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Abstract 
In obese individuals, low levels of leptin, an hormone regulating energy expenditure, have been 
claimed to be associated with neurodegeneration during ageing. Since leptin signalling system 
is less potent in the elderly, its protective anti-inflammatory effect in the brain is inhibited and 
people overweight in middle-age are at higher risk of developing dementia later in life. 
However, the causal association between obesity and cognitive decline has been inconsistent 
so far. We incorporated several metabolic and cognitive phenotypes from primary-care health 
records from European individuals in the UK Biobank to study comprehensively the genetic 
architecture of metabolic function and cognition. By GWAS analysis, we identified genetic 
loci in various traits associated with metabolic function and cognitive performance and 
investigated their genetic association by Mendelian Randomization. Importantly, we identified 
putatively causality amongst metabolism related traits and that higher adiposity is causally 
associated with a worse cognitive performance. We conducted a transcriptome-wide 
association study to identify regulatory effects of the susceptibility variants to pinpoint genes 
associated with gene expression changes. We integrated the GWAS results with transcriptome 
and single cell public data to identify tissues and cell types associated with the pathogenesis of 
metabolic dysfunction and cognition. Overall, this multi-omics approach have proven to be 
invaluable for demonstrating the causal association between adiposity and cognition and for 
the discovery of causal variants, genes, tissues and cell types underlying these phenotypes. 
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Introduction: 

Increases in life expectancy coupled with decreases in fertility rates worldwide are leading 

towards an aging society (WHO, 2020). As a person grows older, the cognitive functions can 

deteriorate leading to difficulties with a person’s processing, remembering and concentrating1. 

A certain baseline level of cognitive decline is normal during aging. However, when the 

cognitive impairment has become severe enough to compromise the ability to perform 

activities of daily life, dementia is diagnosed2,3. As the global population ages, more people 

will be affected by cognitive decline and more likely at risk to develop dementia4,5. According 

to recent reports, there are about 55 million people currently living with dementia and it is 

forecasted that cases will triple by 20506. This projected trend underscores the need for public 

health planning efforts and public policies to promote healthy aging and reduce the burden that 

an aging population is posing on society5-7. 

In addition to developing therapeutics, in order to develop pre-emptive strategies, it is very 

important to assess which are the modifiable risk factors that could potentially exacerbate, or 

reduce, one’s risk of developing dementia in later life8. Type 2 diabetes (T2D), hypertension, 

and obesity (i.e. metabolic traits) as well as depression, smoking and low educational 

attainment have been identified as exacerbating factors of dementia9-11. In particular, 

epidemiological studies have demonstrated that T2D can increase the risk of cognitive 

impairment and that patients with T2D are more likely to be diagnosed with dementia12-14. 

Furthermore, obesity, T2D and dementia share several biological features such as chronic 

inflammation, severe oxidative stress and impairment in insulin and energy metabolism13,15-17.  

 

Given this relationship among obesity, T2D, and dementia, understanding the mechanistic links 

among them is essential to developing effective strategies for  prevention and treatment of these 
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diseases18,19. Despite this strong observational evidence that T2D is associated with dementia, 

causality cannot be reliably established since these observational studies are prone to 

confounding effects and reverse causation. Mendelian Randomization (MR)  is an alternative 

approach to randomized clinical trials (RCTs) that can be utilised to determine causality by 

circumventing confounding effects and reverse causation20,21. MR is an epidemiological 

methodology which uses genetic variants, as instrumental variables (IVs), in order to determine 

causal relationship between a modifiable risk factor and an outcome20,22,23. Because of the 

random allocation of alleles at conception, genetic variants associated with a modifiable 

exposure are randomly distributed in relation to potential confounders. Furthermore, 

considering that the genotype inherited at birth stays constant throughout life, the possibility 

of reverse causation can be ruled out20,22,23. Importantly, in order to estimate direct causal 

effects, multivariable MR techniques can also be used to take into account of indirect effects 

due to “pleiotropy”, a widespread phenomenon in the genome by which a single SNP 

influences multiple traits24.  

Previous MR studies have assessed the causality between T2D, insulin sensitivity and fasting 

glucose on the risk of neurological diseases with contradictory results. Several studies did not 

find significant associations between metabolic factors and dementias25-27, while others 

identified significant associations between glycaemic traits and increased risk of dementia 

and/or cognitive decline28-31.  We conducted a GWAS analysis of traits related to metabolic 

function and cognitive performance in European individuals in the UK Biobank database and 

utilised the results to determine causality (Figure 1A-B). 

      

While these genome-wide associations utilised in MR analyses provide a useful framework for 

identifying putative susceptibility loci, they rarely identify causal genes, predominantly due to 

the complicated Linkage Disequilibrium (LD) structure of the genome, as well as  to the fact 
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that genetic variants can affect phenotype via distant regulation of gene expression32. In order 

to prioritise functionally relevant genes from Genome-Wide Association Study (GWAS) loci 

for follow-up studies, we integrated the GWAS results with expression Quantitative Trait Loci 

(eQTLs) from human skeletal muscle tissue (Figure 1A), which allowed us to discover genetic 

variants associated with transcriptional changes33. In addition, we utilised this multi-omics 

analysis to assess for pleiotropy. We performed functional mapping and annotation to further 

explore genetic variants and genomic loci in the pathogenesis of metabolic dysfunction and 

cognitive decline.  

Furthermore, the underlying cell types mediating predisposition to metabolic dysfunction 

remain largely obscure, despite identifying such cell types is a very important step towards a 

better understanding of mechanisms causing the disease34. 

For example, it has been recently reported that a dysregulation in specific adaptive immune 

cell types triggers the onset, development and progression of obesity and T2D35. As such, we 

integrated the GWAS results with public gene expression data in order to identify genes and 

cell types underlying susceptibility to obesity and cognitive health (Figure 1A). Overall, our 

multi-omics and MR analysis (Figure 1A) would provide important leads to better understand 

the pathogenesis of metabolic dysfunction and cognitive decline and to develop novel 

therapeutic targets for precision medicine. 

 

Results: 

Establishing causal association between obesity and cognitive 

functions 

We used genetic and phenotypic data from the UK Biobank Database (European cohort)36 to 

estimate the causal association between obesity and cognitive performance (Figure 1A-B). We 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.30.24307732doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.30.24307732
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

selected several metabolic and cognitive traits (Table S1) to cover as many as possible 

phenotypes. To have a comprehensive assessment of cognitive health status, we selected 

cognitive traits covering all the four major cognitive domains (episodic and working memory, 

executive function, processing speed and attention)37 (Table S1). We obtained a final list of 22 

traits (17 metabolic and 5 cognitive) (Table S1). For each trait, we performed a GWAS analysis, 

using both the entire population (sex-combined) or as individual sexes. Functional analysis of 

the sex-combined GWAS results confirmed that the significant hits (p-value < 5e-08) are 

involved in lipid metabolism and homeostasis (Supp. Fig. S1A). With the sex-split summary 

statistics, we built a Mendelian Randomization network (Figure 1B) by utilising an algorithm 

which allows to estimate direct causal effects not mediated by other measured factors38. Several 

associations were in line with previous epidemiological observations, with a few exceptions. 

Most of the direct causal associations (36/39) excluding some involving cholesterol and hip 

circumference showed an expected epidemiological association (Table S2). For example, an 

increase in waist circumference was causally associated with an increase in body fat 

percentage, glycated haemoglobin, hip circumference, triglycerides and a decrease in HDL 

(Figure 1B). Interestingly, an increase in body fat percentage was causally associated with a 

lower performance in the FIQ test (Figure 1B), assessing verbal and numerical reasoning 

(executive function domain). An increase in HDL was causally associated with a decrease in 

LDL and a higher number of digits remembered correctly in the working memory test and an 

higher time to correctly identifying matches in the reaction test assessing processing speed, 

was causally associated with an increase in waist circumference and weight (Figure 1B).           

 

Collectively, these results show a strong causal association amongst metabolic traits related to 

adiposity and that metabolic function, in particular adiposity, is causally associated with a 

worse performance in certain cognitive test (Figure 1B, Table S2).       
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Identifying pleiotropically causal genes in obesity and cognitive functions 

In order to identify and prioritize functionally relevant causal genes in obesity or cognitive 

functions, we integrated the genetic data with gene expression data (cis-eQTLs) and conducted 

a pleiotropic gene-trait association analysis by SMR-HEIDI39. In brief, by combining cis-eQTL 

data from a specific tissue with GWAS summary statistics of a single trait, the SMR test allows 

to assess whether the effect size of a SNP on that specific trait is mediated by gene 

expression39,40. Importantly, the test allows as well to discriminate if the observed association 

could be due to a single variant or alternatively two distinct genetic variants in high LD with 

each other (pleiotropy)33,39.  

We integrated the sex-combined GWAS summary statistics of the metabolic and cognitive 

traits with cis-eQTLs data from skeletal human muscle tissue obtained from the GTEx 

database41. We focused on skeletal muscle tissue in particular because obesity-linked insulin 

resistance is mainly due to fatty acid overload in non-adipose tissues, particularly skeletal 

muscle and liver42. Since 10282 eQTLs probes (1.000.905 SNPs) were included, the genome-

wide significance level (PSMR) is defined as 0.05/10282 = 5.0 × 10−6.  

We ran the SMR analysis with default settings (see methods). For the metabolic traits, we 

identified 140 significant probes tagging 82 unique genes which passed the PSMR threshold, 

whereas for the cognitive traits only 4 genes/probes showed significant association (Tables S3-

4).      

 

Since significant SMR results could also reflect linkage (i.e. the top associated cis-eQTL being 

in LD with two distinct causal variants, one affecting gene expression and the other affecting 

trait variation), for the significant probes with PSMR < 5.0 × 10−6, we conducted a HEIDI test. 

If a probe passes the HEIDI test (PHEIDI ≥ 0.05), it signifies that there is a single causal variant 
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affecting trait and gene expression (pleiotropy or causality), which is of more important 

biological interest and should be prioritized for follow-up studies. After application of the 

HEIDI test (PHEIDI ≥ 0.05), we retained 62 probes (60 metabolic, 2 cognitive) tagging to 39 

unique genes (37 metabolic, 2 cognitive) (Table S5). Functional analysis of these genes showed 

enrichment in lipid metabolism (Supp. Fig. S1B) and a Protein-Protein Interaction (PPI) 

network of these 39 genes showed strong evidence of interaction between some of those 

proteins, including those involved in lipid metabolism (Supp. Fig. S2A-B).      

Interestingly, several of the significant probes which passed the PSMR threshold (33/144), 

tagging 13 unique genes were located on a chromosome 16 region well known be associated 

in the pathogenesis of human obesity and neural development43-46 (Figure 2A-B, Table 1, Table 

S4).      

Table 1      

Most significant SMR probes in Europeans located on chromosome 16:      

      

BMI Body Mass Index, CHOL Cholesterol, HC Hip Circumference, BFM, Body Fat Mass, HDL High Density 

Lipoproteins, Chr Chromosome number, Allele Freq Allele Frequency, PeQTL p-value of the top associated cis-

eQTL of the probe, PGWAS GWAS p-value of the top cis-eQTL, PSMR p-value for gene-trait association from the 

SMR test, PHEIDI p-value from HEIDI test to indicate whether the gene-trait association is due to a single shared 

genetic variant (the smaller PHEIDI the more likely that there are more than one genetic variant).   

 

Trait Probe ID Gene Chr Top  SNP Allele Freq P eQTL P GWAS P SMR P HEIDI

BMI
CHOL
HC
HC
HC
BFM
HC
Weight
BMI
Weight
HDL
HC
HC

ENSG00000140718
ENSG00000040199
ENSG00000103510
ENSG00000260442
ENSG00000197165
ENSG00000158865
ENSG00000167397
ENSG00000149926
ENSG00000103550
ENSG00000176476
ENSG00000213398
ENSG00000251417
ENSG00000260911

FTO
PHLPP2
KAT8

RP11-22P6.3
SULT1A2
SLC5A11
VKORC1
FAM57B
KNOP1
CCDC101
LCAT

RP11-1348G14.4
RP11-196G11.2

16
16
16
16
16
16
16
16
16
16
16
16
16

rs1477196
rs1058750
rs9925964
rs8049439
rs4788084
rs2287783
rs2884737
rs9928448
rs62025019
rs480400
rs1134760
rs8049439
rs35468353

0.620664
0.832374
0.361484
0.405005
0.419946
0.195463
0.258031
0.466783
0.171962
0.543293
0.163383
0.405005
0.376089

1.71E-39
1.74E-10
1.45E-11
4.11E-10
9.81E-09
1.46E-07
9.17E-10
5.53E-08
8.49E-07
8.00E-08
2.09E-11
4.11E-10
4.05E-07

2.95E-12
6.47E-44
3.03E-23
4.53E-35
1.27E-61
9.03E-76
2.13E-16
2.51E-27
3.17E-94
2.12E-25
1.62E-11
3.16E-12
4.28E-31

7.03E-10
6.62E-09
2.35E-08
2.45E-08
6.01E-08
4.28E-07
9.14E-07
1.20E-06
1.68E-06
1.83E-06
2.03E-06
3.27E-06
3.44E-06

0.01348248
0.106604
0.2406833
0.04077817
0.003630415
0.4736134
0.3926019
0.004586464
0.00315066
0.02171162
0.000597045
0.04606859
0.01739528
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In addition, for those 144 probes, we detected high SMR signals as well on chromosomes 

1,2,6,11,19,20, which suggests an involvement of these chromosomes in the pathogenesis of 

human metabolic dysfunctions and neurological diseases as well (Table 2, Table S4).  

 

Table 2      

Top most significant SMR probes in Europeans located on chromosomes 1,2,6,11,19,20: 

 

LDL Low Density Lipoproteins, TRIG Triglycerides, HDL High Density Lipoproteins, HB glycated hemoglobin, 

HC Hip Circumference, Chr Chromosome number, Allele Freq Allele Frequency, PeQTL p-value of the top 

associated cis-eQTL of the probe, PGWAS GWAS p-value of the top cis-eQTL, PSMR p-value for gene-trait 

association from the SMR test, PHEIDI p-value from HEIDI test to indicate whether the gene-trait association is 

due to a single shared genetic variant (the smaller PHEIDI the more likely that there are more than one genetic 

variant)      

      

Conforming, in part, what was seen from the MR network, the only probes which passed the 

significant SMR threshold (PSMR < 5.0 × 10−6) for the cognitive traits, were detected for the 

Reaction Test (processing speed domain) (Table 3, Table S4).  

 

 

Trait Probe ID Gene Chr Top  SNP Allele Freq P eQTL P GWAS P SMR P HEIDI

LDL

TRIG

TRIG

LDL

LDL

TRIG

HDL

HDL

HDL

LDL

LDL

HB

HC

HB

TRIG

HDL

Weight

ENSG00000143126

ENSG00000115234

ENSG00000198522

ENSG00000110080

ENSG00000134222

ENSG00000149485

ENSG00000172247

ENSG00000100979

ENSG00000109919

ENSG00000175164

ENSG00000142252

ENSG00000179344

ENSG00000065060

ENSG00000232629

ENSG00000134824

ENSG00000134575

ENSG00000101019

CELSR2

SNX17

GPN1

ST3GAL4

PSRC1

FADS1

C1QTNF4

PLTP

MTCH2

ABO

GEMIN7

HLA-DQB1

UHRF1BP1

HLA-DQB2

FADS2

ACP2

UQCC1

1

2

2

11

1

11

11

20

11

9

19

6

6

6

11

11

20

rs7528419

rs715325

rs3749147

rs11220462

rs646776

rs174549

rs17788930

rs6065904

rs4752856

rs8176719

rs3178166

rs3828790

rs9462026

rs3828790

rs174538

rs2167079

rs4911179

0.22256

0.392272

0.252445

0.128581

0.777289

0.308738

0.348354

0.211698

0.35156

0.346567

0.494128

0.609058

0.327944

0.609058

0.315157

0.298227

0.626121

2.23E-76

7.11E-87

6.86E-18

2.38E-47

4.83E-14

2.79E-19

1.36E-41

4.45E-22

1.40E-33

1.70E-86

3.74E-52

0

4.31E-79

3.19E-117

7.00E-15

1.00E-20

2.15E-36

1.12E-121

6.55E-26

1.17E-53

1.15E-16

1.23E-122

5.26E-31

1.82E-16

1.31E-24

5.77E-17

3.15E-13

4.21E-14

1.06E-11

3.64E-12

1.06E-11

2.13E-29

5.44E-17

9.61E-13

8.55E-48

1.55E-20

5.37E-14

6.48E-13

7.08E-13

1.30E-12

2.05E-12

2.11E-12

6.02E-12

8.16E-12

1.34E-11

2.05E-11

7.01E-11

7.06E-11

1.53E-10

4.52E-10

5.33E-10
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Table 3      

SMR probes for the cognitive traits in Europeans which passed the SMR threshold:      

 

RT Reaction Test, Chr Chromosome number, Allele Freq Allele Frequency, PeQTL p-value of the top associated 

cis-eQTL of the probe, PGWAS GWAS p-value of the top cis-eQTL, PSMR p-value for gene-trait association from 

the SMR test, PHEIDI p-value from HEIDI test to indicate whether the gene-trait association is due to a single shared 

genetic variant (the smaller PHEIDI the more likely that there are more than one genetic variant)      

      

Functional analysis of the 86 genes shows that the most of the significant hits in GO enrichment 

analysis are involved in MHC protein complex assembly, peptide assembly, antigen binding, 

Endoplasmic Reticulum (ER) biology (Figure 3A). KEGG enrichment analysis showed 

significant association with allograft rejection, Type II diabetes, Graft-versus-host disease, 

autoimmune thyroid disease (Figure 3A). Reactome pathway analysis showed  immunological 

synapse as top hit (Figure 3A). Wikipathways analysis showed that top hit was Ebola virus 

infection in host (Figure 3A). Overall, these functional results mainly point towards a 

prominent role of the immune system in the metabolic dysfunction  and neurological diseases 

(Figure 3A).      

      

Identification of tissue and cell types underlying susceptibility to obesity and 

cognitive functions  

Previous reports have detected an exclusive enrichment of BMI GWAS variants in brain 

tissue47. In order to replicate this and to extend it to other metabolic and cognitive traits, we 

performed tissue enrichment analysis of the GWAS summary statistics with a slightly relaxed 

Trait Probe ID Gene Chr Top  SNP Allele Freq P eQTL P GWAS P SMR P HEIDI

RT
RT
RT
RT

ENSG00000260075
ENSG00000176681
ENSG00000073969
ENSG00000228696

NSFP1
LRRC37A

NSF
ARL17B

17
17
17
17

rs35732828
rs35732828
rs35732828
rs35732828

0.160345
0.160345
0.160345
0.160345

6.58E-62
2.60E-29
2.28E-25
1.96E-21

5.58E-09
5.58E-09
5.58E-09
5.58E-09

3.80E-08
2.29E-07
3.67E-07
6.72E-07
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threshold (p-value < 5e-05). We observed strong association of BMI in brain tissues, especially 

in the frontal cortex, in addition to Body Fat Mass and Percentage (Figure 3B).  

Cell-type-specific enrichment analysis (CSEA)48 of the BMI GWAS summary statistics in the 

Europeans, showed strong association with inhibitory and limbic system neurons (Figure 4A).  

In addition, we performed a cell type enrichment analysis48 of the 86 genes which passed the 

SMR threshold in the Europeans. We identified macrophages, oligodendrocytes and mucus 

secreting cells as top 3 cell types based on combined p-values (Figure 4B). For the 62 probes 

which passed the HEIDI cut-off, we identified gastric chief cells, fasciculata cells and 

oligodendrocytes as top 3 hits based on combine p-values (Figure 4C).  

 

Discussion: 

In this study, we carried out a multi-omics and genetic approach to investigate the causality 

between metabolic-related risk factors potentially linked to the development of dementia later 

in life (Figure 1). In particular, we used a network based Mendelian randomization analysis38 

to estimate the bidirectional effects of metabolic and cognitive health in Europeans (Figure 

1B). In line with previous studies30,31, we did not find evidence of causal association between 

certain glycaemic traits (e.g. glucose, glycated haemoglobin) with cognition (Figure 1B). 

Instead,  we detected direct causal associations with traits which are more related to adiposity 

and lipid metabolism such as HDL and fat mass, and body shape traits such weight/waist 

circumference (Figure 1B). This is in agreement with a recent MR study assessing causality 

between abdominal adiposity and cognition in different human populations49. These results 

point towards a direct causal role of adiposity on cognitive decline as previously suggested27,50. 

In addition, in our MR analysis, we detected metabolic traits negatively influencing cognitive 

health and cognitive traits negatively influencing obesity (Figure 1B, Table S2). Indeed, there 

is evidence that metabolic-related cognitive decline is likely not just a consequence of the 
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downstream effects of excess adipose tissue and insulin resistance, but a cause as well50 . This 

results in a “vicious cycle” where lower cognitive abilities perpetuate metabolic dysfunction, 

which in turn perpetuate cognitive decline through the lifespan50,51. 

As previously suggested by other reports, our tissue enrichment analysis of the top GWAS hits 

(Figure 3B) confirms that susceptibility to metabolic dysfunction is distributed across 

numerous brain areas that receive signals emanating from internal or external stimuli acting in 

concert to regulate feeding behaviour and energy metabolism47,52. In particular, these results 

confirm that susceptibility genes for common metabolic dysfunction may have an effect on 

eating addiction and reward behaviours through their high expression regions of the brains 

related to addition and reward such as the frontal cortex and the anterior cingulate cortex, in 

contrast to different pattern from monogenic obesity genes that act in the hypothalamus and 

cause hyperphagia52.  

In addition, our cell type analysis of GWAS and SMR-HEIDI hits (Figure 4A-C) to investigate 

the identity of cell types that drive susceptibility to human metabolic dysfunction has shown 

strong association with different types of neurons as compared to other cell types. These results 

further suggest that this disfunction is distributed across multiple, mainly neuronal, cell types 

across the brain, thus acting on a more broadly distributed set of neuronal circuits across the 

brain.  

 

We integrated the GWAS summary statistics with eQTLs data of skeletal muscle tissue by 

SMR and identified many reported and novel functionally relevant genes in metabolic 

functions and neuronal development in Europeans (Tables S3-S5).  

Regarding the top hits in our SMR analysis of the Europeans, the top most significant hit was 

detected on the CELSR2 gene (Supp. Fig. S3A, Table S4). This gene encodes a cadherin 

protein with a main function in neuronal development53, but recently found to have a role in 
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lipid homeostasis as well54. Furthermore, it has been found associated with cardiovascular 

diseases in the gene cluster CELSR2–PSRC1–SORT155. Indeed, we detected significant signal 

on PSCR1 as well (Supp. Fig. S3A, Table S4). Instead, our second top hit was detected on the 

SNX17 gene (Supp. Fig. S3B, Table S4), recently found associated with cardiovascular 

diseases56. The gene belongs to the sorting nexin (SNX) family which consists of a diverse 

group of cytoplasmic and membrane-associated proteins orchestrating the process of cargo 

sorting57. Interestingly, it has been previously reported that SNX17 can regulate the trafficking 

of the ApoER2 receptor, member of the LDL-R family, which participates in neuronal 

migration during development58.  

 

The majority of the significant SMR probes (33/144) (Table S4) were mapped to chromosome 

16 (Figure 2A-B, Table S2), known to be associated with both obesity and neurodevelopmental 

disorders43,46,59. In particular, rearrangements on chromosome 16 including a proximal ~200-

kb deletion and a distal ~600-kb deletion are seen in patients with the 16p11.2 deletion 

syndrome60,61. People with this disorder have developmental delay and intellectual disability 

and they are also at increased risk of obesity compared with the general population45,46,61. For 

example, the distal deletion carries the SH2B1 gene, a mediator of energy homeostasis, which 

is involved in leptin and insulin signalling43,59. We detected SMR signals with high significance 

and with suggested significance on several genes included in these deleted regions such as 

LAT, INO80E, FAM57B, TBX6, YPEL3, MAPK3, RP11-22P6.3, RP11-196G11.2 and 

BOLA2 (Figure 2A, Tables S3-S4). For example, confirming a connection between the 

immune system and metabolic function, the LAT (linker for activation of T cells) adaptor 

molecule participates in AKT activation and plays an important role in the regulation of 

lymphocyte maturation, activation and differentiation62. Instead, FAM57B is a gene which 

regulates adipogenesis by modulating ceramide synthesis and its haploinsufficiency 
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contributes to changes in neuronal activity in the brain through its crucial role in lipid 

metabolism63.  

We also detected significant signals on reported and novel genes on the regions flanking those 

deletions. For example, a well-studied gene is the Lysine Acetyltransferase KAT8 (Figure 2A). 

KAT8 is an important gene reported to be involved in both metabolism, being a critical 

regulator of central carbon metabolism, and neuron development as well64,65. Some of the novel 

significant associations are the HSD3B7 gene, which encodes an enzyme involved in the initial 

stages of the synthesis of bile acids from cholesterol, the Warfarin target gene VKORCl, 

involved in vitamin K metabolism and the two sulfotransferase SULT1A1 and SULT1A2, 

involved in resveratrol metabolism in adipocytes (Fig 2A). We are also detected signals on 4 

long non coding RNAs (lncRNA), RP11-1348G14.4, RP11-22P6.3, RP11-196G11.2, RP11-

347C12.2 (Figure 2A-B) supporting recent evidence recognizing them as contributing 

intermediates in obesity and inflammation66. 

In addition, the top most significant SMR signal on chromosome 16 was detected on the well-

known Fat Mass and Obesity-Associated Protein (FTO) gene which has been linked to obesity 

and altered connectivity of the dopaminergic neurocircuitry, being highly expressed in the 

hypothalamus67 (Figure 2B, Table S4). For this gene, we detected a specific association with 

BMI confirming what previously reported47. Previous studies reported that FTO variants are 

influencing gene expression levels of downstream genes in the brain such as IRX368,69, a gene 

that plays a role in an early step of neural development, rather than FTO gene expression levels. 

In our analysis, we detected a very strong co-localization of GWAS signal with gene expression 

in the skeletal muscle (Figure 2B), thus pointing to a different mechanism of FTO gene 

regulation between skeletal muscle tissue and the brain. The second top most significant SMR 

signal on chromosome 16 was detected on the PHLPP2 gene, a phosphatase shown to be 
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increased during obesity leading to lipid accumulation and glucose dysfunction70. In line with 

this, we detected a specific gene-trait association with LDL and cholesterol (Table S4). 

Similarly to chromosome 16, microdeletions on chromosome 11 have been associated with 

obesity and developmental delay as well71. Indeed, we detected many top hits on chromosome 

11 as well (Table 2, Table S4). For example, in line with a previous study showing association 

of the ST3GAL4 gene with plasma concentration levels of triglycerides and LDL in 

Europeans72, we detected highly significant SMR association of this gene with LDL (Supp. 

Fig. S3D, Table S4). Whereas, confirming the evidence that altered activities in 

polyunsaturated fatty acids (PUFAs) metabolism are seen in obesity and a number of chronic 

diseases73, we detected highly significant SMR signals on the FADS1 and FADS2 genes (Supp. 

Fig. S3C, Table S4), encoding key enzymes in PUFA metabolism.  

Regarding the cognitive traits, we detected significant gene-trait associations with the Reaction 

Test (Table S5) on a gene cluster on chromosome 17 which includes the N-ethylmaleimide-

sensitive factor (NSF) gene, which is highly expressed in the amygdala and it has been 

suggested to be linked with molecular mechanisms related with memory formation74 and two 

genes (ARL17B, LRRC37A) involved in the pathogenesis of the Koolen-De Vries 

Syndrome75,  a developmental delay disorder in children characterised by intellectual disability. 

Interestingly, the Koolen-De Vries Syndrome is characterised by 17q21.31 microdeletions, the 

same region where we detected high SMR signal, and by truncating variants of the KAT8 

regulatory NSL complex unit 1 (KANSL1) gene, which falls as well in the deleted region. 

KANSL1 is known to be part of the non-specific lethal (NSL) complex, which regulates global 

transcription by histone modification76. The complex includes several proteins including KAT8 

on chromosome 16, on which we also detected high SMR signal as aforementioned (Figure 

2A). This points to an important role of epigenetics integrity in both adipogenesis and neuronal 

development as recently reported77,78.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.30.24307732doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.30.24307732
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Overall, our functional analysis of the SMR results (Figure 3A) is in agreement with the fact 

that metabolic function is associated with increased MHC class II antigen presentation in 

adipocytes, which leads to increased proinflammatory T-cell activity in adipose tissue79. This 

generalized inflammation in adipocyte characterized by alteration in lipid metabolism would 

result in a dysregulation of glucose metabolism which ultimately may impact as well cognitive 

functions80. 

Finally, our cell-type specific enrichment analysis (CSEA) of the SMR results, supports the 

existence of a “gut–brain axis” which includes interactions through the nervous system, and 

mutual crosstalk with the immune and the endocrine systems as previously reported81,82. 

Conclusions 

In conclusion, this study provided novel insights into the genetic architecture of metabolic 

dysfunction and highlighted its putative causal relationship with cognitive decline. Results in 

this study can contribute to developing biomarkers, identifying drug targets and may have 

significant implications for global public health policies providing dietary recommendations 

for the management of obesity which may lead of lowering the risk of developing dementia 

during ageing. 

Materials and Methods: 

Study Cohorts 

Established with the aim of discovering genetic and non-genetic contributors to human 

diseases, the UK Biobank is a very large prospective cohort initiated in 2006 with an ongoing 

follow-up, including more than 500.000 participants living in the UK83,84. The cohort comprises 

people aged between 40-69 years with a 0.84 male/female ratio83. The majority of participants 
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(94.6%) are of white British ethnicity, whereas the rest are South Asians and Black 

individuals83. Recruitment of the participants was based on proximity to assessment centres. 

Participants gave informed consent and provided detailed demographic, socioeconomic, 

lifestyle and health-related data via a touchscreen questionnaire, including medication history. 

As previously described, participants then underwent a large range of physical and biological 

assessment measures, including repeated blood pressure measurements, height and weight, 

from which BMI was derived, accelerometery and neuroimaging visits83,85; in addition to urine, 

saliva and blood collection for biomarker and genetic assessments as previous84,86.  

Genotyping has been performed using the Affymetrix UK BiLEVE Axiom array on an initial 

50,000 participants and the remaining 450,000 participants have been genotyped using the 

Affymetrix UK Biobank Axiom array83. Details of the quality control measures, imputation 

and reference genome utilised were described as previously83. 

Furthermore, cognitive tests have been administered at several time points to UK Biobank 

participants. These tests were developed specifically for UK Biobank, to enable computerized 

administration at scale without staff involvement, and are thus non-standardized. As previously 

described85, a battery of several baseline and follow-up cognitive tests were administered in 

English language to participants; covering four major cognitive domains (episodic and working 

memory, executive function, processing speed and attention).   

 

Genetic Data Pre-processing 

In order to run the MR analysis of the individuals with European ethnicity, we obtained 

genotype calls of more than 400.000 individuals, available following UK Biobank 2022 

release, after centrally performing quality control (QC) procedures and imputation83,87. From 

these individuals, in order to avoid population stratification, we excluded participants with non-

European ancestry. We removed from the analysis individuals for which a genetic kinship to 
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other participants of at least one relative was identified, individuals with a missingness > 10% 

and with an heterozygosity ±3 SD from the mean. In addition, we removed individuals for 

which gender information was ambiguous or incorrect. After applying these filters, genotype 

calls of 261.089 individuals remained. The genotype calls consisted of 140.180 females and 

120.909 males. Further stringent QC filters were applied using PLINK v.1.988. Markers with a 

call rate < 95% (--geno 0.05), or those deviating from Hardy-Weinberg equilibrium 

(Bonferroni-corrected p-value threshold = 0.001) were removed. We filtered out rare variants 

(--maf 0.01) and we set a minor allele count (--mac) cut-off equal to 3.  

 

Genome-wide association study (GWAS) analysis 

We estimated genome wide associations (GWAS) for several quantitative or binary metabolic 

and cognitive phenotypes obtained from the UK Biobank (Table S1), by fitting mixed-effects 

regression models accounting for population stratification and relatedness using REGENIE 

v2.089. After QC procedures, the Genotype calls of the female dataset included 587.951 SNPs, 

the male dataset included 591.769 SNPs and the one altogether 577.742 SNPs. To run the 

GWAS analysis of the Genotype calls, we included as covariates: sex (when required), age, 

age2 and 10 ancestry-informative principal components (PCs) derived from the analysis of LD-

pruned (200 variant windows, 100 variant sliding window and r2 < 0.2) common variants (--

maf 0.01) from Genotype calls, as well 10 principal components derived from the analysis of 

LD-pruned (200 variant windows, 100 variant sliding window and r2 < 0.2) rare variants from 

the Genotype calls with a frequency in between a minor allele count of 3 (--mac 3) and 1% (--

max-maf 0.01), in order to further avoid population stratification. We obtained PCA values by 

PLINK v2.088. To run REGENIE, we used the female, male or altogether as input in step 1, in 

which the whole genome regression model is fit to the traits, and a set of genomic predictions 

are produced as output. The predictions are then used in step 2 where the association model 
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was performed by including the aforementioned covariates. We run GWAS analysis on 

females, males or altogether.  

 

Mendelian Randomization (MR) Network analysis 

We built the MR networks by the R package “bimmer” as previously described38. Briefly, to 

run “bimmer”, we used the male GWAS summary statistics for SNP selection and weight 

estimation, whereas the female GWAS summary statistics were used for model fitting. Initially, 

we performed pre-processing steps where we clumped the male GWAS summary statistics to 

p = 0.05 with r2 < 0.05 and distance of 500 kilobases by PLINK 1.988. The clumped SNPs 

were then utilized to select SNPs in the female GWAS summary statistics by using a “p_thresh” 

value of 0.05. We used the “egger_w” method to calculate a total causal effect (TCE) matrix 

on the female summary statistics by utilising the selected SNPs from the male dataset. 

Subsequently, we filtered the TCE matrix to remove problematic phenotypes with the 

parameters max_SE = 0.9 and  max_nan_perc = 0.9. Then, we converted the TCE matrix to a 

direct causal effect (DCE) matrix. To do this, we constructed at first weights with a 

max_min_ratio equal to 1000. Finally, we used the fit_inspire() function to fit the DCE matrix 

and then we obtained the estimate of the DCEs at the selected index which was used to build 

the network by ggnet238. 

 

Pleiotropy analysis 

We conducted an SMR&HEIDI analysis with the SMR software as previously described. 

(https://yanglab.westlake.edu.cn/software/smr/)33. To run this analysis, we utilised GWAS 

summary statistics obtained previously for the European individuals as outcome. We 

performed SMR analysis on the sex-combined for participants of European ancestry, using 
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eQTL data as exposure. We downloaded the lite version of V8 release (n = 73-670)  eQTLs 

summary statistics (only SNPs with P < 1e-5 were included) obtained from the GTEx 

Consortium41 for European individuals. We adopted the default settings in SMR (e.g., peqtl-

smr = 5.0e-8,  peqtl-heidi = 1.57e-3, diff-freq = 0.2, diff-freq-prop = 0.05, cis-window = 2000 

kb, minor allele frequency [MAF] > 0.01, removing SNPs in very strong linkage disequilibrium 

[LD, r2 > 0.9] with the top associated eQTL, and removing SNPs in low LD or not in LD [r2 

less than 0.05] with the top associated eQTL).  

We also conducted the heterogeneity in dependent instruments (HEIDI) test to evaluate the 

existence of linkage in the observed association33.  

We performed functional enrichment analysis with the R packages gprofiler290 and 

clusterProfiler91 with Bonferroni correction. We built a PPI network with the online database 

STRING v11.5 (https://string-db.org/)92. 

 

Integration with RNA-seq Public Data 

We performed a tissue enrichment analysis of the sex-combined GWAS summary statistics of 

the metabolic and cognitive traits, with the deTS R package93. To run the enrichment analysis, 

phenotypes with less than 20 genes were excluded and we utilised bulk RNA-seq gene 

expression data from the GTEx database41.  

We performed a cell-type-specific enrichment analysis (CSEA) of the sex-combined GWAS 

summary statistics of the metabolic and cognitive traits with the online web-based application 

WebCSEA48, which contains a total of 111 single cell RNA-seq (scRNA-seq) panels of human 

tissues across 11 human organ systems. 

Code and Data Availability Statement 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.30.24307732doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.30.24307732
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

The UKBB phenotypic data and genetic data analysed during the current study are available 

from UK Biobank. GWAS pre-processing and analysis was performed on the UK Biobank 

Research Analysis Platform (RAP) following UK Biobank coding guidelines 

(https://dnanexus.gitbook.io). Bimmer is implemented as an open-source R package available 

at https://github.com/brielin/bimmer. The deTS tissue enrichment tool is implemented as an 

open-source R package available at https://github.com/bsml320/deTS. 

Online resources 
UK Biobank   https://www.ukbiobank.ac.uk/  

https://dnanexus.gitbook.io 

SMR https://yanglab.westlake.edu.cn/software/smr/ 

g:Profiler https://biit.cs.ut.ee/gprofiler/gost 

WebCSEA https://bioinfo.uth.edu/webcsea/ 

STRING https://string-db.org/ 
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Figure Captions. 
 
Figure 1. (A) Summary of the workflow conducted in this study. (1) GWAS analysis was 
performed on genetic and phenotypic data of individuals with European ancestry obtained from 
UK Biobank database. (2) The GWAS results were then utilized to determine causality by 
Mendelian Randomization (MR). Subsequently, GWAS were integrated with eQTLs gene 
expression data in skeletal muscle of individual of European ancestry to perform pleiotropy 
analysis (3). Finally, GWAS were integrated with bulk RNA-seq public data to perform tissue 
enrichment analysis (4) and with single cell RNA-seq public data to perform cell-type specific 
analysis (5). (B) Mendelian Randomization Network (MRN) of metabolic (blue) and cognitive 
(red) traits in Europeans. Single-headed arrows indicate direct causal effects. Bi-directional 
double-headed arrows indicate that traits causally influence each other.  
Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Low Density Lipoproteins 
(LDL), High Density Lipoproteins (HDL), Waist Circumference (WC), Hip Circumference 
(HC), Cholesterol (CHOL), Triglycerides (TRIG), Body Mass Index (BMI), Glycated 
Hemoglobin (HB), Fat Mass (FM), Total Fat (TF), Total Fat Percentage (TFP), Visceral 
Adipose Tissue Volume (VATV), Visceral Adipose Tissue Mass (VATM), Abdominal 
Adipose Tissue Volume (AATV), Body Fat Mass (BFM), Body Fat Percentage (BFP), 
Working Memory (WM), Episodic Memory (EM), Fluid IQ (FIQ), Reaction Test (RT), Visual 
Attention Test (VAT). GWAS genome-wide association study, SMR summary data-based 
Mendelian randomization, eQTL expression quantitative trait loci. 
 
Figure 2. (A) SMR plot of the K(lysine) acetyltransferase 8 (KAT8) locus for the Hip 
Circumference (HC) GWAS trait in Europeans. (B) SMR plot of the Fat mass and obesity-
associated (FTO) locus for the Body Mass Index (BMI) GWAS trait in Europeans. On the y-
axis at the top, -log10(P values) for SNPs reported in this GWAS meta-analysis are represented 
by grey dots and rhombuses represent the P-values for probes from the reverse SMR test. Solid 
rhombuses are indicating that the probes passed the HEIDI test and hollow rhombuses 
indicating that the probes did not pass the HEIDI test. The red dashed line indicates significant 
pSMR threshold in the SMR test. In the middle plot, magenta x-crosses represent the cis-eQTL 
-log10(P values) of SNPs associated with gene expression in skeletal muscle (GTEx). Bottom 
plot, yellow arrows indicate genes over the genome positions in hg38 (x-axis). GWAS genome-
wide association study, SMR summary data-based Mendelian randomization, HEIDI 
heterogeneity in dependent instruments, eQTL expression quantitative trait loci, GTEx 
Genotype-Tissue Expression. 
 
Figure 3. (A) Graphical representation of the gProfiler Gene Ontology (GO) analysis of the 86 
unique significant genes detected in the SMR analysis which passed the SMR threshold (PSMR 
< 5.0 × 10−6 ) for the European individuals. Top significant results based on adjusted p-values 
for Gene Ontology (GO) and pathways enrichment were selected and highlighted in black 
borders. GO molecular function (GO:MF); GO biological process (GO:BP); GO cellular 
component (GO:CC); Kyoto encyclopedia of genes and genomes (KEGG); Reactome (REAC); 
WikiPathways (WP); CORUM Protein Complexes (CORUM); Human Phenotype Ontology 
(HP). (B) Tissue Enrichment analysis of the GWAS summary statistics for the Europeans. 
Traits are on the x-axis and tissue types on the y-axis. Dark red indicate high enrichment. 
Numbers inside the red boxes indicate top 3 most associated tissues. Gene expression data in 
various tissues based on Genotype-Tissue Expression (GTEx) database. Systolic Blood 
Pressure (SBP), Low Density Lipoproteins (LDL), High Density Lipoproteins (HDL), Waist 
Circumference (WC), Hip Circumference (HC), Cholesterol (CHOL), Triglycerides (TRIG), 
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Body Mass Index (BMI), Glycated Hemoglobin (HB), Body Fat Mass (BFM), Body Fat 
Percentage (BFP), Working Memory (WM), Reaction Test (RT), Visual Attention Test (VAT).  
 
 
Figure 4. (A) Jitter plot of the cell-type-specific enrichment analysis (CSEA) for the top 
significant genes detected in the GWAS analysis for the Body Mass Index (BMI) in Europeans. 
(B) Jitter plot of the cell-type-specific enrichment analysis (CSEA) for the 86 SMR significant 
genes in the Europeans. (C) Jitter plot of the cell-type-specific enrichment analysis (CSEA) for 
39 HEIDI significant genes in Europeans. Red dashed line indicates Bonferroni-corrected 
significance threshold (P = 3.69 × 10–5). The grey solid line indicates the nominal significance 
(p = 1 x 10^-3). Each dot represents one tissue-cell type in the group on the x-axis differentiated 
by colours. Results based on combined p-values. Top 5 general cell types are highlighted. 
 
Fig S1. (A) Plot of the gProfiler ontology analysis of the significant GWAS hits for both the 
metabolic and cognitive traits which passed the threshold (p-value < 5e-08) for the European 
individuals. (B) Plot of the gProfiler ontology analysis of the 39 unique significant genes that 
passed both the SMR and HEIDI test in the SMR analysis for the European individuals. GO 
molecular function (GO:MF); Kyoto encyclopedia of genes and genomes (KEGG); Reactome 
(REAC); WikiPathways (WP); CORUM Protein Complexes (CORUM). 
 
Fig S2. (A) Protein-Protein Interaction (PPI) network generated by STRING database of the 
39 unique significant genes which passed both the SMR and HEIDI threshold in Europeans. 
(B) Jitter plot of the cell-type-specific enrichment analysis (CSEA) for the GWAS significant 
genes detected in the Reaction Test (RT) trait of the Europeans individuals. Red dashed line 
indicates Bonferroni-corrected significance threshold (P = 3.69 × 10–5) by 1355 TCs. The grey 
solid line indicates the nominal significance (p = 1 x 10^-3). Each dot represents one tissue-
cell type in the group on the x-axis differentiated by color. Results based on combined p-values.  
 
 
Fig S3. (A) SMR locus plot of the CELSR2 locus for the Low-Density Lipoproteins (LDL) 
trait in Europeans. (B) SMR locus plot of the SNX17 locus for the Triglycerides (TRIG) trait 
in Europeans. (C) SMR locus plot of the FADS2 locus for the Triglycerides (TRIG) trait in 
Europeans. (D) SMR locus plot of the ST3GAL4 locus for the Low-Density Lipoproteins 
(LDL) trait in Europeans. On the y-axis, P-values for SNPs reported in this GWAS meta-
analysis are represented by grey dots and diamonds represent the P-values for probes from the 
reverse SMR test. Magenta crosses in the middle plot represent the cis-eQTL P-values of SNPs 
associated with gene expression in skeletal muscle (GTEx). Bottom yellow arrows indicate 
genes over the genome positions in hg38 (x-axis). 
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