Abstract
Oral tumors necessitate a dependable computer-assisted pathological diagnosis system considering their rarity and diversity. A content-based image retrieval (CBIR) system using deep neural networks has been successfully devised for digital pathology. No CBIR system for oral pathology has been investigated because of the lack of an extensive image database and feature extractors tailored to oral pathology. This study uses a large CBIR database constructed from 30 categories of oral tumors to compare deep learning methods as feature extractors. The highest average area under the receiver operating curve (AUC) was achieved by models trained on database images using self-supervised learning (SSL) methods (0.900 with SimCLR; 0.897 with TiCo). The generalizability of the models was validated using query images from the same cases taken with smartphones. When smartphone images were tested as queries, both models yielded the highest mean AUC (0.871 with SimCLR and 0.857 with TiCo). We ensured the retrieved image result would be easily observed by evaluating the top-10 mean accuracy and checking for an exact diagnostic category and its differential diagnostic categories. Therefore, training deep learning models with SSL methods using image data specific to the target site is beneficial for CBIR tasks in oral tumor histology to obtain histologically meaningful results and high performance. This result provides insight into the effective development of a CBIR system to help improve the accuracy and speed of histopathology diagnosis and advance oral tumor research in the future.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was supported by AMED Practical Research for Innovative Cancer Control under grant number JP 23ck0106640 to S.I. and the JSPS KAKENHI Grant-in-Aid for Scientific Research (B) under grant number 21H03836 to D.K.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee/IRB of Tokyo Medical and Dental University gave ethical approval for this work (No. D2019-087).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.