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Abstract
Head and neck cancer is a common disease and is associated with a poor prog-
nosis. A promising approach to improving patient outcomes is personalized
treatment, which uses information from a variety of modalities. However, only lit-
tle progress has been made due to the lack of large public datasets. We present a
multimodal dataset, HANCOCK, that comprises monocentric, real-world data of
763 head and neck cancer patients. Our dataset contains demographical, patho-
logical, and blood data as well as surgery reports and histologic images. We
show its potential clinical impact in a multimodal machine-learning setting by
proposing adjuvant treatment for previously unidentified risk patients. We found
that especially the multimodal model outperformed single-modality models (area
under the curve (AUC): 0.85). We believe that HANCOCK will not only open
new insights into head and neck cancer pathology but also serve as a major
source for researching multimodal machine-learning methodologies in precision
oncology.
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Introduction1

Head and neck cancer is the seventh most common malignancy worldwide [1]. Patients2

diagnosed with head and neck cancer have a poor prognosis [2]. Despite recent3

advances in diagnostics and treatments, such as immunotherapy, the 5-year survival4

ranges only between 25% and 60% [3]. The most common head and neck cancer devel-5

ops in several locations, e.g. the oral cavity, pharynx, or larynx, and is derived from6

squamous cells, i.e. originates from the mucosal epithelium lining the inner areas of7

these sites. The cancer often spreads to regional lymph nodes, which further worsens8

the prognosis of affected patients [4].9

After assessing the medical history and physical examination, a panendoscopy10

with biopsy is usually performed to confirm the diagnosis. The pathological analysis11

of tissue samples is crucial for determining the histological entity. Additionally, lymph12

nodes are examined for possible metastases. Surgery is one of the most important13

pillars of treatment for head and neck cancer. Local surgery is often sufficient for lower-14

stage cancer, while adjuvant treatment such as radiotherapy or radiochemotherapy is15

required for higher stages [5]. Despite many advances in diagnostics, the treatment16

choice still depends mainly on the stage of the disease that is mainly determined by the17

size of the tumor [5, 6]. However, research showed that cancer is highly diverse among18

patients [7] and therefore requires precision oncology. The key to this personalized19

treatment is the establishment of reliable and predictive biomarkers. Initiatives such20

as The Cancer Genome Atlas (TCGA) have already achieved a better understanding21

of the genetic and molecular characteristics of many types of cancer [8].22

However, very few biomarkers are currently used in routine head and neck cancer23

treatment. A positive prognostic biomarker is the association with human papillo-24

mavirus (HPV) in oropharyngeal carcinomas [9]. Ongoing research aims to explore if25

their treatment can be de-escalated to reduce toxicity [10]. Furthermore, the expres-26

sion of programmed death ligand 1 (PD-L1) can be assessed to identify patients who27

may benefit from immune checkpoint inhibitors such as pembrolizumab, and remains28

the only applied predictive biomarker for now [11]. However, more reliable biomarkers29

need to be established to enable a truly personalized treatment. Although information30

from a large variety of sources is routinely acquired, its full potential cannot be real-31

ized for data-driven exploration yet. Careful data curation and multimodal integration32

are required to unravel complex data dependencies. We hypothesize that a lack of33

such large, multimodal, publicly available datasets hinders the research of predictive34

biomarkers for head and neck oncology.35

To our knowledge, existing head and neck cancer datasets only have a lim-36

ited number of cases or have inconsistent metadata [12–15]. For example, a study37

focusing on radiomics included data from 288 cases while only selecting oropharyn-38

geal carcinomas [15]. Another dataset focusing on proteomics includes radiology and39

histopathology data but is limited to 122 cases [13]. Comprehensive data including40

clinical, genomic, and histopathologic data has been collected on TCGA from more41

than 500 cases to date, however, the multicenter data is very heterogeneous [12, 16].42

To address these issues, we collected monocentric, retrospective data from more43

than 700 head and neck cancer patients. We built a comprehensive dataset from multi-44

modal data including demographics, blood data, surgery reports, pathologic data, and45
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histologic images. These include Whole Slide Images (WSIs) with routine hematoxylin46

and eosin (HE) staining and Tissue Microarrays (TMAs) with staining for several47

immune cell populations. In this work, we aimed to explore and provide reproducible48

strategies for multimodal integration and analysis. We aimed to predict patient out-49

comes and investigate adjuvant treatment choices using multimodal Machine Learning50

(ML) strategies to show the impact of multimodal data integration for head and neck51

oncology.52

Results53

Compilation of a multimodal dataset from a head and neck54

cancer cohort55

Patient diagnoses and treatment decisions are rarely based on a single modality;56

hence, artificial intelligence (AI) models intended to assist clinicians should adopt a57

holistic approach, incorporating multiple data sources. Training such models requires58

extensive and diverse patient data, which is often scarce. To address this, we have59

aggregated a comprehensive dataset, HANCOCK (Head And Neck Cancer dataset),60

which consists of real-world data from 763 patients. In detail, we collected, cleaned,61

and harmonized routinely acquired monocentric data from patients diagnosed with62

oral cavity, oropharyngeal, hypopharyngeal, and laryngeal cancer. We integrated dif-63

ferent modalities including demographics, blood data, pathology reports, surgery64

reports, and histologic images, as shown in Figure 1A. We provide an overview and65

easy, public access to the individual patient data for convenient manual exploring at66

www.hancock.research.fau.eu with support of the FAUDataCloud.67

A core strength of HANCOCK is its rich base of imaging data: HE-stained WSIs68

of the primary tumor are available for 701 out of 763 patients. We provide also manual69

annotations of tumor regions in these WSIs, as shown in Supplementary Fig. S1. In70

addition, 396 HE-stained slides of adjacent lymph nodes were included. Each patient71

contains at most 32 TMAs, which reflect two cores, eight stains, and two locations.72

Each core is stained with either HE or immunohistochemistry (IHC) markers, such as73

CD3 and PD-L1. Figure 1B shows exemplarily the available imaging data for a single74

patient. For each patient, the pathology report was included in a structured format.75

These cover tumor characteristics such as the primary site or grading (see Figure 1E)76

crucial for selecting a suitable treatment. Additional characteristics such as tumor77

staging, resection margin, and infiltration depth are summarized in Supplementary78

Fig. S2.79

As shown in Figure 1C, 80% of the patients in the dataset are males and 72%80

are former or current smokers. The median age is 61 years. Thus, our patient cohort81

reflects the current demographics of head and neck cancer [1], which is beneficial for82

generalizing our findings to a broader population. The laboratory data includes the83

complete blood count as well as coagulation parameters, electrolytes, renal function84

parameters, and C-reactive protein. Figure 1D shows for how many patients the indi-85

vidual parameters are available and how many of the measured blood parameters are86

in the normal or abnormal range.87
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Fig. 1 Overview of the multimodal head and neck cancer dataset. (A) Data sources. For cancer
diagnosis, demographics were assessed and blood tests were performed. In the ablative surgery, tissue
samples were obtained and the pathological report was written. The dataset also features information
about the treatment choice, events, and survival. (B) Image data of a patient. Shown are Whole Slide
Images of the primary tumor and lymph node with hematoxylin and eosin (HE) staining and Tissue
Microarray cores from the tumor center and invasion front with HE and immunohistochemistry (IHC)
staining. (C) Demographical data, shown as the number of patients per sex, smoking status, and age
at initial diagnosis. (D) Laboratory data. Shown is the number of patients for which each parameter is
available. The colors indicate values inside or outside of the normal range. (E) Primary tumor site or
CUP (cancer of unknown primary) and grading from the pathology report. HPV-associated carcinoma
was not graded. (F) Number of words in each German surgery report grouped by pathological T
stage. (G) Kaplan-Meier plot of overall survival with 95% confidence interval shown as shaded error.

The incorporation of treatment information and temporal event data allows an88

in-depth analysis of the underlying relationships. To this end, we extracted and89

de-identified plain text descriptions of the surgery and medical history from text docu-90

ments. Figure 1F illustrates the length of surgery reports, which seems to increase with91

the pathological T stage. All German text files were translated into English to improve92

their accessibility (see Methods). OPS codes (German procedure classification) define93
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the medical procedures applied. We also extracted ICD codes (International Statis-94

tical Classification of Diseases and Related Health Problems) of the German version95

ICD-10-GM from the text documents. The ICD codes allow a detailed classification96

of malignancies and their sites. The most frequent ICD codes were C10.8 and C32.0,97

as shown in Supplementary Fig. S3D. C10.8 corresponds to a malignant neoplasm98

in overlapping regions of the oropharynx and C32.0 corresponds to a malignant neo-99

plasm of the glottis [17]. We believe that ICD coded will allow easy subsampling of100

the full dataset.101

In HANCOCK, each patient is tracked from the time of initial diagnosis to either102

the end of follow-up or death, with follow-up periods lasting as long as 14 years (see103

Supplementary Fig. S4). This enables the examination of temporal information, for104

example in the form of treatment timelines (see Supplementary Fig. S5) and sur-105

vival analyses. Figure 1G shows the overall survival of all patients in the HANCOCK106

dataset. Survival curves with additional information such as the number of censored107

patients can be found in Supplementary Fig. S6D and survival curves grouped by pri-108

mary site, stage, and grading are shown in Supplementary Fig. S6A-C. The 5-year109

survival rate in our cohort is 77.3%.110

Overall, the dataset features a great variety of modalities for a large patient cohort111

(763 cases), which resembles the global demographics of head and neck cancer.112

Multimodal data integration allows prediction of clinical113

outcomes114

After carefully aggregating the patient data, we were next interested in investigat-115

ing the overall patient collective. To better understand the complex patient data, we116

encoded information from each modality individually and concatenated these encod-117

ings into vectors, termed multimodal patient vectors, as shown in Figure 2A. Given118

the high-dimensional nature of these vectors (the multimodal patient vectors con-119

tain 103 dimensions each, see Methods), these patient-centered features can hardly120

be examined or interpreted by humans. Therefore, we applied Uniform Manifold121

Approximation and Projection (UMAP) to these vectors to project them into a lower,122

two-dimensional space, as shown in Figure 2B and C. In Supplementary Fig. 7, we123

provide a comprehensive overview of incorporated features and their distribution in124

the UMAP projection.125

Subsequently, we sought to identify distinct patient clusters using these multi-126

modal patient vectors. We hypothesized that similar patient groups would converge127

within specific areas of the two-dimensional UMAP projection. Our findings confirm128

this hypothesis, as we observed that patients sharing particular characteristics tended129

to form distinct clusters. For instance, patients diagnosed with HPV-positive oropha-130

ryngeal carcinoma often exhibited a high density of CD8+ cells, as illustrated in131

Figure 2C. Additionally, our analysis revealed that both CD3+ and CD8+ cell den-132

sities at the tumor center and the invasion front were notably higher in patients who133

did not experience recurrence compared to those who did (Supplementary Fig. S8).134

These observations are consistent with prior studies in head and neck oncology [9],135

underscoring the relevance and accuracy of the HANCOCK dataset.136
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Fig. 2 Multimodal embeddings. (A) For each patient, information from distinct modalities were
encoded and concatenated to multimodal patient vectors. (B) We applied Uniform Manifold Approxi-
mation and Projection (UMAP) to visualize the vectors in 2D and we implemented a genetic algorithm
to create two test datasets, one in the distribution of the training data and one out of the distribu-
tion. (C) Visualization of two-dimensional embeddings, colored by features of the encoded data. (D)
UMAP plots of three different train-test splits (E) Receiver-operating characteristics (ROC) curves
of a Random Forest classifier for the three splits and two prediction tasks. The mean values and stan-
dard deviations of the ROC curves and Area under the Curve (AUC) scores are shown. The colors
correspond to the different splits in D.

We aimed to investigate whether ML models could predict clinical outcomes, i.e.137

recurrence and survival status, using the encoded multimodal data. We were also138

interested in defining different hold-out test datasets that would allow a robust esti-139

mation of a model’s performance. To this end, we defined three data splits that divide140

the cases into one training and one test set. We hypothesize that the performance of141

models can be over- or under-estimated depending on how similar the test data is to142

the training data, especially in a complex, high-dimensional, and multimodal setting143

as in our case. To address and investigate this issue, we implemented a genetic algo-144

rithm to automatically define two dataset splits based on multidimensional features.145

The algorithm uses evolutionary optimization to find (i) cases that follow the over-146

all distribution (”in distribution”) or (ii) cases that lie outside the distribution and147

are maximally dissimilar to each other (”out of distribution”). In both settings, the148

genetic algorithm preserves the distribution of target classes (recurrence and survival149
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status) in the resulting training and test sets, which is important for model evalua-150

tion [18]. The respective class distributions are shown in Supplementary Fig. S9C-D.151

Additionally, we defined a third split where all patients with a carcinoma located in152

the oropharynx were assigned to the test dataset, rendering it very dissimilar and153

biased to the training data. These three training/test data splits are highlighted in154

the UMAP representation in Figure 2D.155

Next, we trained an ML model, namely a Random Forest classifier, to predict the156

recurrence and survival status of each patient by using the multimodal patient vectors157

as inputs. This corresponds to an early fusion approach since the modality vectors158

are first concatenated and then used to train a single model [19]. Figure 2E shows the159

performance of the classifiers for the previously mentioned train-test splits (see Figure160

2D for reference). As expected, the model had difficulty predicting patient outcomes161

for the test dataset consisting of cases with oropharyngeal carcinoma, a primary site162

that the model has not seen during training. This is highlighted by the lowest Area163

Under the Curve (AUC) score as shown in Figure 2E compared to the other test sets.164

In accordance with our hypothesis, the classification performance was higher for the165

”in distribution” than the ”out of distribution” test dataset as shown in Figure 2E.166

Overall, we can provide evidence that multimodal ML models follow expected ML167

behavior and were able to successfully estimate the prognosis of patients, achieving a168

maximum average AUC score of 0.79 for both recurrence and survival prediction.169

Multimodal machine learning enables improved adjuvant170

treatment selection171

An important choice in oncologic therapy is whether an adjuvant treatment is required172

for a given patient. That means, identifying risk patients that benefit from an adju-173

vant therapy is crucial. We analyzed the HANCOCK patient cohort and found that174

some patients did not receive adjuvant treatment, but eventually had a recurrence or175

deceased (Figure 3A), suggesting that exactly this patient collective are risk patients176

who would have potentially benefited from adjuvant therapy. We assume that all other177

patients in our dataset received appropriate treatment to the best of the treating178

physicians’ knowledge. We then were interested in how the potentially unidentified179

risk patients would have been classified (adjuvant therapy needed yes/no) by a mul-180

timodal ML model. Hence, we assigned these cases to a hold-out test dataset (Figure181

3A). The remaining cases, i.e. cases with adjuvant therapy and cases without adjuvant182

therapy and no recurrence or death, were assigned to a training dataset.183

First, we evaluated the benefits of multimodality vs. single modalities. Therefore,184

we trained ML models on the multimodal patient vectors and each of the modalities185

separately. These modalities include clinical, pathological, and blood data as well as186

the density of CD3- and CD8-positive cells and ICD codes. Figure 3B shows the187

corresponding average Receiver-operating characteristic (ROC) curves using 10-fold188

cross-validation. As shown in Figure 3B, the classifier integrating the multimodal189

data outperformed all single-modality classifiers with a mean AUC score of 0.85. This190

finding is in line with previous works that have shown the superior performance of191

ML models trained on several modalities compared to data with limited information192

from a single source [20, 21]. Out of the single-modality models, the classifier trained193
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on pathological data achieved the highest mean AUC score of 0.81, as shown in Figure194

3B.195

We next trained a classifier on the full, multimodal training data. Figure 3C shows196

the predictions of this trained model for the hold-out test dataset, i.e. the potential197

risk patients (orange cohort in Figure 3A). Figure 3C reveals that the multimodal ML198

classifier suggested an adjuvant therapy for 74 out of 100 cases. Furthermore, Figure199

3D shows that the 74 patients for whom an adjuvant treatment was proposed, were200

high-risk patients i.e. their probability of recurrence-free survival and overall survival201

were significantly lower than for the other 26 patients (p ≤ 0.001, log-rank test).202

The incorporation of ML in clinical practice is often hindered by a lack of203

explainability and its ”black box” nature [22]. To improve the interpretability of our204

multimodal approach, we obtained SHAP values that explain the impact of individ-205

ual features on the model output [23]. Figure 3E shows the twelve most important206

characteristics in a summary plot. The four features with the highest impact were207

pathological features, agreeing with the high AUC score of the pathological model in208

Figure 3B. For example, a high pathological N and T stage led to a higher probabil-209

ity of predicting an adjuvant treatment. These two features had the greatest impact210

on the predictions, which is consistent with the fact that the treatment choice mainly211

depends on the stage of the disease [5]. However, adjuvant treatment was not likely to212

be predicted for laryngeal carcinomas and glottic carcinomas in particular, as shown213

in Figure 3E as the ICD code C32.0 stands for malignant neoplasms of the glottis [17].214

A demographic feature, namely the age at initial diagnosis, also had a high impact215

on the outputs; With increasing age, the need for an adjuvant therapy became less216

likely. Furthermore, an HPV association had a high impact on not predicting adjuvant217

treatment, which is consistent with results showing that HPV-positive patients have a218

better prognosis [9] (see survival grouped by HPV status in Supplementary Fig. 6D).219

Taken together, our results suggest that multimodal models can integrate more220

valuable information than single modality models, and could be useful for assisting in221

adjuvant treatment selection: in this case, 3 out of 4 patients would have potentially222

benefited from an adjuvant therapy questioning current clinical guidelines and sug-223

gesting the incorporation of multimodal ML models. We showed that our ML model224

relied on the stage and also on a variety of other characteristics such as infiltration225

depth, perinodal invasion, age, and HPV association.226

Treatment choice prediction using immunohistochemistry227

images228

Computer vision approaches on histopathological image data have shown promising229

results in a variety of oncology settings [21, 22, 24]. We were interested if the image230

data in the HANCOCK dataset is as well suited for multimodal data integration.231

Using the dataset split shown in Figure 3A, we explored an approach for integrating232

image features and the encoded tabular data to train a convolutional, deep neural233

network. To this end, we analyzed the TMAs taken from the tumor center. Each234

TMA contains multiple samples and two cores were available for each patient, as235

shown in Figure 4A. We extracted a single 1024×1024 µm tile from each TMA core.236

Figure 4B shows that we used TMAs stained with seven distinct IHC markers and237
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Fig. 3 Prediction of treatment choice. (A) Patients who did not receive adjuvant therapy but
did have a recurrence or deceased within 5 years (highlighted in orange) were assigned to the test
dataset. All other patients were assigned to the training dataset. (B) Receiver-operating character-
istic (ROC) curves of Random Forest classifiers trained on single-modal and multimodal data using
10-fold cross-validation with the mean Area Under the Curve (AUC). (C) The multimodal model
predicted adjuvant therapy for 74% of cases in the test dataset. (D) Kaplan-Meier curves for the test
dataset, with patients grouped by predictions. The log-rank test was used. (E) SHAP summary plot
for model interpretability, showing the 12 most important features of the multimodal model (trained
on the full training data), computed for all validation folds.

the standard HE stain. All tiles were fed to a VGG16 pre-trained on ImageNet to238

extract high-level features [25, 26]. The features were ”deep texture representations”239

of the images, following the technique of Komura et al. [27]. We found that there was240

a relationship between these image representations and the computed cell density of241

CD3- and CD8-positive cells, as shown in Supplementary Fig. S10.242

For each patient, a two-dimensional embedding was created by stacking the image243

features and the multimodal patient vectors (see Methods). The resulting image-like244
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embeddings were used to train a Convolutional Neural Network (CNN, see Figure 4)245

to the same task as in Figure 3.246

Figure 4D shows that the network achieved a mean AUC of 0.81 in 10-fold cross-247

validation. Thus, it did not outperform the ML model trained on the high-level248

multimodal patient vectors alone (compare Figure 3C) but performed in a similar249

range. We hypothesized that some parts of the multimodal feature vectors con-250

tained information that overlapped with the information in the image embeddings,251

namely the structured pathological data and cell densities, which are derived from252

the histopathological imaging data. Figure 4D shows that models lacking these fea-253

tures resulted in a decrease in the classification performance. We found that the CNN254

was still able to reach a mean AUC of 0.69 on the image representations alone which255

indicates that valuable information was contained in the extracted features.256

The network predicted an adjuvant treatment for 58 out of 100 cases, see Figure257

4E. The respective Kaplan-Meier curves (see Figure 4F) show that the overall and258

recurrence-free survival probability was significantly lower in patients, for whom the259

model suggested adjuvant therapy (p ≤ 0.001 and p ≤ 0.01, log-rank test).260

Next, we were interested in analyzing the impact of different modalities on the261

CNN’s predictions. We generated SHAP image plots to create visual explanations. An262

example is shown in Figure 4G. We found that patterns within the image embeddings263

as well as individual features in the multimodal patient vectors were highlighted. This264

indicates that stacking extracted image features and encoded tabular features might265

be a valuable approach to multimodal Deep Learning with the advantage of being266

computationally inexpensive. Overall, we were able to integrate image data using a267

simple early fusion approach to train a deep neural network, yielding promising results.268

Discussion269

In this study, we provide a novel monocentric dataset - HANCOCK - comprising 763270

patients with multimodal data. The modalities include demographical, pathological,271

and blood data, WSIs from primary cancer and lymph nodes, and TMAs with IHC272

staining. We show that the dataset is rich and diverse, and not biased towards a single273

domain (Figures 1 and 2). By integrating multimodal data through diverse machine274

and deep learning approaches, we can show that this allows better prediction of sur-275

vival and recurrence (Figure 2F), as well as providing a superior choice for adjuvant276

therapy across AI technologies (Figures 3 and 4). With our transparent and open277

approach, we hope the HANCOCK dataset will fuel further developments in multi-278

modal data integration and head and neck oncology. By reproducing previous findings,279

such as the predictive behavior of HPV and PD-L1, we believe that HANCOCK will280

be very useful in biomarker discovery and validation.281

We found some limitations in our work, which can be addressed in future studies.282

For example, we did not integrate WSIs of the primary tumors or lymph nodes to283

train deep neural networks. Instead, we focused on TMA tiles as inputs since they284

provide information about distinct immune cell populations and are also available285

with routine HE staining. Another advantage of using the TMAs was that they were286

taken specifically from the tumor region. However, integrating the HE-stained WSIs287
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Fig. 4 Combining multimodal feature vectors with image embeddings. (A) Tile extraction. From
each TMA cores (two cores per patient), a tile was extracted from the center. (B) Vgg16, pre-trained on
ImageNet, was used to extract deep texture representations [27] from tiles extracted from TMAs with
8 distinct markers, of which 7 are immunohistochemistry markers. (C) Stacking of features to train a
Convolutional Neural Network for treatment choice prediction. (D) Receiver-operating characteristic
(ROC) curves from 10-fold cross-validation. In the left plot, all modalities were used. In the center
plot, pathological features and cell densities were excluded. In the right plot, the multimodal patient
vectors were excluded. (E) Predictions for the test dataset. (F) Kaplan-Meier curves for the test
dataset, with patients grouped by predictions (G) Visual explanation using SHAP values for a test
sample.

additionally could further improve the prediction of clinical outcomes or treatment288

choices since multiple studies have shown that neural networks trained on WSIs alone289

can predict risk or prognosis, for example using Multiple-Instance-Learning [28–30].290

We further relied consistently on an early fusion approach for training any multi-291

modal AI in our study. This means first fusing the features of distinct modalities and292

then training a single model, which is recommended as an initial strategy [19]. Future293

studies should also evaluate if the classification performance could be improved using294

joint fusion, where neural networks are not only used as feature extractors but are also295

trained in the process [19]. An in-depth comparison of different methods for extracting296

and fusing features, especially from our comprehensive histologic image data, could297

be very beneficial.298
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We extracted ICD codes from the surgery reports and integrated them into mul-299

timodal embeddings using bag-of-words. However, we did not incorporate the plain300

texts themselves. Since the surgery reports describe the tumor resection in detail and301

could potentially provide additional information about the severity of the disease, they302

could be further explored. For example, text embeddings could be extracted using a303

pre-trained transformer and integrated into the multimodal vectors [20].304

Our Machine Learning models are limited to binary classification, however, other305

options could be explored using the available event data. For example, a regression306

model could be implemented to predict the time to events such as recurrence or death.307

Moreover, models could be trained to predict risk scores using a loss function such as308

Cox partial likelihood loss as proposed by Chen et al. [21].309

In this work, the densities of CD3- and CD8-positive cells were computed from310

the TMAs. We analyzed these regarding their relationship to clinical outcomes (see311

Supplementary Fig. S8) and integrated them in the multimodal vectors for ML model312

training (see Figure 2A). In the future, immune cells expressing the markers CD56,313

CD163, PD-L1, and MHC-1 as available in HANCOCK could be analyzed as well and314

integrated for ML model training accordingly.315

A limitation of our multimodal ML model for treatment prediction is that it could316

not account for all possible reasons for deciding against adjuvant therapy. For example,317

no data about patient refusal or comorbidities was available. Hence, collecting more318

detailed information about the process of treatment selection could be beneficial.319

It has been shown that tissue or cell detection and subsequent classification can320

enable the investigation of quantitative biomarkers [31, 32]. Therefore, annotations321

of the histologic images in our dataset could be beneficial for biomarker discovery.322

We already provide manual annotations of tumor regions in the WSIs of the primary323

tumor. However, these annotations were done sparsely instead of exhaustively and324

they were not done by pathologists. We aim to extend HANCOCK in the future,325

for example by creating high-quality annotations of distinct cell types. To this end,326

we could leverage Deep Learning models and existing manual annotations of nuclei.327

The annotation or segmentation of larger tissue regions could also be considered and328

incorporated into the dataset. Further, combining molecular data with histopatholog-329

ical data is a promising approach [33]. Hence, we aim to further integrate genomic or330

transcriptomic data, to increase the long-term impact of the dataset.331

Finally, HANCOCK allows the possibility to explore the concept of digital twins,332

a digital representation of cancer patients, that could improve decisions in cancer333

care [34]. We implicitly used this concept in the training/test data split (Figure 2)334

to compute the cosine similarity between patients to ensure a specific distribution of335

patients in a given subset (see Methods).336

Methods337

Data collection338

The data was acquired from the Department of Otorhinolaryngology and Head and339

Neck Surgery and from the Pathological Institute of the University Hospital in Erlan-340

gen. All data was collected and published following the local ethics committee vote341
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(#23-22-Br). Retrospective, multimodal data was gathered from patients who were342

diagnosed with head and neck cancer between 2005 and 2019. Only patients who343

had a curative first treatment were included. The modalities in our dataset can344

be categorized into image data (histopathological images), structured data (clinical,345

pathological, and blood data), and free text (surgery reports). Supplementary Fig.346

S11 shows the available and missing data types for all patients.347

Tissue samples of the respective patients were collected from the pathological348

archive of the University Hospital in Erlangen. The samples originate from the pri-349

mary tumor and, if present, positive lymph nodes that had been resected. The tissue350

samples had been fixed in formalin, embedded in paraffin, and routinely stained with351

HE. The 709 primary tumor sections were scanned using a 3DHistech P1000 at 82.44×352

magnification. A single slide was available for 701 cases whereas two slides were avail-353

able for eight cases. The 396 lymph node sections were scanned using an Aperio Leica354

Biosystems GT450 at 40× magnification and using 3DHistech P1000 at 51.42× mag-355

nification. All digitized WSIs were stored in the pyramidical Aperio file format (.svs).356

Additionally, TMAs were created from the paraffin-embedded primary tumor blocks.357

The TMA cores with a diameter of 1.5 mm were extracted from the tumor center and358

the tumor invasion front. They were stained using HE and they were stained for spe-359

cific immune cell populations using the IHC markers CD3, CD8, CD56, CD68, CD163,360

PD-L1, and MHC-1. CD3-positive cells represent T cells, CD8-positive cells repre-361

sent cytotoxic T cells, and CD56-positive cells represent natural killer cells. CD68 and362

CD163 were used to detect monocytes and macrophages. PD-L1 plays a major role in363

regulating the immune response. It is expressed by tumor cells to deactivate cytotoxic364

T cells and is a target for immunotherapy [35]. The major histocompatibility com-365

plex class I (MHC-1) displays antigens to cytotoxic T cells and is also important for366

determining the prognosis and treatments involving immunotherapy [36]. From each367

patient, at least two cores were collected per origin and marker. This resulted in 368368

TMAs, each with cores arranged in 12 rows by 6 columns. The TMAs were scanned369

using a 3DHistech P1000 at 82.44× magnification.370

Structured pathological data originating from the analysis of the primary tumor371

and lymph node sections was harmonized and compiled in tabular format. It includes372

comprehensive information such as the cancer site, staging, grading, and histologic373

type. The clinical data includes each patient’s age, sex, and smoking status. It fur-374

ther contains information and timestamps of events such as treatments, recurrence,375

progress, metastasis, or death. The data was collected from the hospital information376

system and by screening various documents such as general and radiotherapy records.377

Blood test results of the corresponding patients in a range of 14 days around local378

surgery were retrieved from the hospital’s archive. Each measurement was accompa-379

nied by the parameter’s name, group, unit, and LOINC code (Logical Observation380

Identifiers Names and Codes) [37].381

Surgery reports were collected by filtering the hospital’s database by patient iden-382

tifiers and time range. Reports of patients diagnosed in 2006 were not available, as383

reports were not entered into the database until 2007. The surgery reports follow a384

template that includes the medical history and report in the document’s body and385

metadata in the header. All documents were compiled into a .pdf file.386
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Data preprocessing387

The data was anonymized by assigning a unique, consecutive ID (”001” to ”763”)388

randomly to each patient. Our data is patient-centered. This means that each WSI,389

each core in a TMA, each surgery report, and each entry in the structured data is390

mapped to a single patient ID. The preprocessing steps for each data modality are391

described in the following.392

TMAs and WSIs were converted from the manufacturer’s file format (.mrxs) to the393

pyramidical Aperio file format (.svs). An Aperio SVS file contains a macro image and a394

label image. The label image in particular contains potentially identifying information.395

Therefore, we anonymized the files by removing the label images, i.e., by replacing396

the image with zeros. To allow the mapping of each TMA core to the corresponding397

patient, we created TMA maps in .csv format (comma-separated values) that can be398

imported into QuPath.399

We identified the most important clinical and pathological features and ensured400

that these were complete for all patients. We performed data cleaning to remove incon-401

sistent or redundant data. For patients with more than one entry in the clinical table,402

we kept the entry with the earlier diagnosis date. Each following entry was discarded403

because it reported a recurrence of the disease rather than the initial diagnosis. We404

de-identified the clinical and pathological data by removing all names and dates. The405

year of the initial diagnosis was retained, but its date was removed. For anonymiza-406

tion purposes, all dates of events were replaced by the number of days since the initial407

diagnosis. This way, the timeline from the diagnosis to the end of treatment could408

still be reconstructed. We corrected spelling errors, summarized and harmonized table409

entries, and assigned self-explanatory labels. The tables were finally converted into410

Javascript-Object Notation (JSON). Descriptions of all fields in the JSON files with411

their data types and possible values were summarized in data dictionaries, shown in412

Supplementary Tables S1, S2, and S3.413

The results of blood tests were available as structured, tabular data. We first414

filtered the data to select values that were measured at specified units, excluding415

intensive care units. For each patient, we chose a single pre-operative measurement416

of each parameter. To this end, we selected the latest available measurement before417

the surgery date because relevant blood tests are usually performed one to three days418

before. If no pre-operative value was available, the value from the surgery day itself419

was selected. The number of available measurements for these time points is shown420

in Supplementary Fig. S12. The complete blood count, coagulation parameters, elec-421

trolytes, and renal function parameters were routinely assessed. Additional parameters422

were calcium, magnesium, glomerular filtration rate, and glucose. Although it was only423

available for 94 patients, we included C-reactive protein (CRP) since elevated CRP424

levels are associated with poor prognosis in patients with head and neck cancer [38].425

The blood dataset was converted to JSON format.426

The surgery reports were first converted from .pdf to .txt format. Each document427

had a header containing the operating clinicians, treatment date, the patient’s name,428

and identifiers such as the admission number. The header additionally contained OPS429

codes and ICD codes. We used regular expressions in Python to search for keywords430

and obtain relevant data. This way, we extracted ICD codes, OPS codes, and the431
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medical history along with the surgery report itself. We selected reports from the first432

treatment date, i.e. from the local surgery, and discarded all others. Most patient433

names had already been masked when they had been entered into the system. How-434

ever, many texts contained names of operating clinicians. Therefore, we used regular435

expressions to substitute any names following medical or academic titles. Addition-436

ally, we performed a search using regular expressions and lists of all names of patients437

and clinicians. Finally, the reports and medical histories were screened manually for438

any remaining identifying information. Patient names, clinician names, locations, and439

dates were replaced by placeholders. The number of replaced terms is shown in Sup-440

plementary Table 4. The documents were saved to plain text (.txt) files. Additionally,441

we translated all surgery reports, and medical histories from German to English using442

the DeepL API [39]. For translating short descriptions to English, we used ChatGPT443

(GPT-3.5) [40]. For convenience, HANCOCK contains the German original and the444

translated version of the texts. Supplementary Fig. S3 shows word clouds of the most445

common terms in the translated documents.446

Annotation of primary tumor sections447

For training AI models on WSIs using supervised learning, the annotation or seg-448

mentation of present tumor regions is usually required [22]. WSIs often contain large449

areas of tissue that might be irrelevant or even misleading for the corresponding450

task. We sparsely annotated representative tumor areas in the primary tumor sections451

using QuPath. To this end, we manually selected one or several regions of interest452

representing the tumor’s histology while avoiding areas that contain artifacts, white453

background, or healthy tissue such as muscular or glandular tissue. This approach is454

based on the protocol for the analysis of deep texture representations [41]. An exhaus-455

tive annotation of all present tumor regions or distinct tissue types was not possible456

due to time constraints. We provide the resulting polygon annotations in ”.geojson”457

format to enable effortless extraction of tumor tiles for future works.458

Multimodal patient vectors459

We created multimodal patient vectors for two purposes. First, the vectors were used460

to determine a dataset split for training and testing. Second, they were used to train461

models to predict outcomes or treatment choices. To this end, we created embeddings462

that condensed data from each modality and concatenated them to a single vector463

per patient.464

We encoded the clinical and pathological features using different techniques based465

on their type. Binary encoding was applied for features such as lymphatic, vascular,466

or perineural invasion, the patient’s sex, or the presence of carcinoma in situ. The pT467

stage and pN stage were considered ordinal features and transformed into consecutive468

labels. Categorical features such as primary site or histologic type were assigned labels469

and were later one-hot encoded. For integrating laboratory parameters, we used the470

raw values of the hematology group, i.e. the complete blood count.471

The ICD codes, extracted from surgery reports, provide a more detailed classifi-472

cation of the disease than the available structured data does. The sequence of ICD473
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codes for each patient was considered a sentence and converted to vectors using a bag-474

of-words model, inspired by the bag-of-disease-codes approach by Placido et al. [42].475

To this end, the first four characters of each ICD code were used. Codes covered by476

less than three patients were discarded.477

The structured pathological data did not contain any information about the478

immune response of each patient. To include this information, we performed a quan-479

titative analysis of TMAs using the open-source software QuPath (version 0.4.3) [43].480

The density of T lymphocytes has been shown to be a prognostic marker [44, 45].481

Inspired by the Immunoscore [24, 46], we computed the density of CD3- and CD8-482

positive cells in the tumor center and invasion front per tumor area. To this end, we483

used QuPath to de-array the TMAs and match the tissue cores with patient IDs. Next,484

tissue detection was performed using thresholding. Strong artifacts were manually485

removed from the detected regions. Using QuPath’s positive cell detection feature, we486

obtained the positive cell count per mm2 tumor area. Supplementary Fig. S13A shows487

exemplary TMA cores with detected positive cells and Supplementary Fig. S13B the488

respective cell densities. The distribution of the densities is shown in Supplementary489

Fig. S13C.490

The single-modality vectors for each patient were finally concatenated to a multi-491

modal vector with a length of 103. We used UMAP to visualize the multimodal patient492

vectors in 2D. Beforehand, one-hot encoding was performed for categorical features,493

missing values were imputed, and z-score normalization was applied to ordinal and494

numeric features, i.e. the values were centered around the mean with unit variance.495

The axes were normalized to the range between zero and one.496

Dataset split using a genetic algorithm497

We aimed to provide a training dataset and a test dataset that is suitable to test498

any AI algorithm for its generalizability. We aimed for our test dataset to fulfill the499

following criteria proposed by Wagner et al. [18]: First, the data should be split at500

a patient level. Second, both datasets should follow a similar distribution of target501

classes, in this case, the recurrence and survival status. We created two distinct dataset502

splits, each into 80% training and 20% test data. The first split should follow the503

distribution of the training dataset concerning relevant characteristics, by including504

information from different modalities. The second should be out of distribution and505

contain outlier cases. To create both splits, we used evolutionary optimization [47].506

We implemented a genetic algorithm, where each individual represented a possible507

split by a vector of zeros (patients assigned to training) and ones (patients assigned508

to test). The objective of the genetic algorithm was to maximize the fitness of an509

individual, i.e. of a split with N test points. Before computing the fitness of each510

split, missing values were imputed and categorical features were subsequently one-hot511

encoded. A penalty was subtracted from the fitness to achieve a class-balanced split.512

This penalty was defined as the sum of differences between each class distribution d =513
Npositive

N overall and in the current test dataset. Considering recurrence and survival514

status as target classes, the number of classes was C = 2 in our case. The penalty for515

C classes was weighted by a weight α. A similar approach was introduced by Florez-516

Revuelta who used a genetic algorithm to split multi-label data while maximizing the517
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similarity between class distributions [48]. We calculated the fitness of an individual518

as follows:519

For the in-distribution split, the fitness of an individual was defined as the sum of520

cosine distances from each test point xi to its nearest neighboring test point xi,nn:521

fitnessin =
N∑

i=1

(
1 − x⃗i · x⃗i,nn

∥x⃗i∥ ∥x⃗i,nn∥

)
− α

C∑
k=1

|dk − dk,all|

For the out-of-distribution split, we calculated the sum of cosine distances between522

all pairs of test points x:523

fitnessout =
N−1∑
i=1

N∑
j=i+1

(
1 − x⃗i · x⃗j

∥x⃗i∥ ∥x⃗j∥

)
− α

C∑
k=1

|dk − dk,all|

The population size was set to 10,000 and the genetic algorithm was terminated524

after 50 iterations with no further improvement. The population was iteratively525

updated using parent selection (tournament selection with elitism) and one-point526

crossover with inversion mutation until convergence. The genetic algorithm was only527

applied to patients with complete patient vectors. However, for some patients not all528

required modalities were available. These were subsequently assigned to the training529

dataset. The final splits were summarized as a list of patient IDs in JSON format.530

Outcome prediction for distinct dataset splits531

For training Machine Learning models to predict recurrence or survival, three different532

data splits were used. The first split defined ”in distribution” cases as test data,533

the second split defined ”out of distribution” data as test data, and the third split534

defined cases with oropharyngeal cancer as test data (see Figure 2D. For survival535

prediction (see Figure 2E), cases with non-tumor-specific death were excluded. All536

other cases, including those with unknown causes of death, were considered. The class537

labels correspond to the survival status, i.e. ”living” and ”deceased”. Binary class538

labels were also defined for recurrence prediction (see Figure 2E). The classes were539

defined as (i) patients who had no recurrence and survived at least three years and540

(ii) patients who had a recurrence within three years.541

As recommended by Huang et al., we applied an early fusion approach as an initial542

strategy, i.e. we created the multimodal patient vectors and trained a single model [19].543

We used three different train-test splits of the dataset, namely the in-distribution544

and out-of-distribution datasets created using the genetic algorithm. Another split545

was created by assigning all laryngeal carcinomas to the test dataset. We used the546

Synthetic Majority Oversampling Technique (SMOTE) to handle class imbalance [49].547

One classifier was trained and tested for each of the three splits (see Figure 2D).548

Treatment prediction using Machine Learning549

To explore the ability of an AI model to suggest whether adjuvant therapy is needed or550

not, we split the dataset in the following way. Patients who had no adjuvant therapy551

but were deceased or had a recurrence, metastasis, or progress were assigned to the552
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hold-out test dataset. All remaining cases were assigned to the training dataset, as553

shown in Figure 3A. We chose this setting to explore if an AI model could potentially554

identify patients who did not receive but would have needed adjuvant therapy. In555

identifying deceased patients, we considered the overall survival as the cause of death556

was not available for all cases. The class labels were defined as ”no adjuvant therapy557

used” and ”adjuvant therapy used”.558

We used the single-modality vectors (clinical, pathological, blood, ICD codes, TMA559

cell densities) individually and their combination (multimodal patient vectors) to560

train Random Forest classifiers. For both single-modal and multimodal data, we used561

10-fold cross-validation and reported the average ROC curve along with the AUC562

score. To handle the class imbalance problem, we applied SMOTE [49]. To avoid data563

leakage, we ensured that missing value imputation and normalization were performed564

in each iteration using statistics of the current training folds. To investigate the most565

important features, we computed SHAP values and visualized them for the ten most566

relevant features in a summary plot [23]. Finally, a classifier was trained on the full567

training dataset of multimodal patient vectors and the predictions for the test dataset568

were obtained. The training was performed for five iterations and the resulting ROC569

curves and AUC scores were averaged.570

Treatment prediction using Deep Neural Networks571

Aiming to integrate histologic features into a model for treatment prediction, we used572

the same dataset split as before (see 3A) and trained a Convolutional Neural Network.573

To this end, we extracted features from TMAs stained using all eight available markers.574

Each slide image contains tissue cores of several patients. To map these cores to patient575

IDs, we de-arrayed the TMAs using QuPath and imported the TMA maps. Next, we576

extracted a single tile from the center of each TMA core. As for most patients, two577

cores and eight markers were available, resulting in 16 tiles per patient. Every tile was578

fed to a feature extractor to obtain an embedding vector of length 256. To this end,579

we used the feature extractor implemented by Komura et al. [27] which computes a580

gram-matrix of feature maps obtained from convolutional layers in the network and581

converts it to a one-dimensional embedding. We used a VGG16 as a feature extractor582

pre-trained on ImageNet and obtained features from the layer ”block3 conv3” [25, 26].583

Next, we stacked the extracted image features and multimodal patient vectors to584

obtain a 2D embedding for each patient. Min-max scaling was applied to the image585

features using the minimum and maximum value computed from all image features586

in the training dataset. We trained a custom CNN on the image-like embeddings587

and performed a grid search to tune its hyperparameters. The approach of encod-588

ing and stacking multimodal features into a single source suitable for training CNNs589

was inspired by Nawaz et al. who fused image and text embeddings to improve590

classification performance [50].591

We applied 10-fold cross-validation and reported ROC curves. A final model was592

trained on the full dataset and test predictions were obtained. To visually explain593

predictions, SHAP image plots were created for test samples [51]. As background594

samples for the SHAP algorithm, 100 random training samples were used.595
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Data analysis596

Overall survival curves were estimated using the Kaplan-Meier method [52]. The anal-597

ysis considered the time between the initial diagnosis and death or the end of follow-up.598

Patients who were alive at the end of the follow-up were censored. We computed599

overall survival curves for all patients and for patients grouped by different character-600

istics, see Supplementary Fig. S6. For estimating the recurrence-free survival (see Fig.601

3E), any occurrence of metastasis, progress, recurrence, or death was considered as an602

event and the duration was defined as the time between the first treatment (surgery)603

and the event.604

The clinical data includes various events, such as treatments, progress of the dis-605

ease, diagnosis of metastases, recurrence, and death or end of follow-up. We visualized606

the timelines of these events, see Supplementary Fig. S5.607

Statistics and Evaluation608

The performance of classifiers was reported using ROC curves and corresponding609

AUC scores. To compute ROC curves and AUC scores, ML models were either trained610

and evaluated five times (see Figure 2E) or trained using 10-fold cross-validation (see611

Figures 3B and 4D). The ROC curves and AUC scores were then averaged over the612

iterations or the ten folds, respectively.613

To evaluate the results of classifiers trained to predict adjuvant treatment, Kaplan-614

Meier curves were estimated and compared. To this end, we split the test cases into615

two groups based on the predicted classes. The first group contained cases where no616

adjuvant treatment was predicted (probability for adjuvant therapy recommendation617

below or equal to 0.5) and the second group contained cases where adjuvant treatment618

was predicted (probability above 0.5). Kaplan-Meier curves were estimated separately619

for the two groups. We used a log-rank test to compare survival curves and reported620

whether the p-value was below the significance level of 0.05 (*), 0.001 (**), or 0.0001621

(***).622

We applied the Wilcoxon-Mann-Whitney test to compare the distribution of CD3-623

positive and CD8-positive cell density of patients grouped by recurrence and survival624

status, as shown in Supplementary Fig. S8.625

Data availability626

The HANCOCK dataset is publicly available at https://hancock.research.fau.eu/.627

An overview of the dataset, including the number and format of files, is shown in628

Supplementary Fig. S14.629

Code availability630

Code for data exploration, processing histologic images, feature extraction, generating631

data splits, outcome prediction, and adjuvant treatment prediction is available at632

https://github.com/ankilab/HANCOCK MultimodalDataset.633

Supplementary information. The supplement contains the Supplementary634

Figures S1-S14 and the Supplementary Tables S1-S4.635
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