1	Epidemiology of Burkholderia pseudomallei, Streptococcus suis, Salmonella
2	spp., Shigella spp. and Vibrio spp. infections in 111 hospitals in Thailand, 2022
3	
4	Charuttaporn Jitpeera ^a , Somkid Kripattanapong ^a , Preeyarach Klaytong ^b , Chalida
5	Rangsiwutisak ^b , Prapass Wannapinij ^b , Pawinee Doungngern ^a , Papassorn
6	Pinyopornpanish ^c , Panida Chamawan ^d , Voranadda Srisuphan ^d , Krittiya
7	Tuamsuwan ^d , Phairam Boonyarit ^d , Orapan Sripichai ^e , Soawapak Hinjoy ^f , John
8	Stelling ^g , Paul Turner ^{b,h,i} , Wichan Bhunyakitikorn ^a , Sopon Iamsirithaworn ^j , Direk
9	Limmathurotsakul ^{b,i,k} *
10	
11	Affiliation:
12	^a Division of Epidemiology, Department of Disease Control, Ministry of Public Health,
13	Nonthaburi 11000, Thailand
14	^b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol
15	University, Bangkok, 10400, Thailand
16	^c Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health,
17	Nonthaburi, 11000, Thailand
18	^d Health Administration Division, The Office of Permanent Secretary, Ministry of Public Health,
19	Nonthaburi, 11000, Thailand
20	^e Department of Medical Science, Ministry of Public Health, Nonthaburi, 11000, Thailand (OS)
21	^f Office of International Cooperation, Department of Disease Control, Ministry of Public Health,
22	Nonthaburi 11000, Thailand (SH)

- ^g Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States (JS)
- ^h Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap,
- 25 *Cambodia*
- ²⁶ ^{*i*} Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United
- 27 Kingdom
- ^j Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand (SI)
- ²⁹ ^k Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok,
- 30 *10400*, *Thailand*
- 31

32 **ORCID**

- 33 Charuttaporn Jitpeera 0009-0007-9298-5853
- 34 Preeyarach Klaytong 0000-0002-9906-5159
- 35 Chalida Rangsiwutisak 0009-0007-9380-9085
- 36 Paul Turner 0000-0002-1013-7815
- 37 Direk Limmathurotsakul 0000-0001-7240-5320
- 38
- 39 * Corresponding author: Prof. Direk Limmathurotsakul, Mahidol-Oxford Tropical Medicine
- 40 Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok,
- 41 10400, Thailand. Tel: +66 2 203 6333, Fax: +66 2 354 9169, e-mail: direk@tropmedres.ac

43 Abstract

The information on notifiable diseases in low- and middle-income countries is often incomplete, 44 limiting our understanding of their epidemiology. Our study addresses this knowledge gap by 45 46 analyzing microbiology laboratory and hospital admission data from 111 of 127 public referral hospitals in Thailand, excluding Bangkok, from January to December 2022. We evaluated 47 factors associated with the incidence of notifiable bacterial diseases (NBDs) caused by 11 48 pathogens; including Brucella spp., Burkholderia pseudomallei, Corynebacterium diphtheriae, 49 Neisseria gonorrhoeae, Neisseria meningitidis, non-typhoidal Salmonella spp. (NTS), 50 51 Salmonella enterica serovar Paratyphi, Salmonella enterica serovar Typhi, Shigella spp., 52 Streptococcus suis, and Vibrio spp.. We used multivariable Poisson random-effects regression models. Additionally, we compared their yearly incidence rates in 2022 with those from 2012-53 54 2015 in hospitals where paired data were available. In 2022, the NBD associated with the highest 55 total number of deaths was B. pseudomallei (4,407 patients; 1,219 deaths) infection, followed by 56 NTS (4,501 patients; 461 deaths) and S. suis (867 patients, 134 deaths) infection. The incidence 57 rate of *B. pseudomallei* and *S. suis* infection was highest in the northeast and upper central, respectively. The incidence rate of NTS infection was not associated with geographical region. 58 The yearly incidence rate of *B. pseudomallei* and *S. suis* infection in 2022 were higher than those 59 between 2012-2015, while those of fecal-oral transmitted NBDs including NTS infection, 60 typhoid, shigellosis and vibriosis were lower. Overall, B. pseudomallei and S. suis infection are 61 62 emerging and associated with a high number of deaths in Thailand. Specific public health 63 interventions are warranted.

64

65 Keywords: melioidosis; salmonella; shigella; *Streptococcus suis*; vibrio; incidence; mortality

66 Introduction

67	Timely, reliable and complete information regarding notifiable diseases is essential for disease
68	control and prevention, and enhancing our understanding of their epidemiology [1-3]. To achieve
69	timeliness and completeness in data reporting, many high-income and upper-middle-income
70	countries have strengthened their national surveillance systems by modernizing tools, technology
71	and strategies [4-6]. These include automatic electronic laboratory-based reporting of notifiable
72	diseases [5-7]. However, most low and middle-income countries (LMICs) have a shortage of
73	resources, still use conventional or semi-automated data reporting systems, and do not
74	automatically integrate laboratory data into their surveillance systems [4,8]. Therefore, the
75	information available in the national surveillance systems of LMICs are still largely incomplete
76	[9-11] and our understanding of their epidemiology remains limited.
77	
77	In Thailand, the national surveillance systems monitors 13 dangerous communicable diseases
	In Thailand, the national surveillance systems monitors 13 dangerous communicable diseases and 57 notifiable diseases, overseen by the Department of Disease Control (DDC), Ministry of
78	
78 79	and 57 notifiable diseases, overseen by the Department of Disease Control (DDC), Ministry of
78 79 80	and 57 notifiable diseases, overseen by the Department of Disease Control (DDC), Ministry of Public Health (MoPH) [12]. For the 13 dangerous communicable disease (e.g. Ebola and
78 79 80 81	and 57 notifiable diseases, overseen by the Department of Disease Control (DDC), Ministry of Public Health (MoPH) [12]. For the 13 dangerous communicable disease (e.g. Ebola and smallpox), immediate reporting of any suspected cases is required. For the 57 notifiable diseases,
78 79 80 81 82	and 57 notifiable diseases, overseen by the Department of Disease Control (DDC), Ministry of Public Health (MoPH) [12]. For the 13 dangerous communicable disease (e.g. Ebola and smallpox), immediate reporting of any suspected cases is required. For the 57 notifiable diseases, the reporting systems can be semi-automatic, utilizing the electronic data of final diagnosis based
78 79 80 81 82 83	and 57 notifiable diseases, overseen by the Department of Disease Control (DDC), Ministry of Public Health (MoPH) [12]. For the 13 dangerous communicable disease (e.g. Ebola and smallpox), immediate reporting of any suspected cases is required. For the 57 notifiable diseases, the reporting systems can be semi-automatic, utilizing the electronic data of final diagnosis based on the International Classification of Diseases, 10 th revision (ICD-10) recorded in the hospital
78 79 80 81 82 83 83	and 57 notifiable diseases, overseen by the Department of Disease Control (DDC), Ministry of Public Health (MoPH) [12]. For the 13 dangerous communicable disease (e.g. Ebola and smallpox), immediate reporting of any suspected cases is required. For the 57 notifiable diseases, the reporting systems can be semi-automatic, utilizing the electronic data of final diagnosis based on the International Classification of Diseases, 10 th revision (ICD-10) recorded in the hospital information systems (HIS). However, the ICD-10 is reliable only in few conditions [13,14] and

88	surveillance systems [11,15]. The incomplete data hinders efforts to improve awareness, control,
89	prevention, and our understanding of NBDs in the country [16].

90

91 To overcome limitations in LMICs, we developed the AMASS (AutoMated tool for Antimicrobial resistance Surveillance System), an offline application that enables hospitals to 92 automatically analyse and generate standardized antimicrobial resistance (AMR) surveillance 93 reports from routine microbiology and hospital data [17]. The AMASS version 1.0 was released 94 on 1st February 2019 and tested in seven hospitals in seven countries [17]. We conceptualized 95 96 that the AMASS could additionally analyse and generate summary reports for multiple NBDs [18]. The AMASS version 2.0 (AMASSv2.0) was released on 16th May 2022 and tested using 97 data of 49 public hospitals in Thailand from 2012 to 2015 [15]. We demonstrate that national 98 99 statistics on NBDs in LMICs could be improved by integrating information from readily 100 available databases [15]. In 2023, collaborating with Health Administration Division, MoPH Thailand, we implemented AMASSv2.0 in 127 public hospitals in Thailand using the data from 101 102 2022 [19]. We recently reported the epidemiology of AMR bloodstream infections in 111 hospitals [20]. 103

104

Here we aimed to evaluate the epidemiology of multiple NBDs in 111 hospitals in Thailand
using the data from 2022. We also examined the trends of each NBD by comparing the data from
2022 with the data from 2012 to 2015.

108

109 Methods

110 Study setting

111	In 2022, Thailand had a population of 66.1 million, consisted of 77 provinces, and covered
112	513,120 km ² . The health systems in each province were integrated into 12 groups of provinces,
113	known as health regions, plus the capital Bangkok as health region 13 (Figure 1), using the
114	concept of decentralization [21]. The Health Administration Division, Ministry of Public Health
115	(MoPH) Thailand, supervised 127 public referral hospitals in health regions 1 to 12. These
116	included 35 advanced-level referral hospital (i.e. level A, with a bed size of about 500-1,200
117	beds), 55 standard-level referral hospital (i.e. level S, with a bed size of about 300 to 500) and 37
118	mid-level referral hospital (i.e. level M1, with a bed size of about 180-300) [22]. All level A and
119	S hospitals, and most of level M1 hospitals were equipped with a microbiology laboratory
120	capable of performing bacterial culture using standard methodologies for bacterial identification
121	and susceptibility testing provided by the Department of Medical Sciences, MoPH, Thailand [23].
122	
123	From 16 December 2022 to 30 June 2023, on behalf of the Health Administration Division,
124	MoPH, we invited and trained 127 public referral hospitals in health regions 1 to 12 to utilize the
125	AMASS with their own microbiology and hospital admission data files via four online meetings,
126	five face-to-face meetings and on-line support [20]. Subsequently, the hospitals that completed
127	utilization of the AMASS submitted summary data generated by the tool to the MoPH [20].
128	
129	Study design
130	We conducted a retrospective study evaluating epidemiology of selected NBDs diagnosed by
131	culture using microbiology laboratory and hospital admission data from 2022. We also compared
132	the yearly incidence rates of each NBD in 2022 with those from 2012-2015, using paired data
133	from 49 public referral hospitals that were previously published [15].

134

135	The NBDs under evaluation included infections caused by 12 pathogens; Brucella spp.,
136	Burkholderia pseudomallei, Corynebacterium diphtheriae, Neisseria gonorrhoeae, Neisseria
137	meningitidis, Non-typhoidal Salmonella spp., Salmonella enterica serovar Paratyphi, Salmonella
138	enterica serovar Typhi, Shigella spp., Streptococcus suis, and Vibrio spp. infections. NBD cases
139	were defined as having any clinical specimen (including blood, respiratory tract specimens, urine,
140	stool, cerebrospinal fluid, genital swabs and other specimens) culture positive for a pathogen.
141	The AMASS merged microbiology laboratory and hospital admission data using the hospital
142	number (i.e. the patient identifier) present in both data files. Then, the AMASS deduplicated the
143	data reporting total number of inpatients with a clinical specimen culture positive for a pathogen
144	during the evaluation period. ¹¹ Mortality was defined using the discharge summary (in the
145	hospital admission data) which was routinely completed by the attending physician and reported
146	to the MoPH. For each NBD, in case that a patient was admitted with that NBD more than once
147	during the evaluation period, the mortality outcome of the first admission was presented.
148	
149	Statistical Analysis
150	Data were summarized with medians and interquartile ranges (IQR) for continuous measures,
151	and proportions for discrete measures. IQRs are presented in terms of 25th and 75th percentiles.
152	Continuous variables and proportions were compared between groups using Kruskal Wallis tests
153	and Chi-square tests, respectively.
154	
155	For NBDs with more than 100 cases in the year 2022, we evaluated factors associated with the

156 incidence rate of NBDs per 100,000 population using multivariable Poisson random-effects

157	regression models [24]. The total number of NBD cases in each province was calculated by
158	summing the number of NBD cases from all hospitals located in the same province. We assumed
159	that the distribution of province-specific random effects was normal. Factors evaluated included
160	health region, Gross Provincial Product (GPP), pig density and poultry density. Data of GPP in
161	2021 [25] were used as a proxy for the size of the economy in each province. Pig density and
162	poultry density (per square meters) were estimated by using the total number of pigs and poultry
163	in each province in Thailand in 2022, divided by the total area of each province [26].
164	
165	Additionally, we compared the yearly incidence rates of each NBD in 2022 with the those
166	between 2012-2015 in hospitals where paired data were available. Multivariable Poisson
167	random-effects regression models were used to evaluate the change of incidence rate per 100,000
168	population between the time periods. We also compared the total number of cases and deaths of
169	each NBD diagnosed by culture in 2022 in our study with those of relevant notifiable diseases
170	reported to the NNDSS of Thailand [27]. We used STATA (version 14.2; College Station,
171	Texas) for all analyses (Appendix A).
172	
173	Data availability
174	The hospital-level summary data used for the study are open-access and available at
175	https://figshare.com/s/79f2b4b9422263b9048b.
176	
177	Ethics
178	Ethical permission for this study was obtained from the Institute for the Committee of the
179	Faculty of Tropical Medicine, Mahidol University (TMEC 23-085). Individual patient consent

- 180 was not sought as this was a retrospective study, and the Ethical and Scientific Review
- 181 Committees approved the process.
- 182
- 183 **Results**
- 184 Baseline characteristics

Of 127 public referral hospitals, 116 (91%) used the AMASS to analyze their microbiology and hospital admission data files, and submitted the summary AMR and NBD data from 2022 to the MoPH. Four hospitals had incomplete microbiology data, and one hospital had incomplete hospital admission data. These hospitals were removed from the analysis. Therefore, a total of 111 hospitals were included in the final analysis.

190

Of all public referral hospitals in Thailand, 100% of Level A hospitals (35/35), 89% of Level S
hospitals (49/55) and 73% of Level M1 hospitals (27/37) were included in this study. Data were
available from 74 of 77 provinces (96%) in Thailand, all provinces except Mae Hong Son,
Nakorn Nayok and Bangkok.

195

```
196 A total of 46 hospitals in 42 provinces had paired data from 2022 and 2012-2015.
```

197

198 Brucella spp.

In 2022, there were 11 cases with culture-confirmed *Brucella* spp. infection (Figure 2A) and 1 of

them died (in-hospital mortality 9%). Among provinces where paired data were available, the

201 incidence rate did not differ between the time periods (p=0.15).

203 **B.** pseudomallei

204	In 2022, there were 4,407 cases with culture-confirmed <i>B. pseudomallei</i> infection and 1,219 of
205	them died (in-hospital mortality 27.7%). The incidence rate (Figure 2B) was highest in the
206	northeast (health regions 7, 8, 9 and 10), followed by the upper central (health region 3), north
207	(health region 1 and 2) east (health region 6) and south (health region 11 and 12). The incidence
208	rate was lowest in the lower central (health region 4) and west (health region 5). In the
209	multivariable models, health region and poultry density (adjust incidence rate ratio [aIRR] 1.31,
210	95%CI 1.02-1.69, p=0.04) were independently associated with the incidence of <i>B. pseudomallei</i>
211	infection per 100,000 population (Table S1). GPP and pig density and poultry density were not
212	independently associated with the incidence rate (both p>0.20)
213	
214	Among provinces where paired data were available, the yearly incidence rate of <i>B. pseudomallei</i>
215	infection in 2022 was higher than that between 2012-2015 by 58% (aIRR 1.58, 95%CI 1.49-1.68,
216	p<0.001).
217	
218	C. diphtheriae
218 219	<i>C. diphtheriae</i> In 2022, there were 10 cases with culture-confirmed <i>C. diphtheriae</i> infection (Figure 2C) and 1
	-

222

223 *N. gonorrhoeae*

224	In 2022, there were 25 cases with culture-confirmed N. gonorrhoeae infection (Figure 2D) and
225	none died. Among provinces where paired data were available, the incidence rate did not differ
226	between the time periods (p=0.33).
227	
228	N. meningitidis
229	In 2022, there were 9 cases with culture-confirmed <i>N. meningitidis</i> infection (Figure 2E) and 2
230	died (in-hospital mortality 22%). Among provinces where paired data were available, the
231	incidence rate did not differ between the time periods (p=0.55).
232	
233	Non-typhoidal Salmonella spp. (NTS)
234	In 2022, there were 4,501 cases with culture-confirmed NTS infection (Figure 2F) and 461 died
235	(in-hospital mortality 10.2%). In the multivariable models, health region, GPP, pig density and
236	poultry density were not associated with the incidence rate (all p>0.20, Table S2).
237	
238	Among provinces where paired data were available, the yearly incidence rate of NTS cases in
239	2022 was lower than that between 2012-2015 by 37% (aIRR 0.63, 95%CI 0.60-0.67, p<0.001).
240	
241	Salmonella enterica serovar Paratyphi
242	In 2022, there were 30 cases with culture-confirmed Salmonella enterica serovar Paratyphi
243	infection (Figure 2G) and 4 died (in-hospital mortality 13%). Among provinces where paired
244	data were available, the incidence rate did not differ between the time periods (p=0.39).
245	
246	Salmonella enterica serovar Typhi

247	In 2022, there were 32 cases with culture-confirmed Salmonella enterica serovar Typhi infection
248	(Figure 2H) and 6 died (in-hospital mortality 19%).
249	
250	Among provinces where paired data were available, the yearly incidence rate of Salmonella
251	enterica serovar Typhi infection in 2022 was lower than that between 2012-2015 by 83% (aIRR
252	0.17, 95% CI 0.07-0.41, p<0.001).
253	
254	Shigella spp.
255	In 2022, there were 68 cases with culture-confirmed Shigella spp. infection (Figure 2I) and 4
256	died (in-hospital mortality 6%).
257	
258	Among provinces where paired data were available, the yearly incidence rate of Shigella spp.
259	infection in 2022 was lower than that between 2012-2015 by 78% (aIRR 0.22, 95%CI 0.14-0.36,
260	p<0.001).
261	
262	S. suis
263	In 2022, there were 867 cases with culture-confirmed S. suis infection and 134 of them died (in-
264	hospital mortality 15.5%). The incidence rate (Figure 2J) was highest in the upper central (health
265	regions 3), followed by the north (health regions 1 and 2) and northeast (health regions 7, 8, 9
266	and 10). The incidence rate was lowest in the south (health regions 11 and 12) and lower central
267	(health region 4). In the multivariable models, health region was associated with the incidence of
268	S. suis infection per 100,000 population (Table S3). GPP, pig density and poultry density were
269	not independently associated with the incidence rate.

270

Among provinces where paired data were available, the yearly incidence rate of *S. suis* infection in 2022 was higher than that between 2012-2015 by 172% (aIRR 2.72, 95%CI 2.29-3.24, p<0.001).

274

275 Vibrio spp.

In 2022, there were 809 cases with culture-confirmed *Vibrio* spp. infection and 122 of them died

277 (in-hospital mortality 15.1%). The crude incidence rate (Figure 2K) was highest in the west

(health region 5), followed by the east (health region 6). The crude incidence rate was lowest in

the central (health region 3 and 4) and upper north (health region 1). In the multivariable models,

health region was associated with the incidence of *Vibrio* spp. infection per 100,000 population

(Table S4). GPP, pig density and poultry density were not independently associated with the

282 incidence rate.

283

Among provinces where paired data were available, the yearly incidence rate of *Vibrio* spp.
infection in 2022 was lower than that between 2012-2015 by 25% (aIRR 0.75, 95%CI 0.66-0.85, p<0.001).

287

288 Comparison with the national surveillance systems

289 In 2022, the total number of cases (4,407 vs. 3,573 cases) and deaths (1,219 vs. 157 deaths)

following *B. pseudomallei* infection diagnosed by culture was higher than those reported to the

national surveillance systems (Table 1). The total number of cases (867 vs. 383 cases) and deaths

292 (134 vs. 10 deaths) following *S. suis* infection diagnosed by culture was also higher. The total

293	number of deaths following fecal-oral transmitted NBDs diagnosed by culture (including 461 for
294	non-typhoidal salmonella, 122 for vibriosis, 4 for paratyphoid, 6 for typhoid and 4 for
295	shigellosis) were also higher than those reported to the national surveillance systems (0 deaths
296	for all relevant fecal-oral transmitted NBDs).
297	
298	
299	Discussion
300	Our findings provide evidence that the incidences of melioidosis and S. suis infection are
301	increasing and associated with a high number of deaths in Thailand in 2022. We also show that
302	fecal-oral transmitted NBDs including non-typhoidal salmonellosis, typhoid, shigellosis and
303	vibriosis are still present and associated with deaths, but their incidence rates are decreasing
304	compared to the data from 2012-2015. This study highlights the potential advantage of utilization
305	of routine microbiology and hospital admission data from hospitals. The local and timely data of
306	NBDs can supplement and monitor the performance of the national surveillance systems. The
307	accurate data can consequently identify diseases and areas with high burden, improve public
308	health interventions, and prioritize resource allocation.
309	
310	The finding that more than 1,200 deaths following melioidosis in 2022 is alarming. This finding
311	is consistent with a previous modelling study predicting that the total number of deaths following
312	melioidosis could range from 1,259 to 6,678 in Thailand if all patients were tested with bacterial
313	culture and data were reported nationwide [28]. The increased incidence rate of melioidosis
314	could be associated with the increasing incidence of diabetes (the major risk factor of

315 melioidosis) and improvement of diagnostic stewardship (i.e. utilization of culture) and bacterial

316	identification in public hospitals in Thailand over time [16,29,30]. The association between
317	poultry density and melioidosis is unclear, and could be a spurious finding. Further studies and
318	actions to reduce the burden of melioidosis in Thailand are urgently needed [31].
319	
320	Similarly, the increase in S. suis infection is alarming. This could be associated with an increase
321	in consumption of undercooked pork products [32-34] and an increase in infected meat in the
322	market [35]. The latter is a concern following the news of the large illegal pork imported to
323	Thailand since 2021 after the shortage of domestic pork due to the outbreak of African swine
324	fever in Thailand [36]. The DDC will utilize the data to additionally implement and enforce
325	behavioral interventions, education and food biosafety in the country [34].
326	
327	The decrease of multiple fecal-oral transmitted diseases could be due to improvement in clean
328	water supply, sanitation and related health intervention programs over time [37,38]. The MoPH
329	and related stakeholders should maintain and strengthen the public health interventions to
330	decrease incidences of these infections further.
331	
332	Our study and approach have several strengths. First, our study included most of the public
333	referral hospitals in the country. Second, we utilize microbiology laboratory data, which is highly
334	specific to the diagnosis of NBDs. Third, although our approach is semi-automatic, this approach
335	is easy to scale up in LMICs because the AMASS programme is open-access, highly-compatible,
336	and user-friendly without the need for data experts with adequate skills in statistical software
337	[17,19].
338	

339 Our study and approach have several limitations. First, our approach included only inpatients in 340 the public referral hospitals. Therefore, our estimates did not include patients who did not require 341 hospitalization, and those who were hospitalized in private, military or university hospitals. 342 Nonetheless, majority of healthcare services in Thailand are in the public sector [39]. Second, 343 our approach is not applicable in settings where microbiology and hospital admission data are not computerized. Third, our approach focused on bacterial culture results. Therefore, the 344 345 findings could be influenced by diagnostic stewardship and, capability and expertise of the 346 microbiology laboratories. Fourth, our approach utilizes summary data and could not evaluate individual-level clinical data and microbiology laboratory data in details. Fifth, the in-hospital 347 mortality could be lower than the all-cause mortality because a preference to die at home is high 348 in some regions in Thailand [11]. 349

350

In conclusion, the burden of melioidosis and *S. suis* infection are increasing in Thailand. Their incidence rates are higher in some regions than in others. Specific public health interventions to reduce the burden of melioidosis and *S. suis* infection are urgently required.

355 Acknowledgement

- 356 We gratefully acknowledge the laboratory team and IT team of all hospitals for their
- 357 participation and support.

358

359 **Declaration of interest statement**

360 The authors report there are no competing interests to declare.

361

362 Funding

- 363 This research was supported by the Wellcome Trust under Grant [number 224681/Z/21/Z]. For
- the purpose of Open Access, the author has applied a CC BY public copyright licence to any
- 365 Author Accepted Manuscript version arising from this submission.

367 **References**

- White AE, Tillman AR, Hedberg C, et al. Foodborne Illness Outbreaks Reported to 368 [1] National Surveillance, United States, 2009-2018. Emerg Infect Dis. 2022 Jun;28(6):1117-369 370 1127. Nash K, Lai J, Sandhu K, et al. Impact of national COVID-19 restrictions on incidence of 371 [2] notifiable communicable diseases in England: an interrupted time series analysis. BMC 372 373 Public Health. 2022 Dec 12;22(1):2318. Wei F, Sheng W, Wu X, et al. Incidence of anogenital warts in Liuzhou, south China: a 374 [3] comparison of data from a prospective study and from the national surveillance system. 375 Emerg Microbes Infect. 2017 Dec 20;6(12):e113. 376 Jayatilleke K. Challenges in Implementing Surveillance Tools of High-Income Countries 377 [4] 378 (HICs) in Low Middle Income Countries (LMICs). Curr Treat Options Infect Dis. 2020;12(3):191-201. 379
- Vlieg WL, Fanoy EB, van Asten L, et al. Comparing national infectious disease
 surveillance systems: China and the Netherlands. BMC Public Health. 2017 May
 8;17(1):415.
- Panackal AA, M'Ikanatha N M, Tsui FC, et al. Automatic electronic laboratory-based
 reporting of notifiable infectious diseases at a large health system. Emerg Infect Dis.
 2002 Jul;8(7):685-91.
- Nguyen TQ, Thorpe L, Makki HA, et al. Benefits and barriers to electronic laboratory
 results reporting for notifiable diseases: the New York City Department of Health and
- Mental Hygiene experience. Am J Public Health. 2007 Apr;97 Suppl 1(Suppl 1):S142-5.

- 389 [8] Sahal N, Reintjes R, Aro AR. Review article: communicable diseases surveillance
- 390 lessons learned from developed and developing countries: literature review. Scand J
- 391 Public Health. 2009 Mar;37(2):187-200.
- Benson FG, Musekiwa A, Blumberg L, et al. Comparing laboratory surveillance with the
- notifiable diseases surveillance system in South Africa. Int J Infect Dis. 2017 Jun;59:141-
- 394 147.
- 395 [10] Chandrasekar K, Mahesan S, Bath PA. Notifiable disease surveillance in Sri Lanka and
- the United Kingdom: a comparative study. Sri Lanka J Bio Med Inform. 2013;4(1):14-22.
- 397 [11] Hantrakun V, Kongyu S, Klaytong P, et al. Clinical Epidemiology of 7126 Melioidosis
- Patients in Thailand and the Implications for a National Notifiable Diseases Surveillance
- 399 System. Open Forum Infect Dis. 2019 Dec;6(12):ofz498.
- 400 [12] Department of Disease Control, Ministry of Public Health, Thailand. Communicable
- 401 Disease Act B.E. 2558 (A.D. 2015) Available from:
- 402 <u>https://ddc.moph.go.th/law_gcd_eng.php</u>
- 403 [13] Rattanaumpawan P, Wongkamhla T, Thamlikitkul V. Accuracy of ICD-10 Coding
- 404 System for Identifying Comorbidities and Infectious Conditions Using Data from a Thai
- 405 University Hospital Administrative Database. J Med Assoc Thai. 2016 Apr;99(4):368-73.
- 406 [14] Sukanya C. Validity of Principal Diagnoses in Discharge Summaries and ICD-10 Coding
- 407 Assessments Based on National Health Data of Thailand. Healthc Inform Res. 2017
- 408 Oct;23(4):293-303.
- 409 [15] Lim C, Hantrakun V, Klaytong P, et al. Frequency and mortality rate following
- 410 antimicrobial-resistant bloodstream infections in tertiary-care hospitals compared with
- 411 secondary-care hospitals. PLoS One. 2024;19(5):e0303132.

- 412 [16] Hinjoy S, Hantrakun V, Kongyu S, et al. Melioidosis in Thailand: Present and Future.
 413 Trop Med Infect Dis. 2018;3(2):38.
- 414 [17] Lim C, Miliya T, Chansamouth V, et al. Automating the Generation of Antimicrobial
- 415 Resistance Surveillance Reports: Proof-of-Concept Study Involving Seven Hospitals in
- 416 Seven Countries. J Med Internet Res. 2020 Oct 2;22(10):e19762.
- 417 [18] Lim C, Klaytong P, Hantrakun V, et al. Automating the Generation of Notifiable
- 418Bacterial Disease Reports: Proof-of-Concept Study and Implementation in Six Hospitals
- 419 in Thailand. Am J Trop Med Hyg. 2024 Jul 3;111(1):151-155.
- 420 [19] Srisuphan V, Klaytong P, Rangsiwutisak C, et al. Local and timely antimicrobial
- 421 resistance data for local and national actions: the early implementation of an automated
- tool for data analysis at local hospital level in Thailand. JAC Antimicrob Resist. 2023
- 423 Aug;5(4):dlad088.
- 424 [20] Tuamsuwan K, Chamawan P, Boonyarit P, et al. Frequency of antimicrobial-resistant
- bloodstream infections in Thailand, 2022. medRxiv. 2024:2024.06.01.24308013.
- 426 [21] Jongudomsuk P, Srithamrongsawat S, Patcharanarumol W, et al. The Kingdom of
- 427 Thailand Health System Review 2015. Available from:
- 428 https://iris.who.int/bitstream/handle/10665/208216/9789290617136_eng.pdf
- 429 [22] Ministry of Public Health, Thailand. List of Healthcare Facilities under Health
- Administration Division, Ministry of Public Health, Thailand 2023. 2023. Available
- 431 form: <u>http://dmsic.moph.go.th/index/detail/9188</u>
- 432 [23] Department of Medical Science, Ministry of Public Health, Thailand. Manual for
- 433 microbiology laboratories at regional and general hospitals. 2012. Available from:
- 434 http://narst.dmsc.moph.go.th/data/Idenbook.pdf

435	[24]	Austin PC, Stryhn H, Leckie G, et al. Measures of clustering and heterogeneity in

- 436 multilevel Poisson regression analyses of rates/count data. Stat Med. 2018 Feb
- 437 20;37(4):572-589.
- 438 [25] National Statistical Office, Ministry of Digital Economy and Society, Thailand.
- 439 Statistical Yearbook Thailand 2023. 2023. Available form:
- 440 <u>https://www.nso.go.th/public/e-book/Statistical-Yearbook/SYB-2023</u>
- 441 [26] Information and Communication Technology Center, Department of Livestock
- 442 Development, Ministry of Agriculture and Cooperatives, Thailand. Information of
- animal-raising farmers at the provincial level, 2022. 2022. Available from:
- 444 https://ict.dld.go.th/webnew/index.php/th/service-ict/report/396-report-thailand-
- 445 <u>livestock/reportservey2565/1711-province-2565</u>
- 446 [27] Department of Disease Control, Ministry of Public Health, Thailand. National Disease
- 447 Surveillance (Report 506). 2023. Available from: <u>http://doe.moph.go.th/surdata/</u>
- 448 [28] Limmathurotsakul D, Golding N, Dance DA, et al. Predicted global distribution of
- Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016 Jan 1;1(1).
- 450 [29] Greer RC, Wangrangsimakul T, Amornchai P, et al. Misidentification of Burkholderia
- 451 pseudomallei as Acinetobacter species in northern Thailand. Trans R Soc Trop Med Hyg.
- 452 2019 Jan 1;113(1):48-51.
- 453 [30] Mahikul W, White LJ, Poovorawan K, et al. Modelling population dynamics and
- 454 seasonal movement to assess and predict the burden of melioidosis. PLoS Negl Trop Dis.
- 455 2019 May;13(5):e0007380.

- 456 [31] Department of Disease Control, Ministry of Public Health, Thailand. Guideline of
- 457 Melioidosis. 2021. Available from:
- 458 <u>http://klb.ddc.moph.go.th/dataentry/handbook/form/129</u>
- 459 [32] Takamatsu D, Wongsawan K, Osaki M, et al. Streptococcus suis in humans, Thailand.
- 460 Emerg Infect Dis. 2008 Jan;14(1):181-3.
- 461 [33] Takeuchi D, Kerdsin A, Akeda Y, et al. Impact of a Food Safety Campaign on
- 462 Streptococcus suis Infection in Humans in Thailand. Am J Trop Med Hyg. 2017
- 463 Jun;96(6):1370-1377.
- 464 [34] Kerdsin A, Segura M, Fittipaldi N, et al. Sociocultural Factors Influencing Human
- 465 Streptococcus suis Disease in Southeast Asia. Foods. 2022 Apr 20;11(9).
- 466 [35] Pappas G. Socio-economic, industrial and cultural parameters of pig-borne infections.
- 467 Clin Microbiol Infect. 2013 Jul;19(7):605-10.
- 468 [36] Bangkok Post. Fighting pork smugglers. 2023. Available from:
- 469 https://www.bangkokpost.com/opinion/opinion/2667934/fighting-pork-smugglers
- 470 [37] Boonsoong B, Sangpradub N, Barbour MT, et al. An implementation plan for using
- biological indicators to improve assessment of water quality in Thailand. Environ Monit
- 472 Assess. 2010 Jun;165(1-4):205-15.
- 473 [38] Techasaensiri C, Radhakrishnan A, Als D, et al. Typhoidal Salmonella Trends in
- Thailand. Am J Trop Med Hyg. 2018 Sep;99(3_Suppl):64-71.
- 475 [39] Sumriddetchkajorn K, Shimazaki K, Ono T, et al. Universal health coverage and primary
- 476 care, Thailand. Bull World Health Organ. 2019 Jun 1;97(6):415-422.
- 477
- 478

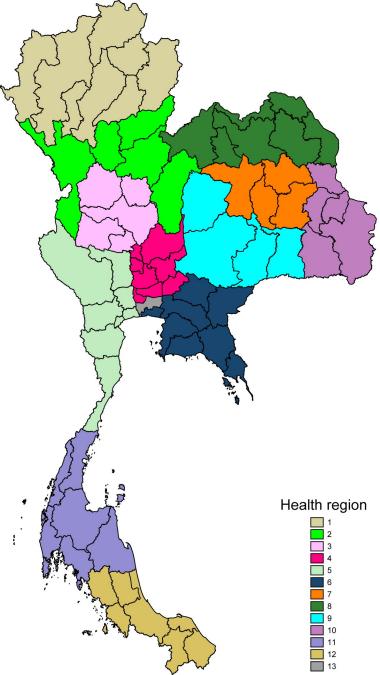
479 **Figure legends**

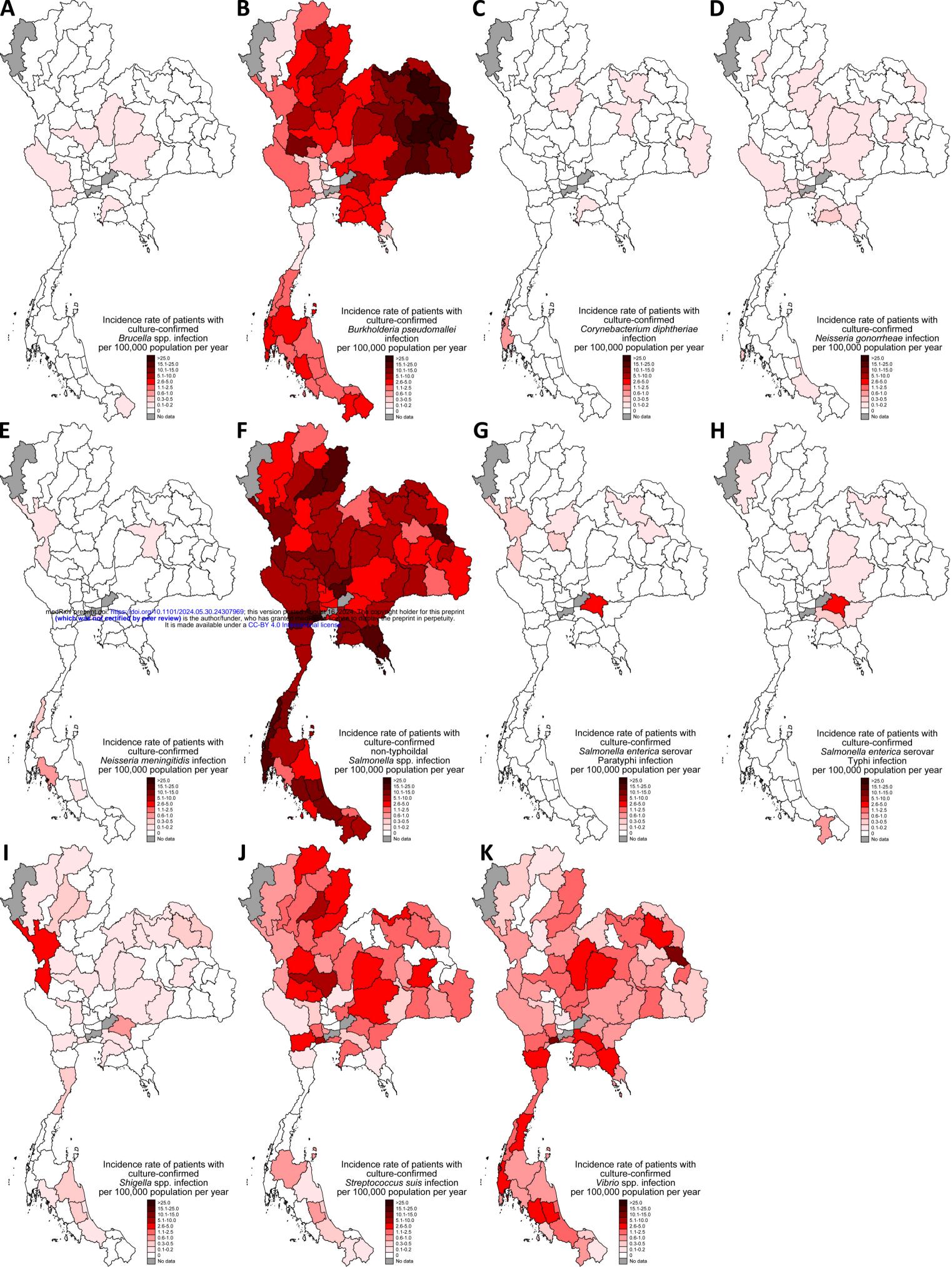
- 480 **Figure 1.** Health regions in Thailand
- **Footnote of figure 1.** National Health Security Office (NHSO) Region 1 is in Chiang Mai, 2 in
- 482 Phitsanulok, 3 in Nakhonsawan, 4 in Saraburi, 5 in Ratchaburi, 6 in Rayong, 7 in Khon Kaen, 8
- in Udon Thani, 9 in Nakonratchasima, 10 in Ubonratchathani, 11 in Suratthani, 12 in Songkhla
- and 13 in Bangkok.

485

- 486 Figure 2. Incidence rate of cases with notifiable bacterial diseases diagnosed by culture per
- 487 100,000 population in 2022 in Thailand

490 hospitals) compared with total number of cases and deaths with relevant notifiable diseases reported to the national


491 surveillance systems (NSS) in Thailand in 2022.


Total number of cases *	This study	Relevant notifiable diseases in the NSS	NSS
Brucella spp. infection	11	Brucellosis	15
Burkholderia pseudomallei infection	4,407	Melioidosis	3,573
Corynebacterium diphtheriae infection	10	Diphtheria	0
Neisseria gonorrhoeae infection	25	Gonorrhea	6,915
Neisseria meningitidis infection	9	Meningococcal meningitis	19
Non-typhoidal Salmonella spp. and Vibrio spp. infection	4,501 and 809	Food poisoning and cholera	72,439 and 4
Salmonella enterica serovar Paratyphi infection	30	Paratyphoid	91
Salmonella enterica serovar Typhi infection	32	Typhoid	754
Shigella spp. infection	68	Bacillary dysentery	377
Streptococcus suis infection	867	Streptococcus suis infection	383
Total number of deaths			
Brucella spp. infection	1	Brucellosis	0
Burkholderia pseudomallei infection	1,219	Melioidosis	157
Corynebacterium diphtheriae infection	1	Diphtheria	0
Neisseria gonorrhoeae infection	0	Gonorrhea	0
Neisseria meningitidis infection	2	Meningococcal meningitis	3
Non-typhoidal Salmonella spp. and Vibrio spp. infection	461 and 122	Food poisoning and cholera	0 and 0
Salmonella enterica serovar Paratyphi infection	4	Paratyphoid	0
Salmonella enterica serovar Typhi infection	6	Typhoid	0
Shigella spp. infection	4	Bacillary dysentery	0
Streptococcus suis infection	134	Streptococcus suis infection	10

492

493 * Case was defined as an inpatient with a clinical specimen culture positive for a pathogen during the evaluation period, while the NSS included

reports of suspected, probable and confirmed cases using a wide range of case definitions of each notifiable disease (Appendix B).

