table 1). 

Table 1. The tumor categories included in the dataset, their corresponding ICD-O codes, and the total 
number of cases 
Some categories do not correspond to the ICD-O but are described in the WHO Classification of Head and Neck 
Tumors. 4th Ed. Categories consisting of ten to twenty cases, marked in bold, were included in the CBIR database. 

Diagnosis ICD-O Code Total case 

Pleomorphic adenoma 8940/0 27 

Radicular cyst - 21 

Dentigerous cyst - 21 

Odontogenic keratocyst - 17 

Salivary duct carcinoma 8500/3 15 

Acinic cell carcinoma 8550/3 15 

Ossifying fibroma 9262/0 15 

Lipoma 8850/0 14 

Ameloblastoma 9310/0 14 

Adenoid cystic carcinoma 9310/0 13 
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Mucoepidermoid carcinoma 8430/3 13 

Fibrous dysplasia - 13 

Adenocarcinoma, NOS 8140/3 12 

Myoepithelioma 8982/0 12 

Odontogenic fibroma 9321/0 12 

Cemento-osseous dysplasia - 12 

Nasopalatine duct cyst - 12 

Hemangioma 9120/0 11 

Calcifying odontogenic cyst 9301/0 11 

Odontogenic myxoma/myxofibroma 9320/0 11 

Ameloblastic fibroma 9330/0 11 

Glandular odontogenic cyst - 11 

Inflammatory collateral cyst - 11 

Orthokeratinized odontogenic cyst - 11 

Basal cell adenoma 8147/0 10 

Basal cell adenocarcinoma 8147/3 10 

Warthin’s tumor 8561/0 10 

Carcinoma ex pleomorphic adenoma 8941/3 10 

Osteoma 9180/0 10 

Osteosarcoma, NOS 9180/3 10 

Aneurysmal bone cyst 9260/0 10 

Cemento-ossifying fibroma 9274/0 10 

Adenomatoid odontogenic tumor 9300/0 10 

MALT lymphoma 9699/3 9 

Ameloblastoma, unicystic type 9310/0 9 

Lateral periodontal cyst - 9 

Simple bone cyst - 8 

Cystadenoma 8440/0 8 

Epithelial/myoepithelial carcinoma 8562/3 7 

Complex odontoma 9282/0 7 
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Polymorphous adenocarcinoma 8525/3 7 

Secretory carcinoma 8502/3 6 

Ameloblastoma, extraosseous/peripheral type - 6 

Compound odontoma 9281/0 5 

Odontoma 9280/0 5 

Oncocytoma 8290/0 5 

Cementoblastoma 9273/0 5 

Clear cell carcinoma 8310/3 5 

Primary intraosseous carcinoma, NOS 9270/3 5 

Ductal papilloma 8503/0 5 

Myoepithelial carcinoma 8982/3 5 

 

Database construction 
A database from a subset of the dataset containing at least ten cases was compiled. Image 
representations from each model’s encoder were stored in the database (Figure 2A). It contains 
33,356 image patches from 30 oral tumor categories (Table 1). 
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Figure 2: CBIR workflow and SSL models training process 
(A) Schematic representation of CBIR using deep neural networks to retrieve similar oral tumor histopathological 
images. The similarity is determined by a nearest-neighbor search, which calculates the cosine similarity of the 
query image’s image representation to all database image representations in the embedding space. (B) The training 
process of the SSL models used ResNet18 as an encoder. The image representations were passed to a projector and 
subjected to feature normalization. In the SimCLR method, the training loss function yields a low value when the 
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representation of the original image (X′) and its augmentation (X′′) are close together, while it yields a larger value 
when X′ and a different image augmentation (Y′′) are far apart. In the TiCo method, the process still pulls X′ and X′′ 
close, and then the redundancy in the representation is removed using covariance contrast without using a different 
image (Y′′). (Image created with BioRender) 

Test queries 
The test queries were the cases available in the hospital repository after the collection of the 
database case was finished and were representatives of the tumor major categories in the 
database: odontogenic cysts, odontogenic tumors, benign and malignant tumors of the salivary 
gland, maxillofacial bone tumor, and soft tissue tumor. Slides that include severe artifacts that 
are impossible to avoid when extracting image patches were excluded. We prepared three query 
sets from different hospitals to test the performance: Query case set-A was collected between 
2022 and 2023 from the repository of the same institution (TMDU) as the database. Only the 
tumor categories that have two representative cases were included as the test queries. Finally, 
eleven tumor categories with two cases in each were used as the test queries. Histopathologic 
slides were scanned to create WSIs for in-domain queries with the same device as the database 
image. Three selected tumor areas that are typical of the tumor type from the same slides were 
photographed with smartphone cameras (Samsung S21FE, iPhone 6, and Motorola g8) using an 
Olympus BX53 microscope with 10×, 20×, and 40× objective lens magnification to create out-
of-domain-phonecam queries. The location (indoor laboratory environment) and the amount of 
light from the microscope were unchanged when taking the smartphone images. The query case 
set-B was compiled from the University of Tokyo case (approved by the IRB of The University 
of Tokyo No. 2019158NI). Eleven cases from eight salivary gland tumor categories were 
included in this study. Only benign and malignant tumors of the salivary gland could be collected 
for out-of-domain-B since no other major categories exist in the repository. Histopathologic 
slides were scanned using a NanoZoomer 2.0HT slide scanner (C9600-12, Hamamatsu 
Photonics, Japan) to create WSIs for out-of-domain-B queries. The query case set-C was 
collected from Teikyo University Hospital from 2018-2023 (approved by the IRB of Teikyo 
University No. 23-054). Only the tumor categories that have two representative cases were 
included as the test queries. Twenty cases from eight oral tumor categories were included in the 
study. The histopathologic slides were scanned using a NanoZoomer XR slide scanner (C12000-
02; Hamamatsu Photonics, Japan) to create WSIs for out-of-domain-C queries. Patients for query 
cases set-B and set-C or their surrogates had the option to withdraw from this study through 
public disclosure according to the approved protocols. 

For the WSI queries, the same method was used to create image patches from the WSI as from 
the database image. All scanned WSIs were annotated to 3–4 representative tumor areas per 
WSI. From these areas, 20 image patches per magnification level (905 µm, 453 µm, and 226 µm) 
per slide were extracted to create image patches. The total number of image patches used for the 
evaluation was 2,520 images from the WSI and 594 smartphone images. 

The representation of each query image was calculated with each tested model. The nearest-
neighbor search was performed based on cosine similarity with the database images. Examples 
of query images for each category in each set can be found in Figures 3–5. The detailed methods 
for database construction, including the tumor areas selection, patch extraction, feature extraction 
code, and image retrieval were adapted from our previous study [18]. 
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Figure 3: Examples of set-A query images from each category for each magnification level 
The total number of image patches extracted from WSIs is 1,320 images. 
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Figure 4: Examples of set-B query images from each category for each magnification level  
The total number of image patches extracted from the WSIs is 660 images. 
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Figure 5: Examples of set-C query images from each category for each magnification level 
The total number of image patches extracted from the WSIs is 1,200 images. 

Evaluation metrics and statistical analysis 
The area under the receiver operating characteristic curve (AUC) for all query images with top-𝑘 
retrieved images (𝑘 ranges from 1 to the total number of cases in the database) being the cut-
points were averaged into MeanAUC. Based on the top-10 images most similar to the query, 
three additional metrics were evaluated. MeanAcc denotes the mean of the top-10 diagnostic 
accuracies (Acc) for each query. %query denotes the percentage of results that contained at least 
one accurate diagnosis category. The histological similarity in the retrieved results beyond 
diagnostic accuracy was evaluated by noting the retrieved images that did not belong to the 
accurate diagnosis category or any of its differential diagnoses [17,19,20] (Table 2). The values 
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are expressed as histologic inaccuracy (HI) and were averaged to determine the MeanHI. Image 
retrieval and all statistical analyses were conducted using Python 3.7.12 and R 4.2.2. 

Table 2. List of test query categories and all their respective differential diagnoses that are represented in the 
database for MeanHI evaluation 

Query Category Differential Diagnoses 

Acinic cell carcinoma Salivary duct carcinoma Secretory carcinoma Mucoepidermoid carcinoma 

Adenoid cystic carcinoma Basal cell adenocarcinoma Basal cell adenoma  

Adenomatoid odontogenic 
tumor 

Ameloblastoma Mucoepidermoid carcinoma  

Ameloblastoma Adenomatoid odontogenic 
tumor 

Ameloblastic fibroma  

Basal cell adenoma Adenoid cystic carcinoma Basal cell adenocarcinoma Myoepithelioma 

Carcinoma ex pleomorphic 
adenoma 

Salivary duct carcinoma Adenocarcinoma, NOS Mucoepidermoid carcinoma 

Fibrous dysplasia Ossifying fibroma Osteosarcoma, NOS  

Glandular odontogenic cyst Nasopalatine duct cyst Inflammatory collateral cyst Mucoepidermoid carcinoma 

Hemangioma Ossifying fibroma Aneurysmal bone cyst  

Mucoepidermoid carcinoma Adenocarcinoma, NOS Warthin’s tumor Carcinoma ex pleomorphic 
adenoma 

Myoepithelioma Mucoepidermoid carcinoma Basal cell adenoma  

Nasopalatine duct cyst Glandular odontogenic cyst Inflammatory collateral cyst  

Odontogenic fibroma Odontogenic 
myxoma/myxofibroma 

Ossifying fibroma  

Odontogenic keratocyst Orthokeratinized 
odontogenic cyst 

Ameloblastoma  

Odontogenic 
myxoma/myxofibroma 

Odontogenic fibroma   

Orthokeratinized 
odontogenic cyst 

Odontogenic keratocyst Ameloblastoma  

Osteoma Ossifying fibroma Fibrous dysplasia  

Salivary duct carcinoma Acinic cell carcinoma Secretory carcinoma Adenocarcinoma, NOS 

Warthin’s tumor Mucoepidermoid carcinoma     
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Model preparation and training 
ImageNet-1k Pre-trained CNN 
We tested VGG16 pre-trained on 1.2 million images from ImageNet after it was shown to 
perform well as an image classifier in several studies [22,23]. In this study, the block4_conv3 
layer was used as the feature extractor because the middle layer of a convolutional neural 
network (CNN) architecture has been shown to capture features that are more suitable for 
histopathology images [12]. 

ImageNet-22k Pre-trained Vision Transformer 
We used the DINOv2 ViT-L/14 model pre-trained with the SSL method on general images from 
ImageNet-22k [26]. The last layer was used for feature extraction. The images were cropped to 
252 pixels owing to the input size restrictions. 

Fine-tuned CNN 
We fine-tuned all the ImageNet-1k pre-trained ResNet18 models on our dataset using the 
supervised learning method to classify 51 categories. All the layers were trained with a learning 
rate of 0.001, a batch size of 32, and 100 epochs in PyTorch 1.11.0. During training, a random 
90-degree rotation, random horizontal and vertical flips, color jitter, Gaussian blur, and color 
normalization transformation were performed. The training-to-test ratio was 8:2. 

CNN Trained with SSL Methods 
Contrastive (SimCLR) [21] and noncontrastive methods (TiCo) [25] were investigated. 
ResNet18 is used as the backbone. During training, random color jittering, grayscale, image 
scaling, horizontal and vertical flipping, 90-degree rotation, Gaussian blurring, and color 
augmentation were implemented (Figure 6). Both models were trained with Lightly version 
1.3.3, with a learning rate of 1.2, a batch size of 32 × 32 (with accumulated gradients), and 1,000 
epochs. Examples of original and augmented images are shown in Figure 2B. The ResNet18 
backbone model trained on 57 histopathology image datasets (38,594 image patches and 24,923 
WSIs) developed by Ciga et al. 2022 was also used for comparison [14]. 
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Figure 6: Data augmentation examples 
Random color jittering (CJ+), grayscale (GS+), image scaling (S+), horizontal and vertical flips (HF+ and VF+), 90-
degree rotation (R+), and Gaussian blur (GB+), used during SSL training. Color normalization was used during 
model training but is not included in this visualization. 

The code for SSL model training is available at https://github.com/rannyrh/oralpath_CBIR. 

Histopathology Image-trained Vision Transformer 
A vision transformer-based model, Phikon, was trained with 40 million pan-cancer tiles extracted 
from The Cancer Genomic Atlas (TCGA) using the masked image modeling (MIM) method as 
an SSL framework. MIM learns meaningful representation by randomly masks portions of an 
image and trying to reconstruct those masked portions. This model was developed by Owkin. Inc 
[24] 
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Results 
Model performance evaluation 
The highest MeanAUC for in-domain queries was achieved by ResNet18+SimCLR (0.900), 
followed by ResNet18+TiCo (0.897). They achieved this at the query category level for 8 out of 
the 11 categories. The generalizability of these models was validated using out-of-domain-
phonecam queries. The highest performance for out-of-domain-phonecam queries was also 
achieved by ResNet18+SimCLR (0.871), followed by ResNet18+TiCo (0.857). The highest 
performance on the query case category levels was achieved by both SSL models for 7 out of the 
11 categories. We tested the performance on queries from other institutions to further 
demonstrate the generalizability. A similar result was yielded by both SSL models, where 
ResNet18+SimCLR leads with the highest MeanAUC (0.886 for out-of-domain-B; and 0.913 for 
out-of-domain-D queries), followed by ResNet18+TiCo (0.881 for out-of-domain-B; and 0.905 
for out-of-domain-D queries). Phikon, pre-trained on histopathological images, and DINOv2, 
pre-trained on large-scale general images, performed comparably well with DINOv2 leading the 
overall MeanAUC in out-of-domain-phonecam query, with Phikon leading in the other three 
query sets (Table 3). 

Table 3: Mean-AUC (SD) of each test query category in in- and out-of-domain image queries.  
The performances of the SSL models are superior for most test query categories and the overall averages. The 
highest AUC for each category is marked in bold, and the second highest is marked in italics. 
Query Category Pre-

trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

Resnet18 
+ 

SimCLR 

Resnet18 
+ TiCo 

Ciga 
model 

Phikon 

In-
domain (n 

= 120 
images 
from 2 
cases) 

Nasopalatine duct cyst 0.758 
(0.09) 

0.815 
(0.07) 

0.684 
(0.07) 

0.857 
(0.06) 

0.855 
(0.05) 

0.811 
(0.07) 

0.812 
(0.06) 

Glandular odontogenic 
cyst 

0.842 
(0.09) 

0.890 
(0.08) 

0.770 
(0.08) 

0.899 
(0.04) 

0.899 
(0.03) 

0.832 
(0.07) 

0.817 
(0.03) 

Odontogenic 
keratocyst 

0.823 
(0.07) 

0.921 
(0.04) 

0.922 
(0.04) 

0.963 
(0.03) 

0.968 
(0.03) 

0.855 
(0.07) 

0.962 
(0.02) 

Orthokeratinized 
odontogenic cyst 

0.838 
(0.08) 

0.922 
(0.10) 

0.823 
(0.10) 

0.976 
(0.03) 

0.978 
(0.03) 

0.861 
(0.07) 

0.927 
(0.04) 

Basal cell adenoma 0.937 
(0.05) 

0.905 
(0.01) 

0.973 
(0.01) 

0.961 
(0.03) 

0.961 
(0.03) 

0.924 
(0.03) 

0.954 
(0.03) 

Adenoid cystic 
carcinoma 

0.739 
(0.12) 

0.831 
(0.05) 

0.862 
(0.05) 

0.918 
(0.05) 

0.912 
(0.07) 

0.743 
(0.11) 

0.807 
(0.12) 

Mucoepidermoid 
carcinoma 

0.745 
(0.11) 

0.776 
(0.07) 

0.669 
(0.07) 

0.815 
(0.09) 

0.799 
(0.08) 

0.728 
(0.13) 

0.837 
(0.05 

Warthin’s tumor 0.966 
(0.03) 

0.939 
(0.02) 

0.968 
(0.02) 

0.997 
(0.01) 

0.996 
(0.08) 

0.945 
(0.05) 

0.990 
(0.03) 

Odontogenic fibroma 0.730 
(0.14) 

0.805 
(0.10) 

0.642 
(0.10) 

0.769 
(0.12) 

0.763 
(0.13) 

0.695 
(0.09) 

0.755 
(0.07) 

Ameloblastoma 0.730 
(0.11) 

0.730 
(0.04) 

0.664 
(0.04) 

0.809 
(0.10) 

0.808 
(0.09) 

0.701 
(0.09) 

0.744 
(0.10) 

Hemangioma 0.886 
(0.07) 

0.842 
(0.06) 

0.881 
(0.06) 

0.935 
(0.03) 

0.929 
(0.03) 

0.842 
(0.09) 

0.886 
(0.06) 

Average 0.818 
(0.08) 

0.852 
(0.06) 

0.805 
(0.12) 

0.900 
(0.07) 

0.897 
(0.08) 

0.812 
(0.08) 

0.863 
(0.08) 
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Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

Resnet18 
+ 

SimCLR 

Resnet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain 

phonecam 
(n = 54 
images 
from 2 
cases) 

Nasopalatine duct cyst 0.466 
(0.08) 

0.826 
(0.05) 

0.721 
(0.07) 

0.871 
(0.04) 

0.859 
(0.02) 

0.807 
(0.06) 

0.764 
(0.05) 

Glandular odontogenic 
cyst 

0.671 
(0.10) 

0.876 
(0.04) 

0.763 
(0.06) 

0.915 
(0.02) 

0.908 
(0.02) 

0.876 
(0.03) 

0.795 
(0.04) 

Odontogenic 
keratocyst 

0.622 
(0.13) 

0.891 
(0.07) 

0.614 
(0.13) 

0.961 
(0.02) 

0.968 
(0.02) 

0.892 
(0.04) 

0.907 
(0.04) 

Orthokeratinized 
odontogenic cyst 

0.647 
(0.13) 

0.891 
(0.05) 

0.751 
(0.10) 

0.920 
(0.08) 

0.917 
(0.08) 

0.875 
(0.06) 

0.939 
(0.03) 

Basal cell adenoma 0.896 
(0.07) 

0.815 
(0.07) 

0.576 
(0.14) 

0.884 
(0.08) 

0.846 
(0.09) 

0.769 
(0.08) 

0.796 
(0.08) 

Adenoid cystic 
carcinoma 

0.779 
(0.09) 

0.793 
(0.09) 

0.634 
(0.10) 

0.850 
(0.13) 

0.799 
(0.17) 

0.651 
(0.16) 

0.652 
(0.11) 

Mucoepidermoid 
carcinoma 

0.536 
(0.06) 

0.700 
(0.10) 

0.562 
(0.05) 

0.828 
(0.09) 

0.793 
(0.07) 

0.724 
(0.07) 

0.707 
(0.10) 

Warthin’s tumor 0.739 
(0.09) 

0.917 
(0.06) 

0.819 
(0.08) 

0.977 
(0.04) 

0.969 
(0.06) 

0.825 
(0.14) 

0.894 
(0.08) 

Odontogenic fibroma 0.570 
(0.12) 

0.725 
(0.11) 

0.290 
(0.05) 

0.663 
(0.13) 

0.671 
(0.12) 

0.648 
(0.10) 

0.649 
(0.10) 

Ameloblastoma 0.862 
(0.04) 

0.761 
(0.10) 

0.645 
(0.04) 

0.814 
(0.12) 

0.793 
(0.11) 

0.670 
(0.10) 

0.711 
(0.06) 

Hemangioma 0.737 
(0.17) 

0.812 
(0.05) 

0.585 
(0.10) 

0.899 
(0.06) 

0.904 
(0.05) 

0.795 
(0.11) 

0.889 
(0.05) 

Average 0.684 
(0.13) 

0.819 
(0.07) 

0.633 
(0.14) 

0.871 
(0.08) 

0.857 
(0.9) 

0.776 
(0.09) 

0.791 
(0.10) 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

Resnet18 
+ 

SimCLR 

Resnet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-B 

Myoepithelioma (n = 
60 images from 1 
case) 

0.744 
(0.08) 

0.846 
(0.05) 

0.714 
(0.05) 

0.814 
(0.05) 

0.821 
(0.04) 

0.812 
(0.05) 

0.835 
(0.05) 

Basal cell adenoma (n 
= 60 images from 1 
case) 

0.867 
(0.09) 

0.799 
(0.07) 

0.840 
(0.10) 

0.909 
(0.04) 

0.885 
(0.08) 

0.789 
(0.10) 

0.882 
(0.06) 

Warthin’s tumor (n = 
60 images from 1 
case) 

0.943 
(0.04) 

0.981 
(0.02) 

0.838 
(0.07) 

0.999 
(0.01) 

0.997 
(0.02) 

0.861 
(0.05) 

0.981 
(0.01) 

Carcinoma ex 
pleomorphic adenoma 
(n = 60 images from 1 
case) 

0.766 
(0.06) 

0.808 
(0.10) 

0.684 
(0.07) 

0.913 
(0.06) 

0.903 
(0.05) 

0.774 
(0.11) 

0.865 
(0.06) 

Mucoepidermoid 
carcinoma (n = 120 
images from 2 cases) 

0.797 
(0.05) 

0.822 
(0.06) 

0.619 
(0.09) 

0.814 
(0.04) 

0.802 
(0.04) 

0.745 
(0.07) 

0.770 
(0.06) 

Adenoid cystic 
carcinoma (n = 120 
images from 2 cases) 

0.795 
(0.08) 

0.825 
(0.05) 

0.835 
(0.05) 

0.880 
(0.08) 

0.896 
(0.09) 

0.741 
(0.07) 

0.815 
(0.06) 
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Acinic cell carcinoma 
(n = 120 images from 
2 cases) 

0.779 
(0.13) 

0.803 
(0.07) 

0.759 
(0.07) 

0.802 
(0.17) 

0.789 
(0.21) 

0.660 
(0.23) 

0.816 
(0.12) 

Salivary duct 
carcinoma (n = 60 
images from 1 case) 

0.904 
(0.02) 

0.889 
(0.05) 

0.798 
(0.03) 

0.961 
(0.01) 

0.953 
(0.02) 

0.864 
(0.07) 

0.952 
(0.02) 

Average 0.825 
(0.07) 

0.847 
(0.06) 

0.761 
(0.08) 

0.886 
(0.07) 

0.881 
(0.07) 

0.781 
(0.06) 

0.864 
(0.07) 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

Resnet18 
+ 

SimCLR 

Resnet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-C 

Adenoid cystic 
carcinoma (n = 180 
images from 3 cases) 

0.846 
(0.07) 

0.807 
(0.06) 

0.812 
(0.04) 

0.887 
(0.05) 

0.871 
(0.08) 

0.774 
(0.09) 

0.842 
(0.06) 

Basal cell adenoma (n 
= 180 images from 3 
cases) 

0.936 
(0.04) 

0.868 
(0.08) 

0.811 
(0.06) 

0.919 
(0.05) 

0.935 
(0.04) 

0.855 
(0.06) 

0.925 
(0.03) 

Odontogenic 
myxoma/myxofibroma 
(n = 180 images from 
3 cases) 

0.899 
(0.10) 

0.935 
(0.08) 

0.784 
(0.09) 

0.970 
(0.06) 

0.962 
(0.07) 

0.955 
(0.06) 

0.914 
(0.08) 

Fibrous dysplasia (n = 
120 images from 2 
cases) 

0.811 
(0.09) 

0.850 
(0.07) 

0.759 
(0.04) 

0.907 
(0.04) 

0.848 
(0.06) 

0.813 
(0.10) 

0.824 
(0.06) 

Osteoma (n = 180 
images from 3 cases) 

0.918 
(0.09) 

0.913 
(0.09) 

0.824 
(0.04) 

0.963 
(0.05) 

0.975 
(0.03) 

0.929 
(0.07) 

0.944 
(0.08) 

Odontogenic 
keratocyst (n = 120 
images from 2 cases) 

0.806 
(0.10) 

0.893 
(0.06) 

0.540 
(0.18) 

0.871 
(0.11) 

0.875 
(0.10) 

0.837 
(0.11) 

0.878 
(0.09) 

Orthokeratinized 
odontogenic cyst (n = 
120 images from 2 
cases) 

0.758 
(0.13) 

0.907 
(0.04) 

0.634 
(0.09) 

0.949 
(0.04) 

0.932 
(0.07) 

0.836 
(0.10) 

0.895 
(0.09) 

Adenomatoid 
odontogenic tumor (n 
= 120 images from 2 
cases) 

0.819 
(0.07) 

0.820 
(0.08) 

0.756 
(0.04) 

0.836 
(0.05) 

0.839 
(0.05) 

0.723 
(0.13) 

0.799 
(0.09) 

Average 0.849 
(0.06) 

0.874 
(0.09) 

0.740 
(0.09) 

0.913 
(0.04) 

0.905 
(0.05) 

0.840 
(0.07) 

0.878 
(0.05) 

 

Overall, the MeanAcc of test query set-A was highest with the SSL models: ResNet18+TiCo 
outperformed other models for in-domain queries (4.64), followed by ResNet18+SimCLR (4.53) 
with no significant difference (Wilcoxon signed-rank test with Bonferroni adjustment). The 
reverse was observed for the out-domain-phonecam queries (ResNet18+SimCLR (3.33) and 
ResNet18+TiCo (3.31)) with no significant difference (Wilcoxon signed-rank test with 
Bonferroni adjustment). Phikon yielded the highest MeanAcc for out-of-domain-B queries 
(3.79), followed by ResNet18+SimCLR (3.68). Pre-trained DINOv2 outperformed other models 
for out-of-domain-C queries (3.64), followed closely by ResNet18+TiCo (3.63) (Table 4). The 
highest overall MeanAcc was consistently achieved by the SSL models at different magnification 
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levels, except for the high-magnification in-domain queries (Figures 7A, 7B). The 
highest %query was obtained with SSL models for most query categories (Table 5). 

Table 4. MeanAcc (SD) of each test query category in in- and out-of-domain image queries 
The performances of the SSL models are superior for most categories, further validating the robustness of the 
models under a wide range of histopathological image conditions. The highest MeanAcc for each category is marked 
in bold and the second highest is in italics. 

Query Category Pretraine
d VGG16 

Pretraine
d 

DINOv2 

Finetuned 
Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

In- 
domain 
(n = 120 
images 
from 2 
cases) 

Nasopalatine duct cyst 1.38 
(0.28) 

1.48 
(0.44) 

1.53 
(1.02) 

2.59 
(0.94) 

3.48 
(0.82) 

1.93 
(0.43) 

2.38 
(0.66) 

Glandular odontogenic 
cyst 

2.55 
(1.00) 

2.70 
(0.65) 

1.72 
(0.52) 

3.13 
(0.77) 

3.22 
(0.71) 

2.07 
(0.73) 

2.58 
(0.65) 

Odontogenic keratocyst 2.41 
(0.53) 

4.96 
(0.33) 

5.39 
(0.50) 

6.79 
(0.92) 

6.73 
(0.76) 

2.79 
(0.82) 

7.13 
(0.78) 

Orthokeratinized 
odontogenic cyst 

1.68 
(0.96) 

3.94 
(1.49) 

3.04 
(1.83) 

6.19 
(1.84) 

6.83 
(1.93) 

2.38 
(1.01) 

4.92 
(1.37) 

Basal cell adenoma 5.25 
(0.85) 

3.43 
(1.51) 

6.11 
(0.44) 

5.13 
(1.34) 

5.61 
(1.72) 

4.34 
(0.58) 

5.73 
(1.14) 

Adenoid cystic 
carcinoma 

2.86 
(1.10) 

3.28 
(0.66) 

3.15 
(1.37) 

4.09 
(0.99) 

4.36 
(0.98) 

2.14 
(1.13) 

3.13 
(1.02) 

Mucoepidermoid 
carcinoma 

3.10 
(0.69) 

2.78 
(0.89) 

1.33 
(0.26) 

2.87 
(0.83) 

2.89 
(1.10) 

1.85 
(0.94) 

3.71 
(0.75) 

Warthin’s tumor 6.13 
(1.32) 

5.93 
(2.65) 

7.63 
(0.88) 

8.94 
(0.56) 

8.38 
(1.05) 

4.97 
(1.16) 

8.23 
(1.10) 

Odontogenic fibroma 2.05 
(1.36) 

2.45 
(0.89) 

0.99 
(0.32) 

2.03 
(1.33) 

2.04 
(1.40) 

1.29 
(0.75) 

1.74 
(1.01) 

Ameloblastoma 1.67 
(0.79) 

1.83 
(0.80) 

1.41 
(0.65) 

2.73 
(1.19) 

2.42 
(0.88) 

1.09 
(0.32) 

1.71 
(0.69) 

Hemangioma 3.20 
(1.04) 

2.51 
(1.07) 

3.03 
(1.23) 

5.39 
(1.06) 

5.11 
(1.15) 

2.93 
(1.07) 

4.56 
(1.60) 

Average 3.20 
(1.50) 

3.21 
(1.32) 

3.21 
(2.22) 

4.53 
(2.16) 

4.64 
(2.06) 

2.53 
(1.19) 

4.16 
(2.29) 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

Resnet18 
+ 

SimCLR 

Resnet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of- 
domain-

phonecam 

Nasopalatine duct cyst 0.98 
(0.59) 

1.85 
(0.44) 

0.87 
(0.39) 

2.15 
(0.40) 

2.52 
(0.21) 

1.06 
(0.40) 

1.57 
(0.59) 

Glandular odontogenic 
cyst 

1.91 
(0.86) 

2.48 
(0.77) 

2.00 
(0.54) 

3.28 
(0.99) 

2.98 
(1.10) 

2.00 
(0.33) 

2.91 
(0.64) 
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(n = 54 
images 
from 2 
cases) 

Odontogenic keratocyst 2.83 
(0.63) 

4.24 
(1.34) 

0.31 
(0.56) 

5.19 
(0.76) 

5.52 
(0.81) 

3.41 
(1.16) 

3.93 
(0.98) 

Orthokeratinized 
odontogenic cyst 

1.87 
(1.04) 

2.67 
(0.40) 

1.67 
(1.25) 

3.78 
(1.68) 

3.59 
(1.86) 

2.20 
(0.82) 

2.72 
(0.42) 

Basal cell adenoma 2.00 
(0.39) 

2.15 
(0.43) 

0.19 
(0.25) 

2.48 
(0.97) 

2.43 
(1.00) 

1.19 
(0.62) 

2.24 
(1.10) 

Adenoid cystic 
carcinoma 

2.00 
(1.20) 

2.67 
(0.96) 

0.74 
(0.62) 

2.91 
(0.98) 

2.87 
(1.42) 

1.69 
(1.33) 

1.50 
(1.27) 

Mucoepidermoid 
carcinoma 

2.43 
(0.67) 

1.93 
(0.76) 

0.31 
(0.33) 

1.93 
(0.52) 

1.78 
(1.00) 

0.87 
(0.70) 

0.89 
(0.70) 

Warthin’s tumor 3.17 
(1.80) 

5.06 
(2.33) 

1.26 
(0.89) 

7.28 
(2.31) 

7.26 
(1.46) 

2.83 
(1.69) 

2.31 
(1.45) 

Odontogenic fibroma 0.56 
(0.22) 

0.91 
(0.22) 

0.04 
(0.09) 

1.09 
(0.59) 

1.33 
(0.79) 

1.44 
(0.37) 

0.70 
(0.30) 

Ameloblastoma 1.15 
(0.85) 

2.02 
(0.37) 

1.22 
(0.34) 

3.26 
(1.25) 

2.76 
(0.88) 

1.28 
(0.44) 

2.02 
(0.59) 

Hemangioma 2.39 
(0.30) 

1.37 
(0.81) 

0.26 
(0.24) 

3.35 
(0.65) 

3.43 
(0.62) 

1.98 
(0.84) 

2.00 
(1.08) 

Average 1.93 
(1.11) 

2.48 
(1.47) 

0.81 
(0.83) 

3.33 
(1.93) 

3.31 
(1.92) 

1.81 
(1.11) 

2.07 
(1.21) 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-B 

Myoepithelioma (n = 60 
images from 1 case) 

0.88 
(0.29) 

1.97 
(0.34) 

1.27 
(0.89) 

1.00 
(0.26) 

1.17 
(0.26) 

1.38 
(0.48) 

1.73 
(0.33) 

Basal cell adenoma (n = 
60 images from 1 case) 

2.62 
(0.35) 

1.37 
(0.40) 

2.92 
(0.75) 

2.42 
(0.18) 

1.98 
(0.20) 

1.62 
(0.40) 

3.03 
(0.56) 

Warthin’s tumor (n = 60 
images from 1 case) 

5.70 
(0.96) 

7.63 
(0.71) 

2.30 
(2.46) 

8.88 
(0.26) 

8.23 
(0.33) 

2.52 
(0.13) 

7.28 
(0.87) 

Carcinoma ex 
pleomorphic adenoma (n 
= 60 images from 1 case) 

1.45 
(0.00) 

1.48 
(0.78) 

1.15 
(0.64) 

3.33 
(0.53) 

3.07 
(0.18) 

1.52 
(0.21) 

1.72 
(0.29) 

Mucoepidermoid 
carcinoma (n = 120 
images from 2 cases) 

2.09 
(1.02) 

2.14 
(0.53) 

0.62 
(0.51) 

1.61 
(0.84) 

1.73 
(0.87) 

1.90 
(0.90) 

1.61 
(1.12) 

Adenoid cystic carcinoma 
(n = 120 images from 2 
cases) 

3.35 
(1.32) 

4.15 
(1.24) 

1.82 
(0.91) 

3.31 
(2.39) 

3.23 
(2.02) 

2.55 
(1.79) 

3.88 
(1.76) 
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Acinic cell carcinoma (n 
= 120 images from 2 
cases) 

3.99 
(2.37) 

5.00 
(1.76) 

2.43 
(0.91) 

4.95 
(1.90) 

5.63 
(2.38) 

3.53 
(2.51) 

5.78 
(1.41) 

Salivary duct carcinoma 
(n = 60 images from 1 
case) 

3.95 
(0.36) 

4.12 
(1.68) 

0.90 
(0.74) 

5.05 
(0.26) 

4.68 
(1.07) 

4.23 
(3.38) 

5.40 
(2.04) 

Average 3.04 
(1.78) 

3.56 
(2.13) 

1.66 
(1.19) 

3.68 
(2.50) 

3.67 
(2.47) 

2.47 
(1.78) 

3.79 
(2.33) 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-C 

Adenoid cystic carcinoma 
(n = 180 images from 3 
cases) 

3.39 
(1.06) 

3.04 
(1.52) 

1.44 
(0.58) 

2.74 
(1.34) 

3.04 
(0.95) 

1.85 
(0.64) 

3.62 
(0.56) 

Basal cell adenoma (n = 
180 images from 3 cases) 

3.94 
(1.45) 

2.35 
(0.85) 

0.95 
(0.55) 

2.23 
(1.90) 

2.75 
(2.11) 

1.19 
(0.56) 

3.01 
(1.63) 

Odontogenic 
myxoma/myxofibroma (n 
= 180 images from 3 
cases) 

4.37 
(2.25) 

6.00 
(1.66) 

0.96 
(0.43) 

5.62 
(1.48) 

6.05 
(1.64) 

5.20 
(1.60) 

4.42 
(1.70) 

Fibrous dysplasia (n = 
120 images from 2 cases) 

2.37 
(1.22) 

2.90 
(0.59) 

0.48 
(0.19) 

2.07 
(1.03) 

1.48 
(0.79) 

1.52 
(0.99) 

1.45 
(1.10) 

Osteoma (n = 180 images 
from 3 cases) 

4.22 
(1.52) 

4.63 
(1.39) 

1.97 
(0.19) 

4.27 
(2.18) 

4.66 
(0.86) 

3.93 
(0.74) 

4.93 
(1.65) 

Odontogenic keratocyst (n 
= 120 images from 2 
cases) 

2.65 
(1.62) 

3.99 
(1.26) 

0.28 
(0.56) 

3.09 
(3.27) 

3.13 
(3.16) 

3.56 
(1.87) 

3.38 
(2.05) 

Orthokeratinized 
odontogenic cyst (n = 120 
images from 2 cases) 

1.53 
(0.98) 

3.60 
(1.39) 

0.02 
(0.04) 

3.95 
(2.32) 

4.06 
(2.07) 

2.15 
(1.30) 

3.59 
(2.31) 

Adenomatoid 
odontogenic tumor (n = 
120 images from 2 cases) 

1.79 
(0.42) 

1.90 
(0.62) 

2.19 
(0.89) 

3.07 
(0.61) 

2.85 
(0.77) 

0.90 
(0.64) 

2.37 
(1.35) 

Average 3.22 
(1.71) 

3.64 
(1.76) 

1.52 
(1.36) 

3.45 
(2.13) 

3.63 
(2.08) 

2.64 
(1.81) 

3.47 
(1.81) 
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Figure 7: MeanAcc and MeanHI comparisons 
(A) MeanAcc comparison for the in-domain query of all models by magnification showing the highest performance 
of Phikon at the highest magnification and that of ResNet18+SimCLR and ResNet18+TiCo at the moderate and 
lowest magnification. (B) MeanAcc comparison for out-of-domain-phonecam queries of all models by 
magnification shows the highest performance of ResNet18+SimCLR and ResNet18+TiCo at the highest and lowest 
magnification. Both model performances were comparable to that of pre-trained DINOv2 at moderate magnification. 
(C) MeanHI comparison for in-domain queries by magnification shows that ResNet18+SimCLR and 
ResNet18+TiCo outperformed other models except for the highest magnification where Phikon leads with a wider 
interquartile range. (D) MeanHI comparison for out-of-domain-phonecam query by magnification showing 
ResNet18+SimCLR and ResNet18+TiCo outperformed other models. (C-D) Please note that a lower MeanHI value 
denotes a higher model performance. 

Table 5. Percentage of queries that retrieved at least one correct diagnosis among the top-10 results for each 
test query category (%query) in in- and out-of-domain image queries  
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The performance of the SSL models was superior in most categories. The highest %query for each category is 
marked in bold, and the second highest is in italics. (%). 

Query Category Pre- 
trained 
VGG16 

Pre- 
trained 
DINOv2 

Fine- 
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

In- 
domain 
(n = 120 
images 
from 2 
cases) 

Nasopalatine duct cyst 80.00 80.00 71.67 93.33 96.67 87.50 95.83 

Glandular odontogenic 
cyst 

92.50 95.00 93.33 99.17 99.17 91.67 95.00 

Odontogenic keratocyst 88.33 100.00 100.00 100.00 96.67 88.33 100.00 

Orthokeratinized 
odontogenic cyst 

84.17 96.67 91.67 98.33 100.00 92.50 100.00 

Basal cell adenoma 100.00 96.67 100.00 100.00 100.00 100.00 100.00 

Adenoid cystic 
carcinoma 

94.17 96.67 98.33 100.00 100.00 81.67 100.00 

Mucoepidermoid 
carcinoma 

94.17 88.33 94.17 98.33 97.50 80.00 98.33 

Warthin’s tumor 99.17 97.50 100.00 100.00 99.17 95.83 98.33 

Odontogenic fibroma 85.83 94.17 70.83 73.33 71.67 68.33 85.00 

Ameloblastoma 84.17 81.67 80.00 92.50 93.33 70.00 89.17 

Hemangioma 91.67 92.50 98.33 100.00 100.00 93.33 100.00 

Average 90.38 92.65 90.76 95.91 95.83 86.29 96.52 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

Out- 
domain-

phonecam 
(n = 54 
images 
from 2 
cases) 

Nasopalatine duct cyst 53.70 92.59 68.52 98.15 100.00 74.07 87.04 

Glandular odontogenic 
cyst 

88.89 98.15 81.48 100.00 100.00 96.30 100.00 

Odontogenic keratocyst 90.74 88.89 16.67 98.15 100.00 96.30 92.59 
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Orthokeratinized 
odontogenic cyst 

75.93 92.59 62.96 88.89 88.89 88.89 96.30 

Basal cell adenoma 96.30 90.74 12.96 85.19 88.89 75.93 83.33 

Adenoid cystic 
carcinoma 

85.19 85.19 42.59 88.89 74.07 64.81 64.81 

Mucoepidermoid 
carcinoma 

94.44 81.48 25.93 94.44 70.37 61.11 53.70 

Warthin’s tumor 72.22 98.15 51.85 96.30 98.15 72.22 75.93 

Odontogenic fibroma 51.85 55.56 3.70 79.63 79.63 90.74 66.67 

Ameloblastoma 61.11 83.33 88.89 94.44 98.15 79.63 88.89 

Hemangioma 94.44 66.67 24.07 81.48 90.74 81.48 85.19 

Average 78.62 84.85 43.60 91.41 89.90 80.13 81.31 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-B 

Myoepithelioma (n = 60 
images from 1 case) 

43.33 93.33 63.33 55.00 56.67 75.00 78.33 

Basal cell adenoma (n = 
60 images from 1 case) 

100.00 78.33 96.67 100.00 95.00 93.33 100.00 

Warthin’s tumor (n = 60 
images from 1 case) 

100.00 100.00 71.67 100.00 100.00 90.00 100.00 

Carcinoma ex 
pleomorphic adenoma 
(n = 60 images from 1 
case) 

75.00 66.67 68.33 96.67 98.33 80.00 71.67 

Mucoepidermoid 
carcinoma (n = 120 
images from 2 cases) 

81.24 90.17 52.71 78.63 89.09 82.98 80.08 

Adenoid cystic 
carcinoma (n = 120 
images from 2 cases) 

97.50 100.00 90.00 80.00 85.83 86.67 97.50 

Acinic cell carcinoma (n 
= 120 images from 2 
cases) 

81.67 97.50 89.17 90.83 85.83 69.17 97.50 
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Salivary duct carcinoma 
(n = 60 images from 1 
case) 

100.00 100.00 58.33 100.00 100.00 76.67 100.00 

Average 84.84 90.75 73.78 87.64 88.84 81.73 90.92 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-C 

Adenoid cystic 
carcinoma (n = 180 
images from 3 cases) 

94.44 92.22 80.00 86.11 91.11 81.11 95.56 

Basal cell adenoma (n = 
180 images from 3 
cases) 

97.18 89.94 72.90 69.58 73.27 75.99 88.44 

Odontogenic 
myxoma/myxofibroma 
(n = 180 images from 3 
cases) 

95.00 100.00 76.67 92.78 98.33 98.33 93.33 

Fibrous dysplasia (n = 
120 images from 2 
cases) 

85.83 100.00 99.17 77.50 70.00 70.00 72.50 

Osteoma (n = 180 
images from 3 cases) 

97.78 98.89 100.00 82.22 100.00 99.44 99.44 

Odontogenic keratocyst 
(n = 120 images from 2 
cases) 

80.00 97.50 10.83 56.67 55.83 80.83 91.67 

Orthokeratinized 
odontogenic cyst (n = 
120 images from 2 
cases) 

69.17 95.00 0.83 75.83 78.33 68.33 86.67 

Adenomatoid 
odontogenic tumor (n = 
120 images from 2 
cases) 

89.17 93.33 95.83 98.33 94.17 59.17 80.83 

Average 88.57 95.86 67.03 79.88 82.63 79.15 89.68 

 

The accuracy calculation excluded the histologic similarity between the query and retrieved 
images, which provides additional information about the histologic features during diagnosis. To 
verify whether the SSL models retrieved histologically similar images despite the low MeanAcc, 
MeanHI was introduced. MeanHI excludes accurate diagnosis and differential diagnosis 
categories, which are similar to the query and include other inaccurate categories. The lowest 
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overall inaccuracy was consistently achieved by the SSL models, except for the high-
magnification in-domain queries, indicating that these models are best at retrieving the most 
histologically similar images beyond accurate diagnosis (Figures 7C, 7D, Table 6). The top-10 
retrieved images of representative cases found by all the tested models are shown in Figures 8 
and 9. 
 
Table 6. MeanHI (SD) for each test query category for in- and out-of-domain image queries 
The best histologic similarity was consistently retrieved by the SSL models. The histologic similarity of the results 
was consistently best retrieved by the SSL models. It is noteworthy that a lower MeanHI is preferable. The lowest 
MeanHI for each category is marked in bold and the second lowest is in italics. 

Query Category (n = 2 cases) Pre- 
trained 
VGG16 

Pre- 
trained 
DINOv2 

Fine- 
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

In- 
domain 
(n = 120 
images 
from 2 
cases) 

Nasopalatine duct cyst 6.93 
(0.37) 

6.11 
(0.91) 

6.03 
(0.46) 

4.91 
(1.33) 

3.90 
(1.02) 

6.03 
(0.46) 

6.13 
(1.00) 

Glandular odontogenic 
cyst 

6.00 
(0.80) 

6.06 
(0.77) 

5.81 
(0.95) 

4.94 
(0.71) 

4.79 
(0.81) 

5.81 
(0.95) 

5.11 
(1.15) 

Odontogenic keratocyst 6.03 
(0.98) 

3.10 
(0.44) 

5.24 
(0.53) 

1.63 
(0.77) 

1.73 
(0.95) 

5.24 
(0.53) 

1.91 
(0.54) 

Orthokeratinized 
odontogenic cyst 

5.88 
(1.38) 

2.95 
(0.96) 

5.53 
(1.40) 

1.33 
(1.55) 

1.06 
(1.18) 

5.53 
(1.40) 

2.78 
(0.82) 

Basal cell adenoma 1.53 
(0.74) 

3.98 
(1.51) 

2.51 
(0.96) 

1.66 
(0.94) 

1.24 
(0.71) 

2.51 
(0.96) 

1.51 
(0.64) 

Adenoid cystic 
carcinoma 

5.08 
(1.18) 

4.79 
(0.72) 

6.30 
(1.91) 

2.60 
(0.77) 

2.17 
(0.79) 

6.30 
(1.91) 

4.06 
(2.27) 

Mucoepidermoid 
carcinoma 

4.84 
(0.88) 

5.90 
(1.00) 

7.24 
(0.98) 

5.35 
(1.58) 

5.28 
(1.84) 

7.24 
(0.98) 

4.73 
(1.16) 

Warthin’s tumor 3.01 
(1.11) 

3.66 
(2.38) 

4.38 
(1.12) 

1.01 
(0.58) 

1.58 
(1.00) 

4.38 
(1.12) 

1.62 
(1.04) 

Odontogenic fibroma 6.67 
(1.59) 

6.66 
(1.25) 

7.54 
(1.07) 

7.03 
(2.07) 

7.05 
(2.10) 

7.54 
(1.07) 

7.21 
(1.59) 

Ameloblastoma 7.92 
(1.05) 

7.83 
(0.96) 

8.16 
(0.75) 

5.98 
(1.97) 

6.63 
(1.50) 

8.16 
(0.75) 

7.93 
(0.88) 

Hemangioma 6.32 
(1.11) 

7.13 
(1.22) 

6.40 
(1.05) 

4.53 
(1.12) 

4.78 
(1.24) 

6.40 
(1.05) 

5.33 
(1.68) 

Average 5.47 
(1.82) 

5.29 
(1.68) 

5.92 
(1.56) 

3.72 
(2.13) 

3.65 
(2.20) 

5.92 
(1.56) 

4.39 
(2.44) 

Query Category (n = 2 cases) Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 

Resnet18 

ResNet18 
+ 

SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 
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Out-of- 
domain-

phonecam 
(n = 54 
images 
from 2 
cases) 

Nasopalatine duct cyst 7.83 
(0.52) 

5.96 
(0.98) 

7.30 
(0.68) 

4.96 
(0.60) 

4.24 
(0.32) 

6.78 
(0.98) 

6.67 
(1.00) 

Glandular odontogenic 
cyst 

6.48 
(1.06) 

5.69 
(0.66) 

6.52 
(1.36) 

4.91 
(1.19) 

5.04 
(0.82) 

5.30 
(0.63) 

5.44 
(0.54) 

Odontogenic keratocyst 5.33 
(1.11) 

3.20 
(1.20) 

7.87 
(0.61) 

2.33 
(1.70) 

2.35 
(1.58) 

3.78 
(0.50) 

4.15 
(0.79) 

Orthokeratinized 
odontogenic cyst 

5.43 
(1.50) 

4.83 
(1.31) 

6.65 
(0.79) 

2.76 
(2.25) 

3.06 
(2.41) 

5.24 
(1.49) 

4.41 
(1.14) 

Basal cell adenoma 3.28 
(0.82) 

5.26 
(0.66) 

8.65 
(0.61) 

2.54 
(0.70) 

3.67 
(0.83) 

4.39 
(0.67) 

4.89 
(0.73) 

Adenoid cystic 
carcinoma 

6.91 
(1.58) 

5.56 
(1.46) 

9.06 
(0.51) 

5.35 
(1.96) 

5.59 
(2.34) 

7.35 
(1.81) 

5.96 
(1.49) 

Mucoepidermoid 
carcinoma 

5.61 
(0.83) 

7.13 
(1.21) 

8.37 
(0.68) 

6.61 
(1.05) 

6.65 
(1.15) 

8.76 
(0.39) 

8.50 
(0.72) 

Warthin’s tumor 5.74 
(1.83) 

4.69 
(2.28) 

8.65 
(0.75) 

2.28 
(1.51) 

2.26 
(1.06) 

6.81 
(1.81) 

7.69 
(1.45) 

Odontogenic fibroma 8.65 
(0.75) 

7.63 
(0.90) 

9.59 
(0.41) 

7.98 
(1.05) 

7.78 
(1.38) 

6.78 
(0.44) 

8.80 
(0.54) 

Ameloblastoma 8.13 
(1.32) 

7.00 
(0.83) 

7.26 
(0.59) 

4.96 
(1.65) 

6.22 
(1.32) 

7.80 
(0.80) 

6.64 
(0.50) 

Hemangioma 7.33 
(0.65) 

7.69 
(1.15) 

8.24 
(1.60) 

6.59 
(1.91) 

6.46 
(1.21) 

7.46 
(1.16) 

7.33 
(0.80) 

Average 6.43 
(1.55) 

5.88 
(1.39) 

8.01 
(0.99) 

4.66 
(1.96) 

4.85 
(1.87) 

6.40 
(1.53) 

6.39 
(1.75) 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 
Resnet18 

ResNet18 
+ 
SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-B 

Myoepithelioma (n = 60 
images from 1 case) 

5.88 
(1.16) 

5.58 
(0.49) 

5.98 
(0.18) 

5.67 
(0.68) 

4.55 
(0.44) 

6.17 
(0.84) 

5.28 
(1.40) 

 Basal cell adenoma (n = 
60 images from 1 case) 

3.63 
(2.04) 

4.57 
(0.36) 

3.82 
(1.96) 

1.70 
(0.09) 

1.90 
(0.61) 

3.73 
(0.75) 

1.82 
(0.08) 

 Warthin’s tumor (n = 60 
images from 1 case) 

3.55 
(1.26) 

2.23 
(0.58) 

7.70 
(2.46) 

1.12 
(0.26) 

1.75 
(0.35) 

7.07 
(0.19) 

2.72 
(0.87) 

 Carcinoma ex 
pleomorphic adenoma 
(n = 60 images from 1 
case) 

5.45 
(0.64) 

5.22 
(1.81) 

7.17 
(1.07) 

3.68 
(0.98) 

4.07 
(0.58) 

4.93 
(1.09) 

3.28 
(1.64) 

 Mucoepidermoid 
carcinoma (n = 120 
images from 2 cases) 

5.55 
(1.41) 

6.29 
(0.56) 

6.98 
(1.24) 

6.22 
(1.16) 

6.24 
(1.34) 

6.71 
(0.87) 

6.93 
(1.11) 
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 Adenoid cystic 
carcinoma (n = 120 
images from 2 cases) 

2.93 
(1.35) 

4.03 
(1.36) 

5.96 
(0.81) 

4.38 
(2.78) 

4.89 
(2.48) 

5.88 
(2.37) 

4.18 
(2.55) 

 Acinic cell carcinoma (n 
= 120 images from 2 
cases) 

5.18 
(2.50) 

3.94 
(2.16) 

6.96 
(0.88) 

5.03 
(1.87) 

4.26 
(2.21) 

6.21 
(2.36) 

4.11 
(1.35) 

 Salivary duct carcinoma 
(n = 60 images from 1 
case) 

4.57 
(0.53) 

4.62 
(0.58) 

8.97 
(0.68) 

4.10 
(0.41) 

4.40 
(1.02) 

4.80 
(2.98) 

3.40 
(1.78) 

 Average 4.59 
(1.10) 

4.56 
(1.23) 

6.69 
(1.51) 

3.99 
(1.80) 

4.01 
(1.50) 

5.69 
(1.11) 

4.27 
(2.23) 

Query Category Pre-
trained 
VGG16 

Pre-
trained 
DINOv2 

Fine-
tuned 
Resnet18 

ResNet18 
+ 
SimCLR 

ResNet18 
+ TiCo 

Ciga 
model 

Phikon 

Out-of-
domain-C 

Adenoid cystic 
carcinoma (n = 180 
images from 3 cases) 

4.66 
(1.15) 

5.14 
(1.29) 

8.03 
(0.82) 

5.23 
(1.69) 

5.06 
(1.28) 

6.87 
(0.67) 

4.19 
(0.93) 

 Basal cell adenoma (n = 
180 images from 3 
cases) 

2.90 
(1.35) 

5.03 
(1.03) 

8.81 
(0.69) 

5.51 
(2.68) 

4.65 
(2.95) 

5.12 
(1.62) 

4.62 
(1.76) 

 Odontogenic 
myxoma/myxofibroma 
(n = 180 images from 3 
cases) 

4.75 
(2.36) 

2.98 
(1.31) 

8.09 
(0.82) 

3.38 
(1.52) 

2.42 
(1.54) 

4.02 
(1.29) 

4.58 
(1.67) 

 Fibrous dysplasia (n = 
120 images from 2 
cases) 

5.32 
(1.02) 

3.80 
(0.63) 

4.18 
(0.35) 

4.19 
(0.87) 

4.57 
(0.70) 

5.52 
(0.67) 

5.22 
(1.14) 

 Osteoma (n = 180 
images from 3 cases) 

3.05 
(0.86) 

3.32 
(0.86) 

3.21 
(0.35) 

3.08 
(0.88) 

3.07 
(0.40) 

3.59 
(0.73) 

2.59 
(1.49) 

 Odontogenic keratocyst 
(n = 120 images from 2 
cases) 

5.61 
(1.80) 

4.45 
(0.95) 

9.58 
(0.68) 

5.91 
(2.69) 

6.44 
(3.06) 

5.67 
(2.03) 

5.73 
(1.92) 

 Orthokeratinized 
odontogenic cyst (n = 
120 images from 2 
cases) 

5.68 
(1.21) 

2.93 
(0.46) 

9.69 
(0.27) 

1.58 
(0.85) 

1.91 
(1.09) 

4.53 
(1.45) 

3.86 
(2.77) 

 Adenomatoid 
odontogenic tumor (n = 
120 images from 2 
cases) 

5.94 
(1.23) 

6.76 
(0.73) 

6.38 
(1.25) 

4.78 
(1.11) 

5.60 
(1.26) 

7.48 
(1.14) 

5.24 
(1.86) 

 Average 4.74 
(1.17) 

4.30 
(1.32) 

7.25 
(2.44) 

4.21 
(1.45) 

4.21 
(1.59) 

5.35 
(1.34) 

4.40 
(1.86) 
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Figure 8: Comparison of the top-10 results of all models for out-of-domain-phonecam queries from different 
categories 
ResNet18+SimCLR and ResNet18+TiCo are consistent with the result that provides the highest Acc for different 
query categories. More examples are presented in Figure 9 (Green outline: accurate diagnosis category; Yellow 
outline: differential diagnosis categories; Red outline: inaccurate diagnosis category) 
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Figure 9: Further examples of comparisons of the top 10 results of all models for out-of-domain-phonecam 
queries from different categories 
ResNet18+SimCLR and ResNet18+TiCo are consistent with the result providing the highest Acc for different query 
categories. The categories of retrieved images belonging to the differential diagnoses show which retrieved images 
have histologic similarity to the query. This comparison demonstrates the SSL model’s capability to retrieve 
histologically similar images when the exact accurate diagnosis is not retrieved. The pre-trained DINOv2 and 
Phikon also show such potential albeit less consistently across the query category than the SSL models. (Green 
outline: accurate diagnosis category; Yellow outline: differential diagnosis categories; Red outline: inaccurate 
diagnosis categories) 
 

Discussion 
The diagnosis of oral pathology has long depended on histopathological image observation, 
which can be a burden for pathologists, especially when dealing with rare cases. In the last 
decade, various machine learning methods have been proposed to aid in histopathological 
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diagnosis and improve speed and accuracy to avoid delays in diagnosis. However, the 
exploration for oral histopathology diagnosis has been hampered by the difficulty of obtaining an 
adequately extensive database that includes rare cases and constructing an effective model. To 
our knowledge, this is the first study to construct a large database of 30 oral tumor categories, 
with an additional 21 categories used as the model-training dataset. 
Many have argued that CBIR has greater advantages in this field. Pathologists can review CBIR 
results to make a final decision. However, decision bias may occur when the algorithm is 
unreliable. To find the best way to represent images for CBIR, we compared different methods 
of training the feature encoder. We then ranked the similarity of all images in the database to the 
test queries. The gradual concept of similarity and the multiple-ranked results of CBIR pose a 
challenge in interpretation. Four evaluation measures were used: MeanAUC from the whole 
database similarity rank; MeanAcc, %query, and MeanHI from the top-10 most similar images. 
MeanAUC assumes all rank cut-points are relevant to model performance in extracting histologic 
features, while the top-10 similar results are relevant during image observation by pathologists in 
future CBIR implementation. Our findings suggest that model training for feature extraction 
using an in-house dataset with SSL methods outperforms other popular methods in retrieving 
images with an accurate diagnosis and similar histology: in-domain queries in 73% of categories 
and out-of-domain-phonecam queries in 64% of categories (Table 3). This was supported by 
their MeanAcc which was superior in 63% of in-domain query categories and 82% of out-of-
domain-phonecam query categories (Table 4). There was no significant difference in MeanAcc 
between the SimCLR and TiCo models for both query categories. The MeanAcc superiority of 
the SSL models was consistent at the in-domain low and moderate magnification levels (Figure 
7A) and at out-of-domain-phonecam at all magnification levels (Figure 7B). Additionally, both 
SSL models retrieved fewer images without histologic similarity at all magnification levels for 
both query categories (Figures 7C, 7D), meaning when low accuracy is achieved in the result, the 
users get several options that are histologically similar upon CBIR implementation with the SSL 
models because they belong to the textbook differential diagnosis categories. From this result, 
users could proceed with the additional tests more easily than having to do the preliminary 
reference search manually. Our dataset had overlapping image patches with similar histologic 
features. In this situation, the SSL method was superior because it compensated for the lack of a 
labeled dataset for learning representations that cluster the data during training based on 
semantic classes in conjunction with convolutional neural networks as feature extractors, 
regardless of the category [20]. 

The most impressive performance was shown for Warthin’s tumor query, with MeanAUC values 
greater than 0.960 in every query set using the SSL models (Table 3). Histologically, Warthin’s 
tumors consist of varying proportions of papillary cystic structures lined by two layers of 
oncocytic epithelial cells and a lymphoid stroma with germinal centers. It is one of the most 
common tumors of the salivary gland, especially the parotid gland, and is generally easy to 
diagnose microscopically owing to its characteristic pattern [19]. 

The SLL models were successful for most of the test query categories. Out of those categories, 
the MeanAcc of the SLL model for the ameloblastoma query was lower (Table 3). Although 
ameloblastoma is one of the most common odontogenic tumors, it has diverse histologic 
variants: follicular, plexiform, acanthomatous, granular, basaloid, desmoplastic, or a mixture of 
these [17]. This diversity requires an adequate representation of each subtype in the database for 
greater accuracy. However, the %query indicated that the models retrieved a similar 
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ameloblastoma type in the top-10 for more than 93% of the queries tested (Table 5). With several 
differential diagnoses of ameloblastoma included in the database, the best MeanHI obtained for 
the in-domain ameloblastoma query was 5.98 by SimCLR (Table 6). These categories can be 
considered histologically similar only if the characteristics of certain subtypes are captured. For 
example, islands of odontogenic epithelium with ameloblastic features in the follicular type may 
resemble ameloblastic fibroma [19]. Updating the database with newly encountered subtypes 
continuously would improve the accuracy of rare tumor subtypes. 

Although CBIR works by retrieving similar images that can be considered a digital second 
opinion, the result may contain images from different categories, with many having similar or 
indistinguishable histology. Arguably, the range of MeanAcc values obtained with the SSL 
models, 1.00 to 8.94 (Tables 3 and 4), is considerably wide. However, 55% to 100% of the total 
queries retrieved at least one of 10 images from the correct category (Table 5), and 6.46 to 1.12 
out of the 10 images had no histologic similarity to the query image (Table 6). This implies that 
displaying the complete top-10 results, including the correct diagnosis and differential diagnosis, 
as shown in Figures 8 and 9, could be significant for pathologists to narrow the differential 
diagnoses and conduct further research efficiently. To further improve usability, it is necessary to 
include clinical and other findings, such as the location of the tumor, patient history, and 
diagnostic criteria, which are usually essential to making a diagnosis by pathologists, when 
developing a CBIR system, especially in the oral region where tissue types are diverse. 

This study implements patch-based CBIR. Some CBIR systems can analyze WSIs of which 
implementation is prospective in developed countries. As expensive WSI scanners are not 
universally installed in oral laboratories, the image-capturing equipment accessible to 
pathologists differs considerably across regions. Microscope images captured directly using a 
smartphone camera could be the easiest mode for education, image sharing, and case 
consultation [27,28]. By using patch-based CBIR where pathologists only need to select the 
tumor areas and capture them with smartphone cameras to create input, this technology is more 
accessible globally. Variations in image color and resolution resulting from these differences 
hinder obtaining reliable results. We tested the robustness of each model to domain shifts by 
testing the models on out-of-domain queries using WSIs from multiple institutions captured by 
different scanners and smartphone cameras.  SSL models performed best for most query 
categories, with SimCLR or TiCo achieving the best MeanAUC for over 68% of out-of-domain 
query categories, from 0.839 to 0.999 (Table 3), confirming the previous finding that SSL is 
more robust to domain shifts than supervised learning in some datasets, including pathological 
images [29]. Interestingly, the performances of the vision transformer models (pre-trained 
DINOv2 and Phikon) always come second best to the SSL models in MeanAUC and are 
comparable in MeanAcc to that of the SSL models on out-of-domain query sets (Tables 3 and 4). 
Although further investigation is needed, this result may be considered when choosing methods 
for a CBIR system. If the system is designed for an in-house database and query or a scenario 
applicable in large hospitals, SSL models trained on in-house cases are the optimal choice. 
However, where the system is designed to handle out-of-domain queries, using a pre-trained 
vision transformer model becomes a viable alternative to eliminate the need to train the SSL 
model, which could be computationally expensive.  
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Study limitations 
Limitations of this study include that the experiments involved a single query to retrieve similar 
images. An algorithm that supports more information in the query, such as multiple query 
algorithms and filters for location or other diagnostic criteria, would improve retrieval accuracy 
and provide better support for diagnosis. Our study is limited to test queries from the same 
geographical area as the SSL model-training dataset. Collecting query cases from a more diverse 
area would be beneficial in future CBIR development to further challenge the generalizability of 
the result. The comparative methodology did not emphasize histopathology characteristics that 
differentiate between benign or malignant tumors, such as capsule invasion and mitotic activity 
in basal cell adenoma vs. basal cell adenocarcinoma but focused on how such image retrieval 
tools would be beneficial in reducing to several differential diagnoses and recalling diagnosis 
criteria before following up with ancillary tests if necessary. Image retrieval is less likely to 
mislead decision-makers owing to model overfit than a conventional classification method that 
predicts the possible tumor diagnosis. Nonetheless, a sequel of observations would still be 
needed when image retrieval is utilized. This study provides insights as the first step to 
developing a CBIR algorithm by observing retrieval accuracy with strict tumor category criteria 
on a relatively small database and did not investigate the impact of the result on decision-making 
in clinical settings. The implementation of CBIR as a well-rounded system to be incorporated 
into the comprehensive diagnostic process is beyond the scope of this study and observation of 
the interaction between pathologists and a CBIR system for common and rare diagnoses is 
needed before the system is used in clinical settings. 

Conclusion 
This study highlighted various methods to develop an effective CBIR model and presented key 
measures to determine the best approach for future clinical usage. We have shown that using 
SSL methods for deep neural network training is an effective way to develop a CBIR system for 
histopathological diagnosis of oral tumors compared to other commonly used methods. Vision 
transformer models, though slightly less effective than SSL models, still provided strong 
performance and could be a viable alternative for out-of-domain queries. These approaches have 
considerable potential to create a clinically useful image retrieval system that accelerates the 
diagnostic process and improves accuracy. 
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