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Abstract 

Background: Early substance use initiation (SUI) places youth at substantially higher 

risk for later substance use disorders. Furthermore, adolescence is a critical period for 

the maturation of brain networks, the pace and magnitude of which are susceptible to 

environmental influences and may shape risk for SUI.  

Methods: We examined whether patterns of functional brain connectivity during rest 

(rsFC), measured longitudinally in pre-and-early adolescence, can predict future SUI. In 

an independent sub-sample, we also tested whether these patterns are associated with 

key environmental factors, specifically neighborhood pollution and socioeconomic 

dimensions. We utilized data from the Adolescent Brain Cognitive Development (ABCD) 

Study®. SUI was defined as first-time use of at least one full dose of alcohol, nicotine, 

cannabis, or other drugs. We created a control group (N = 228) of participants without 

SUI who were matched with the SUI group (N = 233) on age, sex, race/ethnicity, and 

parental income and education.  

Results: Multivariate analysis showed that whole-brain rsFC prior to SUI during 9-10 

and 11-12 years of age successfully differentiated the prospective SUI and control 

groups. This rsFC signature was expressed more at older ages in both groups, 

suggesting a pattern of accelerated maturation in the SUI group in the years prior to 

SUI. In an independent sub-sample (N = 2,854) and adjusted for family socioeconomic 

factors, expression of this rsFC pattern was associated with higher pollution, but not 

neighborhood disadvantage.  

Conclusion: Brain functional connectivity patterns in early adolescence that are linked 

to accelerated maturation and environmental exposures can predict future SUI in youth. 
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Introduction 

Substance use disorders are a major public health problem that affected more than 46 

million individuals in the US in 2021 [1]. Early initiation of substance use during 

adolescence places youth at substantially higher risk for later substance use disorders 

[2, 3, 4, 5], as well as health risk behaviors [6], suicide [7], and mortality [8]. 

Adolescence is also a critical period in which brain networks go through notable 

maturational changes [9,10,11]. As such, the neural and psychosocial factors that can 

contribute to or predict substance use initiation (SUI) among teens have been the 

subject of multiple lines of inquiry in substance use research [e.g. 12,13,14]. However, 

network changes during this period are protracted and the maturation process is 

susceptible to influences from the environment surrounding the teen [15,16,17]. 

Patterns of acceleration or delay in brain development during adolescence have been 

found to be associated with negative environmental factors in both the socioeconomic 

and physical domains [18, 19]. Some of these same environmental factors are 

associated with early substance use [20,21]. It is therefore important to consider 

longitudinal brain changes and their environmental correlates when attempting to 

predict adolescent SUI. The current study evaluates whether longitudinal patterns in 

functional brain architecture in early adolescence can predict future SUI and how 

environmental disparities might play a role in these brain phenotypes [22]. 

The use of resting-state functional brain connectivity has grown rapidly within the past 

decade in clinical and developmental research [23, 24, 25], and substance use research 

has not been an exception [26, 27, 28]. The utility of the functional ’connectome’, 

indexed as correlated functional magnetic resonance (fMRI) activity among all pairs of 

brain regions, comes from two important findings. The first is the observation that 

cognitive processes are better represented by coordinated activity across brain regions 

(i.e., networks) rather than activity in isolated brain regions [29]. The second is the 

discovery that resting-state fMRI connectivity (rsFC) patterns are highly individualized 

[30, 31] and the connectome can reliably predict individual differences in cognitive and 

psychiatric domains [32, 33]. Research in adolescents has since shown that functional 

brain connectivity patterns are robustly associated with individual differences in 

cognition and psychopathology [12, 34]. A study by Rapuano et al., 2020 [12], for 

example, showed that rsFC can predict a “risk-seeking” dimension in 9–10-year-olds 

enrolled in the Adolescent Brain Cognitive Development (ABCD) Study®. 

In the current study, we investigated whether whole-brain rsFC at pre- and early-

adolescence timepoints (ages 9-10 and 11-12, respectively) can be used to distinguish 

youth who later initiated use of alcohol, nicotine, cannabis, or other drugs from their 

peers who did not (Study 1). The use of two fMRI timepoints (two years apart) that 
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precede the initiation of substance use enabled an examination of developmental shifts 

in rsFC (e.g. accelerated/ delayed patterns) that may precede substance use. 

Associations between the neighborhood environment and measures of cognition and 

mental health have been reported in multiple studies[35, 36, 37, 38], but neighborhood 

factors have been generally understudied in neuroscientific research on substance use. 

Specifically, neighborhood socioeconomic (SES) factors, including area deprivation 

index (ADI, which captures the economic disadvantages and poverty-related statistics in 

the area [39]) and measures of neighborhood safety and crime have been tied to the 

structure and function of the human brain cross-sectionally and longitudinally [37, 40, 

41, 42, 43] while also being linked to substance use [44, 45]. In addition, physical 

neighborhood variables capturing pollution, particularly neurotoxin-containing types of 

pollution such as fine particulate matter (PM2.5) and lead, have also been shown to be 

associated with functional and structural brain development [46, 47, 48, 49, 50] and 

shifts in neural plasticity and the potential timing of sensitive periods [51]. However, their 

relation with dimensions of SUI have not been well-studied. Understanding whether 

these factors are associated with brain phenotypes that are predictive of substance use 

can shed light on the contributions of the environment to development of substance use 

behaviors. Therefore, in an independent sub-sample, we explored correlations between 

the rsFC pattern identified in the first study and neighborhood pollution and 

socioeconomic factors.  

In summary, the current study aims to find the patterns of functional brain connectivity 

that precede adolescent substance use, a strong risk factor for substance use 

disorders, and explore the environmental correlates of these brain signatures. We utilize 

multivariate methods to ask this question in a large and heterogeneous longitudinal 

sample. In doing so, we will inform research on the trajectory of substance disorders 

and their neurodevelopmental antecedents. 

Methods and Materials 

1.1. Participants 

We utilized data from the Adolescent Brain Cognitive Development (ABCD) Study® [52, 

53], which is an ongoing longitudinal study of 11,867 children across 21 sites in the US. 

Participants were enrolled in the study between 9–10 years of age, and the study 

involves MRI acquisitions every two years and substance use assessment surveys 

every year (complemented with brief mid-year surveys). The starting sample was 52.2% 

male and composed of 52.0% non-Hispanic White, 15.0% Black, 20.3% Hispanic, 2.1% 

Asian, and 10.5% Other participants.  
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Across our analyses, we utilized all available substance use survey measures from 

baseline (Y0) to Year 4 (N = 4,754 currently available for Y4). The final sample size for 

this study was 3,801 participants with suitable neuroimaging data at both baseline (ages 

9–10) and Year 2 (ages 11–12) (see exclusion criteria in section 1.2). This sub-sample 

was 60.1% non-Hispanic White, 10.1% Black, 18.2% Hispanic, 1.5% Asian, and 9.9% 

Other, which underrepresents Black/African American participants compared to the 

overall sample. The sub-sample was comparable to the overall sample in terms of 

substance use initiation with 8.0% (N = 949) in the overall and 8.4% (N = 321) in the 

sub-sample, respectively. The sub-sample included fewer male participants compared 

to the overall sample but was balanced in terms of biological sex (50.4% male). Finally, 

the included sample was slightly higher on parental education (Mean = 17.4 years in the 

subset compared to 17.2 years in the overall sample; two-sample t = 4.67, p < .001) and 

also higher on household income (Mean of income bracket midpoints = $79,360 

compared to $71,890 in the overall sample; two-sample t = 6.72, p < .001). 

Since the goal of our analysis was to predict future SUI, participants who had already 

initiated substance use by Y2 (i.e., within the 9-12 years of age) were not included in the 

analysis (N = 88 within the sub-sample). The first study involved a total of 461 

participants belonging to two groups. The first group comprised participants who had 

initiated use of any drugs or alcohol (only full doses were considered not single puff or 

sip) during the Y3-Y4 study periods (ages 12-14) but not earlier (N = 233; SUI group). 

The second group comprised participants who did not initiate substance use and were 

matched with the SUI group in terms of age, biological sex, race/ethnicity, household 

income, and parental education (N = 228; control group) [see supplementary section 1 

for the matching algorithm]. Neither group had initiated substance use by the time of 

their Y0 and Y2 fMRI scans and their only SUI-related difference was later use of 

substances vs. not.  

The second study utilized the remainder of participants with suitable MRI data and non-

missing family and neighborhood variables who were not included in the two groups 

used in the first study and had not initiated substance use at least by the end of the 

second neuroimaging timepoint (N = 2,854). 

1.2. fMRI processing pipeline and exclusions 

For both Y0 and Y2 neuroimaging sessions, resting-state fMRI was acquired in four 

separate runs (~5 min per run, full details are described in [54]). Briefly, images were 

acquired at a spatial resolution of 2.4 mm isotropic and a temporal resolution of 

TR = 800 ms. The entire data pipeline was run through automated scripts on the 

University of Michigan’s high-performance cluster and is described in detail elsewhere 

[24]. Key features of the pipeline include FreeSurfer normalization, ICA-AROMA 
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denoising, CompCor correction, and censoring of high motion frames with a 0.5 mm 

framewise displacement threshold. Visual quality control (QC) was conducted to assess 

registration and normalization steps. Participants with at least one resting-state run at 

both baseline and Y2 that passed QC and more than 250 degrees of freedom left in the 

BOLD timeseries after confound regression and censoring were included in the rsFC 

analysis. For the rsFC analysis, the fMRI data were spatially down-sampled to 333 

parcels in the Gordon parcellation for the cortical regions 55] augmented with 54 

subcortical parcels [56] and 31 cerebellar parcels [57]. Functional connectivity matrices 

were generated using these 418 parcels for each participant for baseline and Y2 data. 

To maximize data per participant, we used all available eligible runs for each participant 

at each timepoint. [Also see supplementary section 4].    

1.3. Variables 

Substance use variables: Variables from two ABCD Release 5.0 tables were used to 

indicate if and when a full dose of substance was used by each participant. The full list 

of these items can be seen in our shared analysis script at 

https://github.com/okardan/future_SUI_rsFC (102 items from the su_y_sui table and 26 

items from the su_y_mypi table were used). Briefly, we used the timeline follow-back 

(TLFB) yearly survey and midyear mypi and xskipout survey items to determine the 

initiation of the use of any cannabis, nicotine, alcohol, or other drugs across different 

methods of administration. If the combined count of total days of any type of nicotine 

use (cigarette, e-cig, hookah, etc.), cannabis use (smoked/vaped), alcohol use (any 

drinks containing alcohol), or other drugs (e.g., synthetic, inhalant, tranquilizer, etc.) 

during the entire cumulative period between sessions was equal to or greater than 1, 

the participant was flagged as having used a substance during that year. Participants 

were counted towards SUI if they reported having used a full dose of nicotine, cannabis, 

alcohol, or other drugs in their brief mid-year survey even if they did not report it later in 

the yearly TLFB. 

Environmental variables: In the second study, we explored the correlations between the 

rsFC pattern identified in the first study and the neighborhood variables that have been 

previously tied to substance use behaviors, adolescent neural development, or both. 

Neighborhood perceived safety was determined by averaging the perceived safety 

reported by the youth and parents (from tables ce_p_nsc and ce_y_nsc) of the ABCD 

Release 5.0. The perceived safety items were averaged over all 4 years within each 

participant but years  with missing values were ignored in the calculation of the mean. 

Neighborhood crime rate was based on violent crimes and drug sales in table 

led_l_crime at baseline, which were compiled by the Inter-University Consortium for 

Political and Social Research from FBI data (census tract level). The fine particulate 

matter (PM2.5) and NO2 air pollution were based on led_l_pm25 and led_l_no2 tables 
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at baseline, respectively (annual average concentration at 1x1 Km2 around the primary 

residence).  The lead exposure variable was based on table led_l_particulat (annual 

average of Lead in ng/m3 at 50m of primary residence at baseline). The area 

deprivation index for each participant’s address was obtained from the weighted sum 

score in the table led_l_adi at baseline (derived from the American Community Survey 

at census tract resolution).     

Family variables and covariates: The parental history of alcohol and drug use variables 

were parental reports from table mh_p_fhx indicating either parent with drug use or 

alcohol use problems. Family conflict was the average of the youth and parental report 

on the Conflict subscale of the Family Environment Scales reported in tables ce_y_fes 

and ce_p_fes. Covariates included data collection site and head motion in the scanner 

during the resting-state fMRI (mean frame displacement). Other covariates were from 

the abcd_p_demo table including parents reports on the participant’s biological sex, 

interview age, race/ethnicity, parental education (highest education), and household 

income. Family ID was not considered in the main analyses to maximize sample sizes, 

but supplementary analyses where only one sibling from each family was randomly 

retained yielded very similar results for both studies (see supplementary results section 

2). 

1.4. Statistical analyses 

In study 1, we utilized a partial least squares (PLS) multivariate analysis [58, 59, 60, 61, 

62, 63] to distinguish the SUI group from the matched Control group based on their 

resting state functional brain connectivity in the years prior to SUI. In brief, the analysis 

results in Latent Variables (LVs) that are linear combinations of functional connections 

across the whole brain whose combinations are differentially instantiated across groups 

(SUI and control) and years (baseline and Y2). [see supplementary section 2 for 

details]. 

In study 2, we projected the identified rsFC pattern from study 1 onto the fMRI 

connectivity data in the remainder of participants (i.e., not among the SUI and Control 

groups) who also had not reported any substance use at baseline or Y2 and had 

complete data for the environmental and family variables (N = 2,854). [see 

supplementary section 3 for details]. We then regressed these brain scores on the 

variables of interest (see section 1.3) in two ways. In both analyses, the model included 

random intercepts for the data collection site, as well as fixed-effects covariates age, 

sex, mean frame displacement, household income, and parental education. The 

difference between the two analyses was whether race/ethnicity was also included as 

covariates. Race/ethnicity variables are generally included to represent some of the 

systematic adversities of the marginalized minority groups in the US ([64], see field-wide 
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debates about using race/ethnicity variables as proxies for exposure to unequal levels 

of adversity, discrimination, and opportunity among marginalized communities in the US 

[65]). However, because some of the neighborhood variables of interest in the current 

study including perceived safety, neurotoxins, and ADI may fall within those very 

adverse experiences, we included the version of the analysis where the variance 

explained by race/ethnicity was not accounted for. 

 

Results 

2.1. Study 1: An rsFC acceleration-like pattern distinguishes prospective SUI from 

control 

There were no significant differences between the SUI group and the control group in 

any of the matched categories (age: p = .681; sex: p = .988; income: p = .473; 

Education: p = .888; non-Hispanic White: p = .508; Black: p = 0.849; Hispanic: p = 

.812). Additionally, there was no difference between the two groups in terms of their 

mean head motion during scans (frame displacement: p = .471).  

We utilized PLS regression to find the rsFC pattern across two timepoints (9–-10 and 

11–-12 years of age) that reliably distinguished prospective SUI teens (N = 233) from 

matched controls (N = 228). The PLS analysis resulted in a significant primary latent 

variable (LV1: p < .001, R2 = .139, σXY = .515). Subsequent LVs were not statistically 

significant based on the permutation tests and are not discussed further. This primary 

LV is shown in the two panels of Figure 1. There is a pattern of connectivity that is 

expressed less in the control group (green bars) compared to the SUI group (yellow bar) 

during both 9–10 years of age and 11–12 years of age. The rsFC pattern is relatively 

wide-spread, but most strongly expressed as higher connectivity within the cingulo-

parietal and between the two components of the somato-motor network, and lower 

connectivity within the cingulo-opercular network, between the cingulo-opercular 

network and the subcortical and the auditory networks, between auditory and 

subcortical networks, and between the cingulo-parietal and the default mode networks.  
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Figure 1. First latent variable (LV) from the partial least squares (PLS) analysis. In 

panel A, the group by time PLS weights in the latent variable are shown. The SUI group 

is in yellow, and the control group is in green; the first two columns show the loadings at 

9–10 years of age and the second pair of columns show the loadings at 11-12 years of 

age. Panel B shows the extent to which the connections across and within brain 

networks load onto the PLS latent variable. The cortical networks are color-coded, and 

their anatomical mapping can be seen in the brain surface maps. Networks are defined 

according to [55]; the ‘unassigned’ set of connections in [55] is labeled here as ‘Orbito 

and Temp Pole’ as it falls in the orbitofrontal cortex and the temporal pole. The somato-

motor networks are labeled with ‘h’ for hand and ‘m’ for mouth. The cross-block 

covariance is shown as σXY, and represents the squared singular value for this LV 

divided by the sum of squared singular values for all LVs. P value is determined by 

1000 permutations, and the R2 here is the squared Pearson’s correlation (between the 

left and right-hand sides of the LV (i.e. U and V scores). Z values in the right panel and 

the error bars in the left panel are estimated using 1000 bootstraps (see supplementary 

methods). 

Notably, the pattern shows an increased expression for both the SUI and control groups 

from younger to older ages. Given the fact that the groups are matched for age (i.e., no 

age difference between the SUI and control groups; t = .411, p = .681), this emerged 

age-dependent contrast between the two groups in the PLS latent variable should be 

investigated. To further substantiate this temporal component, we conducted a post-hoc 

PLS analysis where the mean rsFC across the two timepoints was removed. In this 

way, the longitudinal aspect of the data is removed and instead the rsFC at the two 
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timepoints are averaged for each participant (i.e., as if these were measured across two 

same-day fMRI scan sessions). Therefore, finding a significant PLS LV distinguishing 

the SUI and control groups would require a time-independent rsFC difference across 

the youth. Supporting the importance of the longitudinal information in rsFC for 

differentiating the SUI and control groups, no significant brain saliences emerged from 

this analysis (permutation p = 0.372 for the primary LV, N.S.).   

Importantly, the rsFC pattern identified in Figure 1 distinguishes prospective substance 

users from their non-using peers, but in our definition of SUI we did not separate 

different types of substances. As such, it is not clear whether the pattern is equally 

predictive of different groups of substances or mainly driven by only one group. In order 

to assess the degree to which the rsFC pattern is transdiagnostic of any substances or 

more specific to one type, we plotted how discriminative the expression of the rsFC 

pattern is for different types of substances (alcohol, nicotine, cannabis, other drugs, and 

poly-substance) versus the control group. As can be seen in Figure 2, prospective users 

of cannabis, nicotine, and other drugs, as well as those who used substances from 

multiple of these categories (poly) have significantly higher expression of the pattern 

than the control group, thus indicating some degree of common brain phenotype for 

multiple types of substances. However, the discrimination of the rsFC pattern is not 

homogenous across substance types. Specifically, later use of only alcohol is not 

significantly distinct from the control group. Given that most participants in the SUI 

group belonged to nicotine-only or the poly-substance sub-groups, and the alcohol-only 

and cannabis-only users were limited (i.e., many of the youth who initiated cannabis or 

alcohol use also started using substances of other categories), these potential 

differences should be further investigated when larger sample sizes for each type of 

substance may be available.  
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Figure 2. The expressed resting-state functional connectivity (rsFC) pattern 

across different categories of substances compared to the control group. The 

bars show mean expression score in the control group and each sub-group of the SUI 

group (see Methods section 1.4). * indicates p < .05 compared to the control group after 

correction for multiple pairwise comparisons. The number of participants in each 

(sub)group is shown below the bars. 

2.2. Study 2: Environmental correlates of the rsFC pattern for prospective SUI 

To better characterize this age-dependent rsFC pattern, we projected the pattern onto 

the fMRI connectivity data of the remainder of participants (who were not in either the 

SUI or the control group in the first study; N = 2,854). These participants had rsFC data 

with sufficient quality at both 9–10 and 11–12 years of age, and had not initiated 

substance use during this time, but may or may not have initiated use afterwards 

(undetermined because ABCD Release 5 is a partial data release).  

Table 1 shows the associations between the projected rsFC-SUI pattern and family and 

environmental variables, adjusted for covariates (Model 1 does not include 

race/ethnicity as covariates, Model 2 does include race/ethnicity as covariates). In the 

family domain, we found that higher expression of this age-related rsFC pattern in the 

connectome may be associated with higher parental history of drug use (not significant 

after Holm-Bonferroni correction), but it was not significantly associated with parental 

history of alcohol use or family conflict. 
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Model 1 
Random effects: Site 
Covariates: Age, Sex, Head 
motion, Family income, Parental 
Education 

Model 2 
Random effects: Site 
Covariates: Age, Sex, Head 
motion, Family income, Parental 
Education, Race/Ethnicity 

Predictor β t p β t p 

Family       
     Parent Hx of Drug Use 0.029 1.873 0.061 0.034 2.260 0.024 
     Parent Hx of Alc Use 0.015 0.960 0.337 0.020 1.309 0.191 
     Family Conflict 0.004 0.266 0.790 0.003 0.184 0.854 

Neighborhood (Pollution)       
     PM2.5 0.098 4.161 <0.001* 0.083 3.569 <0.001* 
     NO2 0.049 2.106 0.035 0.012 0.542 0.588 
     Lead 0.046 2.126 0.034 0.012 0.572 0.567 

Neighborhood (SES)       
     Area Deprivation 0.029 1.338 0.181 -0.000 -0.007 0.994 
     Perceived Safety -0.008 -0.489 0.625 0.014 0.883 0.377 
     Crime Rate 0.039 1.133 0.257 -0.006 -0.191 0.848 

Table 1. Results of regressions with the projected rsFC pattern as the outcome in 

the Study 2 youth. β is the standardized estimate for the regression coefficient. The 

difference between Model 1 and 2 is whether race/ethnicity are included as covariates 

or not. Note: N = 2,854 in both models. Grey highlight shows p < .05 within the isolated 

regression, and addition of * shows p < .05 after Holm-Bonferroni correction for all of the 

regressions. Hx = history. 

In the neighborhood pollution domain, higher neighborhood air pollution, specifically fine 

particulate matter concentration (PM2.5), was significantly associated with stronger 

expression of the age-related rsFC pattern across participants. Other pollutants, NO2 

and lead exposure, may have a modest relationship with the expression of the rsFC 

pattern but require further investigation (not significant after Holm-Bonferroni 

correction). In the neighborhood SES domain, we did not find a significant association 

between the rsFC pattern and area deprivation index (ADI), youth and parental reports 

of neighborhood safety, or the crime rate in the neighborhood in either regression 

model. 

Finally, we conducted two sensitivity analyses which showed that the results are robust 

to the number of fMRI runs per participant and exclusion of family members [see 

supplementary section 4]. 

Discussion 

Early initiation of substance use during the teen years places youth at substantially 

higher risk for later substance use disorders and negative health outcomes. In the 

current study, we found an age-dependent pattern of functional brain connectivity 
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across ages 9–10 and 11–12 years that differentiated prospective substance users from 

controls. The pattern of connectivity was expressed more in youth who will initiate 

substance use by age 14 compared to youth who will not, and more at older ages in 

both groups. Furthermore, given the age-related pattern in the PLS latent variable 

(Figure 1) and the fact that the groups are matched for age, prospective substance 

users look like they are shifted ahead in these rsFC patterns compared to their non-

substance-using peers. The temporal pattern therefore may suggest an accelerated 

rsFC maturation in the youth a few years before they initiate substance use. We then 

assessed the neighborhood environmental correlates of this acceleration-like rsFC 

pattern in the remainder of the sample. Our results showed that this pattern was 

associated with dimensions of pollution, especially concentration of fine particulate 

matter in the air proximal to the participants’ residences. These findings are 

strengthened through the use of a substantial set of youth matched across demographic 

variables (N=461) with prospective data on which youth will go on to early substance 

use initiation, the use of a second subsample (N=2,854) to separately examine  the 

environmental correlates of these brain patterns, and sensitivity checks to establish the 

robustness of the data, all within a large-scale, heterogenous sample of youth. 

The current study is novel as few studies have examined associations between the 

whole-brain rsFC and adolescent SUI. However, some of the present results do fit with 

converging work across related research. Prior literature investigating rsFC in 

individuals with substance use disorders suggests that reduced connectivity within 

networks underlying cognitive control (e.g., fronto-parietal, cingulo-opercular, cingulo-

parietal, and salience networks) is associated with precursors to substance use disorder 

(e.g., impulsivity), is found in substance withdrawal states, negatively predicts treatment 

outcome, and appears to be improved by substance use disorder interventions [66]. A 

recent meta-analysis of case-control studies similarly found that substance use disorder 

diagnosis was associated with reduced connectivity within and between the fronto-

parietal and salience networks, as well as reduced connectivity between the limbic and 

default mode networks [67]. Several studies in relatively small samples have 

investigated rsFC correlates of substance use in youth. One study found that reduced 

connectivity between a network of regions involved in cognitive control and a network of 

subcortical regions was associated with problematic substance use in adolescents [68]. 

Other small studies have linked earlier SUI to greater connectivity between the fronto-

parietal network and the limbic network [69] and greater connectivity between the 

fronto-parietal netwrok and nucleus accumbens specifically [70]. Finally, a study in the 

large IMAGEN consortium sample identified patterns of connectivity that predicted 

problematic alcohol use, primarily in females [71]. Although connections that positively 

and negatively predicted alcohol use were widespread across many networks, the 

somato-motor, salience, and subcortical networks were most prominent. Our study 

extends this literature and suggests that altered patterns of functional connectivity are 
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not only related to the pathophysiology and maintenance, but also the prospective early 

initiation, of substance use. 

Our finding that SUI was generally negatively associated with connectivity within the 

cingulo-opercular network, which is linked to cognitive control is consistent with findings 

on rsFC in substance use disorders [66, 67]. However, the higher connectivity within the 

cingulo-parietal network does not fit this interpretation. Additionally, given that the 

pattern of connectivity we identified appears to increase with age, our findings are 

somewhat at odds with the typical interpretation of reduced connectivity in these 

networks as reflecting reduced cognitive control [66]. Cognitive control shows 

substantial improvements with age throughout adolescence [72]. Therefore, the SUI-

linked pattern of negative connectivity we identified is unlikely to represent a signature 

that indicates poorer cognitive control, as it displays the opposite developmental 

pattern, and may instead reflect a distinct signature of accelerated maturation in these 

networks that is triggered by environmental exposures. Our findings are also consistent 

with findings highlighting the importance of somato-motor and subcortical networks for 

predicting alcohol problems in adolescence [71] and the prior finding [68] that reduced 

connectivity between cognitive control and subcortical networks is associated with 

adolescent substance use. While our finding that SUI was strongly predicted by 

connectivity of the somato-motor network may initially seem surprising, it accords with 

recent data emphasizing that this network is particularly sensitive to variation in 

household socioeconomic resources in the ABCD Study [73] and is implicated in 

impulsivity, cognitive functioning, and transdiagnostic psychopathology in adults [74]. 

Interactions between cognitive control and subcortical systems are also critical for 

salience processing and emotion regulation, sensitive to environmental risk factors of 

SUI, and predictive of mental health across the lifespan [75, 76, 77].  

Research on environmental influences on the pace of brain development has shown 

that experiences of threat and potentially also deprivation could accelerate the brain 

maturation processes [78, 18], despite debates about the boundary conditions under 

which stress and disadvantage may accelerate or delay neurodevelopment [79, 19]. 

Some of these accelerated development findings are then interpreted as being adaptive 

from the perspective of the life-history theory. For example, accelerated brain 

development in contexts of threat, disadvantage, and unpredictability may allow youth to 

navigate their environment and regulate their emotions more independently at an earlier 

age [80]. However, this acceleration may shorten periods of peak neural plasticity, 

limiting subsequent learning and adaptation to changing contexts and incurring long-

term costs to health and behavior [but see 65]. The current study suggests factors 

contributing to the accelerated maturation of the functional brain connectivity in early 

adolescence may also contribute to later substance use initiation. Additionally, our 

findings suggest that research in this domain could benefit from expanding to include 
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the neighborhood physical environment as a potential dimension of adversity or 

deprivation (or added as an exposure factor), with implications for adolescent substance 

use. This finding also continues to identify structural, rather than only familial, targets for 

prevention and intervention. 

A possible limitation of the present study is that substance use data was self-reported, 

which may limit the accuracy of actual use behavior. Stigma around substance use or 

concerns about negative consequences of disclosing substance use may contribute to 

hesitancy in endorsing use. Other large-scale, national studies, including Monitoring the 

Future and the Youth Risk Behavior Surveillance System surveys, have used self-report 

substance use behavior. Converging findings across these studies suggests accuracy in 

self-reported substance use. However, a recent study using both self-report substance 

use data and toxicological hair assessment in 696 participants from the ABCD Study 

sample found that 10% of these participants had hair toxicology results inconsistent with 

self-reported substance use [82]. Thus, results from this work suggest that substance 

use may be underestimated from self-report assessments. Another limitation is that use 

across the different categories of substances was unequal and thus did not allow for full 

understanding of how the expression of rsFC patterns is different for types of 

substances (alcohol, nicotine, cannabis, other drugs, and poly-substance) versus the 

control group. The underrepresented Black/African American youth in the final sample 

in both study 1’s groups, as well as in the remainder of the sample used for study 2 was 

another limitation. As stated elsewhere [83, 84], maximizing the large sample size of the 

ABCD Study while simultaneously ensuring data quality and representativeness 

remains a challenge.  

In conclusion, resting-state brain functional connectivity patterns in emerging 

adolescence that are linked to accelerated maturation and environmental exposures 

can predict future substance use initiation in youth.  

Data and Code availability 

Scripts to generate the results and figures in this study are available at 

https://github.com/okardan/future_SUI_rsFC. Data tables used in the scripts can be 

downloaded from the https://nda.nih.gov/study.html?id=2147 after creating an account 

and being approved on an ABCD data use certificate.  

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://github.com/okardan/future_SUI_rsFC
https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


Disclosures 

None. 

Support 

This work was supported by the National Institute on Alcohol Abuse and Alcoholism T32 

AA007477. ASW was supported by K23 DA051561 and R21 MH130939. 

ABCD Acknowledgements 

Data used in the preparation of this article were obtained from the Adolescent Brain 

Cognitive Development (ABCD) Study (abcdstudy.org), held in the NIMH Data Archive 

(NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 

children age 9 to 10 and follow them over 10 years into early adulthood. The ABCD 

Study is supported by the National Institutes of Health and additional federal partners 

under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, 

U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, 

U01DA041156, U01DA041174, U24DA041123, and U24DA041147. A full list of 

supporters is available at abcdstudy.org/nih-collaborators. A listing of participating sites 

and a complete listing of the study investigators can be found at 

abcdstudy.org/principal-investigators.html. ABCD consortium investigators designed 

and implemented the study and/or provided data but did not necessarily participate in 

analysis or writing of this report. This manuscript reflects the views of the authors and 

may not reflect the opinions or views of the NIH or ABCD consortium investigators. 

The ABCD data repository grows and changes over time. The ABCD data used in this 

report came from NIMH Data Archive Digital Object Identifier 10.15154/8873-zj65.   

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

http://abcdstudy.org/
http://abcdstudy.org/nih-collaborators
http://abcdstudy.org/principal-investigators.html
https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


References 

[1] Substance Abuse and Mental Health Services Administration. (2022). Key substance 

use and mental health indicators in the United States: Results from the 2021 National 

Survey on Drug Use and Health (HHS Publication No. PEP22-07-01-005, NSDUH 

Series H-57). Center for Behavioral Health Statistics and Quality, Substance Abuse and 

Mental Health Services Administration. https://www.samhsa.gov/data/report/2021-

nsduh-annual-national-report 

[2] Behrendt, S., Wittchen, H. U., Höfler, M., Lieb, R., & Beesdo, K. (2009). Transitions 

from first substance use to substance use disorders in adolescence: is early onset 

associated with a rapid escalation?. Drug and alcohol dependence, 99(1-3), 68-78. 

[3] Magid, V., & Moreland, A. D. (2014). The role of substance use initiation in 

adolescent development of subsequent substance-related problems. Journal of Child & 

Adolescent Substance Abuse, 23(2), 78-86. 

[4] Jackson, K. M., Barnett, N. P., Colby, S. M., & Rogers, M. L. (2015). The prospective 

association between sipping alcohol by the sixth grade and later substance use. Journal 

of studies on alcohol and drugs, 76(2), 212-221. 

[5] Hardee, J. E., Cope, L. M., Martz, M. E., & Heitzeg, M. M. (2018). Review of 

neurobiological influences on externalizing and internalizing pathways to alcohol use 

disorder. Current behavioral neuroscience reports, 5, 249-262. PMC6876851 

[6] DuRant, R. H., Smith, J. A., Kreiter, S. R., & Krowchuk, D. P. (1999). The 

relationship between early age of onset of initial substance use and engaging in multiple 

health risk behaviors among young adolescents. Archives of pediatrics & adolescent 

medicine, 153(3), 286-291 

[7] Ahuja, M., Awasthi, M., Records, K., & Lamichhane, R. R. (2021). Early age of 

alcohol initiation and its association with suicidal behaviors. Substance Use & Misuse, 

56(9), 1332-1338. 

[8] Clark DB, Martin CS, Cornelius JR. Adolescent-onset substance use dis- orders 

predict young adult mortality. J Adolesc Health 2008;42:637–9. 

[9] Satterthwaite, T. D., Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E. D., 

... & Gur, R. E. (2013). Functional maturation of the executive system during 

adolescence. Journal of Neuroscience, 33(41), 16249-16261. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


[10] Kundu, P., Benson, B. E., Rosen, D., Frangou, S., Leibenluft, E., Luh, W. M., ... & 

Ernst, M. (2018). The integration of functional brain activity from adolescence to 

adulthood. Journal of Neuroscience, 38(14), 3559-3570. 

[11] Gozdas, E., Holland, S. K., Altaye, M., & CMIND Authorship Consortium. (2019). 

Developmental changes in functional brain networks from birth through adolescence. 

Human brain mapping, 40(5), 1434-1444. 

[12] Rapuano, K. M., Rosenberg, M. D., Maza, M. T., Dennis, N. J., Dorji, M., Greene, 

A. S., ... & Casey, B. J. (2020). Behavioral and brain signatures of substance use 

vulnerability in childhood. Developmental cognitive neuroscience, 46, 100878. 

[13] Cope, L. M., Martz, M. E., Hardee, J. E., Zucker, R. A., & Heitzeg, M. M. (2019). 

Reward activation in childhood predicts adolescent substance use initiation in a high-

risk sample. Drug and alcohol dependence, 194, 318-325. 

[14] McCarty, C. A., Rhew, I. C., Murowchick, E., McCauley, E., & Vander Stoep, A. 

(2012). Emotional health predictors of substance use initiation during middle school. 

Psychology of Addictive Behaviors, 26(2), 351. 

[15] Fuhrmann, D., Knoll, L. J., & Blakemore, S. J. (2015). Adolescence as a sensitive 

period of brain development. Trends in cognitive sciences, 19(10), 558-566. 

[16] Konrad, K., Firk, C., & Uhlhaas, P. J. (2013). Brain development during 

adolescence: neuroscientific insights into this developmental period. Deutsches 

Ärzteblatt International, 110(25), 425. 

[17] Váša, F., Romero-Garcia, R., Kitzbichler, M. G., Seidlitz, J., Whitaker, K. J., Vaghi, 

M. M., ... & Bullmore, E. T. (2020). Conservative and disruptive modes of adolescent 

change in human brain functional connectivity. Proceedings of the National Academy of 

Sciences, 117(6), 3248-3253. 

[18] Tooley, U. A., Bassett, D. S., & Mackey, A. P. (2021). Environmental influences on 

the pace of brain development. Nature Reviews Neuroscience, 22(6), 372-384. 

[19] Rakesh, D., Whittle, S., Sheridan, M. A., & McLaughlin, K. A. (2023). Childhood 

socioeconomic status and the pace of structural neurodevelopment: accelerated, 

delayed, or simply different?. Trends in Cognitive Sciences. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


[20] Cambron, C., Kosterman, R., Catalano, R. F., Guttmannova, K., & Hawkins, J. D. 

(2018). Neighborhood, family, and peer factors associated with early adolescent 

smoking and alcohol use. Journal of youth and adolescence, 47, 369-382. 

[21] Cambron, C., Kosterman, R., Rhew, I. C., Catalano, R. F., Guttmannova, K., & 

Hawkins, J. D. (2020). Neighborhood structural factors and proximal risk for youth 

substance use. Prevention science, 21, 508-518. 

[22] Hatzenbuehler, M. L., McLaughlin, K. A., Weissman, D. G., & Cikara, M. (2024). A 

research agenda for understanding how social inequality is linked to brain structure and 

function. Nature Human Behaviour, 1-12. 

[23] Woodward, N. D., & Cascio, C. J. (2015). Resting-state functional connectivity in 

psychiatric disorders. JAMA psychiatry, 72(8), 743-744. 

[24] Sripada, C., Angstadt, M., Taxali, A., Clark, D. A., Greathouse, T., Rutherford, S., ... 

& Heitzeg, M. (2021). Brain-wide functional connectivity patterns support general 

cognitive ability and mediate effects of socioeconomic status in youth. Translational 

psychiatry, 11(1), 571. 

[25] Kardan, O., Kaplan, S., Wheelock, M. D., Feczko, E., Day, T. K., Miranda-

Domínguez, Ó., ... & Rosenberg, M. D. (2022). Resting-state functional connectivity 

identifies individuals and predicts age in 8-to-26-month-olds. Developmental Cognitive 

Neuroscience, 56, 101123. 

[26] Weissman, D. G., Schriber, R. A., Fassbender, C., Atherton, O., Krafft, C., Robins, 

R. W., ... & Guyer, A. E. (2015). Earlier adolescent substance use onset predicts 

stronger connectivity between reward and cognitive control brain networks. 

Developmental cognitive neuroscience, 16, 121-129. 

[27] Wilcox, C. E., Abbott, C. C., & Calhoun, V. D. (2019). Alterations in resting-state 

functional connectivity in substance use disorders and treatment implications. Progress 

in Neuro-Psychopharmacology and Biological Psychiatry, 91, 79-93. 

[28] Tolomeo, S., & Yu, R. (2022). Brain network dysfunctions in addiction: a meta-

analysis of resting-state functional connectivity. Translational psychiatry, 12(1), 41. 

[29] Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature neuroscience, 

20(3), 353-364. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


[30] Miranda-Dominguez, O., Mills, B. D., Carpenter, S. D., Grant, K. A., Kroenke, C. D., 

Nigg, J. T., & Fair, D. A. (2014). Connectotyping: model based fingerprinting of the 

functional connectome. PloS one, 9(11), e111048. 

[31] Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., ... 

& Constable, R. T. (2015). Functional connectome fingerprinting: identifying individuals 

using patterns of brain connectivity. Nature neuroscience, 18(11), 1664-1671. 

[32] Yoo, K., Rosenberg, M. D., Hsu, W. T., Zhang, S., Li, C. S. R., Scheinost, D., ... & 

Chun, M. M. (2018). Connectome-based predictive modeling of attention: Comparing 

different functional connectivity features and prediction methods across datasets. 

Neuroimage, 167, 11-22. 

[33] Dadi, K., Rahim, M., Abraham, A., Chyzhyk, D., Milham, M., Thirion, B., ... & 

Alzheimer's Disease Neuroimaging Initiative. (2019). Benchmarking functional 

connectome-based predictive models for resting-state fMRI. NeuroImage, 192, 115-134. 

[34] Sripada, C., Rutherford, S., Angstadt, M., Thompson, W. K., Luciana, M., Weigard, 

A., ... & Heitzeg, M. (2020). Prediction of neurocognition in youth from resting state 

fMRI. Molecular psychiatry, 25(12), 3413-3421. 

[35] Santiago, C. D., Wadsworth, M. E., & Stump, J. (2011). Socioeconomic status, 

neighborhood disadvantage, and poverty-related stress: Prospective effects on 

psychological syndromes among diverse low-income families. Journal of Economic 

Psychology, 32(2), 218-230. 

[36] Wight, R. G., Aneshensel, C. S., Miller-Martinez, D., Botticello, A. L., Cummings, J. 

R., Karlamangla, A. S., & Seeman, T. E. (2006). Urban neighborhood context, 

educational attainment, and cognitive function among older adults. American journal of 

epidemiology, 163(12), 1071-1078. 

[37] Rakesh, D., Seguin, C., Zalesky, A., Cropley, V., & Whittle, S. (2021). Associations 

between neighborhood disadvantage, resting-state functional connectivity, and behavior 

in the adolescent brain cognitive development study: the moderating role of positive 

family and school environments. Biological Psychiatry: Cognitive Neuroscience and 

Neuroimaging, 6(9), 877-886. 

[38] Meredith, W. J., Cardenas‐Iniguez, C., Berman, M. G., & Rosenberg, M. D. (2022). 

Effects of the physical and social environment on youth cognitive performance. 

Developmental Psychobiology, 64(4), e22258. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


[39] Kind, A. J., & Buckingham, W. R. (2018). Making neighborhood-disadvantage 

metrics accessible—the neighborhood atlas. The New England journal of medicine, 

378(26), 2456. 

[40] Tooley, U. A., Mackey, A. P., Ciric, R., Ruparel, K., Moore, T. M., Gur, R. C., ... & 

Bassett, D. S. (2020). Associations between neighborhood SES and functional brain 

network development. Cerebral Cortex, 30(1), 1-19. 

[41] Hackman, D. A., Cserbik, D., Chen, J. C., Berhane, K., Minaravesh, B., McConnell, 

R., & Herting, M. M. (2021). Association of local variation in neighborhood disadvantage 

in metropolitan areas with youth neurocognition and brain structure. JAMA pediatrics, 

175(8), e210426-e210426. 

[42] Rakesh, D., & Whittle, S. (2021). Socioeconomic status and the developing brain–A 

systematic review of neuroimaging findings in youth. Neuroscience & Biobehavioral 

Reviews, 130, 379-407. 

[43] Michael, C., Tillem, S., Sripada, C. S., Burt, S. A., Klump, K. L., & Hyde, L. W. 

(2023). Neighborhood poverty during childhood prospectively predicts adolescent 

functional brain network architecture. Developmental Cognitive Neuroscience, 64, 

101316.  

[44] Mennis, J., Stahler, G. J., & Mason, M. J. (2016). Risky substance use 

environments and addiction: a new frontier for environmental justice research. 

International journal of environmental research and public health, 13(6), 607. 

[45] Mennis, J., Mason, M., Light, J., Rusby, J., Westling, E., Way, T., ... & Flay, B. 

(2016). Does substance use moderate the association of neighborhood disadvantage 

with perceived stress and safety in the activity spaces of urban youth?. Drug and 

Alcohol Dependence, 165, 288-292. 

[46] Herting, M. M., Younan, D., Campbell, C. E., & Chen, J. C. (2019). Outdoor air 

pollution and brain structure and function from across childhood to young adulthood: a 

methodological review of brain MRI studies. Frontiers in public health, 7, 332. 

[47] Miller, J. G., Dennis, E. L., Heft-Neal, S., Jo, B., & Gotlib, I. H. (2022). Fine 

particulate air pollution, early life stress, and their interactive effects on adolescent 

structural brain development: A longitudinal tensor-based morphometry study. Cerebral 

Cortex, 32(10), 2156-2169. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


[48] Kardan, O., Sereeyothin, C., Schertz, K. E., Angstadt, M., Weigard, A. S., Berman, 

M. G., ... & Rosenberg, M. D. (2023). Neighborhood air pollution is negatively 

associated with neurocognitive maturation in early adolescence. bioRxiv. 

[49] Marshall, A. T., McConnell, R., Lanphear, B. P., Thompson, W. K., Herting, M. M., 

& Sowell, E. R. (2021). Risk of lead exposure, subcortical brain structure, and cognition 

in a large cohort of 9-to 10-year-old children. PloS one, 16(10), e0258469. 

[50] Marshall, A. T., Betts, S., Kan, E. C., McConnell, R., Lanphear, B. P., & Sowell, E. 

R. (2020). Association of lead-exposure risk and family income with childhood brain 

outcomes. Nature medicine, 26(1), 91-97. 

[51] Margolis, E. T., & Gabard‐Durnam, L. J. (2024). Prenatal influences on postnatal 

neuroplasticity: Integrating DOHaD and sensitive/critical period frameworks to 

understand biological embedding in early development. Infancy. 

[52] Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. 

M., ... & Dale, A. M. (2018). The adolescent brain cognitive development (ABCD) study: 

imaging acquisition across 21 sites. Developmental cognitive neuroscience, 32, 43-54. 

[53] Lisdahl, K. M., Sher, K. J., Conway, K. P., Gonzalez, R., Ewing, S. W. F., Nixon, S. 

J., ... & Heitzeg, M. (2018). Adolescent brain cognitive development (ABCD) study: 

Overview of substance use assessment methods. Developmental cognitive 

neuroscience, 32, 80-96. 

[54] Hagler Jr, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., ... 

& Dale, A. M. (2019). Image processing and analysis methods for the Adolescent Brain 

Cognitive Development Study. Neuroimage, 202, 116091. 

[55] Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & 

Petersen, S. E. (2016). Generation and evaluation of a cortical area parcellation from 

resting-state correlations. Cerebral cortex, 26(1), 288-303. 

[56] Tian, Y., Margulies, D. S., Breakspear, M., & Zalesky, A. (2020). Topographic 

organization of the human subcortex unveiled with functional connectivity 

gradients. Nature neuroscience, 23(11), 1421-1432. 

[57] Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A 

probabilistic MR atlas of the human cerebellum. Neuroimage, 46(1), 39-46.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


[58] Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least 

Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage, 56(2), 

455-475. 

[59] McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of 

neuroimaging data: applications and advances. Neuroimage, 23, S250-S263. 

[60] Eckart, C., & Young, G. (1936). The approximation of one matrix by another of 

lower rank. Psychometrika, 1(3), 211-218. 

[61] Kardan, O., Reuter-Lorenz, P. A., Peltier, S., Churchill, N. W., Misic, B., Askren, M. 

K., ... & Berman, M. G. (2019). Brain connectivity tracks effects of chemotherapy 

separately from behavioral measures. NeuroImage: Clinical, 21, 101654. 

[62] Kardan, O., Stier, A. J., Cardenas-Iniguez, C., Schertz, K. E., Pruin, J. C., Deng, Y., 

... & Rosenberg, M. D. (2022). Differences in the functional brain architecture of 

sustained attention and working memory in youth and adults. Plos Biology, 20(12), 

e3001938. 

[63] Kardan, O., Stier, A. J., Layden, E. A., Choe, K. W., Lyu, M., Zhang, X., ... & 

Berman, M. G. (2023). Improvements in task performance after practice are associated 

with scale-free dynamics of brain activity. Network Neuroscience, 1-63. 

[64] Vedechkina, M., Astle, D. E., & Holmes, J. (2024). Dimensions of early life adversity 

and their associations with functional brain organisation. Imaging Neuroscience, 2, 1-25.  

[65] Cardenas-Iniguez, C., & Gonzalez, M. R. (2024). Recommendations for the 

responsible use and communication of race and ethnicity in neuroimaging research. 

Nature Neuroscience, 1-14.  

[66] Wilcox, C. E., Abbott, C. C., & Calhoun, V. D. (2019). Alterations in resting-state 

functional connectivity in substance use disorders and treatment implications. Progress 

in Neuro-Psychopharmacology and Biological Psychiatry, 91, 79-93. 

[67] Taebi, A., Becker, B., Klugah‐Brown, B., Roecher, E., Biswal, B., Zweerings, J., & 

Mathiak, K. (2022). Shared network‐level functional alterations across substance use 

disorders: A multi‐level kernel density meta‐analysis of resting‐state functional 

connectivity studies. Addiction Biology, 27(4), e13200. 

[68] Rakesh, D., Lv, J., Zalesky, A., Allen, N. B., Lubman, D. I., Yücel, M., & Whittle, S. 

(2021). Altered resting functional connectivity patterns associated with problematic 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


substance use and substance use disorders during adolescence. Journal of affective 

disorders, 279, 599-608. 

[69] Lee, T. H., & Telzer, E. H. (2016). Negative functional coupling between the right 

fronto-parietal and limbic resting state networks predicts increased self-control and later 

substance use onset in adolescence. Developmental cognitive neuroscience, 20, 35-42. 

[70] Weissman, D. G., Schriber, R. A., Fassbender, C., Atherton, O., Krafft, C., Robins, 

R. W., ... & Guyer, A. E. (2015). Earlier adolescent substance use onset predicts 

stronger connectivity between reward and cognitive control brain networks. 

Developmental cognitive neuroscience, 16, 121-129. 

[71] Yip, S. W., Lichenstein, S. D., Liang, Q., Chaarani, B., Dager, A., Pearlson, G., ... & 

Garavan, H. (2023). Brain networks and adolescent alcohol use. JAMA psychiatry, 

80(11), 1131-1141. 

[72] Tervo-Clemmens, B., Calabro, F. J., Parr, A. C., Fedor, J., Foran, W., & Luna, B. 

(2023). A canonical trajectory of executive function maturation from adolescence to 

adulthood. Nature communications, 14(1), 6922. 

[73] Michael, C., Taxali, A., Angstadt, M., Kardan, O., Weigard, A., Molloy, M. F., ... & 

Sripada, C. (2023). Socioeconomic resources in youth are linked to divergent patterns 

of network integration and segregation across the brain’s transmodal axis. bioRxiv. 

[74] Kebets, V., Holmes, A. J., Orban, C., Tang, S., Li, J., Sun, N., ... & Yeo, B. T. 

(2019). Somatosensory-motor dysconnectivity spans multiple transdiagnostic 

dimensions of psychopathology. Biological psychiatry, 86(10), 779-791. 

[75] Kovner, R., Oler, J. A., & Kalin, N. H. (2019). Cortico-limbic interactions mediate 

adaptive and maladaptive responses relevant to psychopathology. American Journal of 

Psychiatry, 176(12), 987-999. 

[76] Brieant, A. E., Sisk, L. M., & Gee, D. G. (2021). Associations among negative life 

events, changes in cortico-limbic connectivity, and psychopathology in the ABCD Study. 

Developmental Cognitive Neuroscience, 52, 101022. 

[77] Gard, A. M., Maxwell, A. M., Shaw, D. S., Mitchell, C., Brooks‐Gunn, J., 

McLanahan, S. S., ... & Hyde, L. W. (2021). Beyond family‐level adversities: Exploring 

the developmental timing of neighborhood disadvantage effects on the brain. 

Developmental Science, 24(1), e12985. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


[78] Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological 

aging in childhood and adolescence following experiences of threat and deprivation: A 

systematic review and meta-analysis. Psychological bulletin, 146(9), 721. 

[79] Hyde, L. W., Bezek, J. L., & Michael, C. (2024). The future of neuroscience in 

developmental psychopathology. Development and Psychopathology, 1-16. 

[80] Callaghan, B. L., & Tottenham, N. (2016). The stress acceleration hypothesis: 

Effects of early-life adversity on emotion circuits and behavior. Current opinion in 

behavioral sciences, 7, 76-81.  

[81] Stearns, S. C., & Rodrigues, A. M. (2020). On the use of “life history theory” in 

evolutionary psychology. Evolution and Human Behavior, 41(6), 474-485. 

[82] Wade, N. E., Tapert, S. F., Lisdahl, K. M., Huestis, M. A., & Haist, F. (2022). 

Substance use onset in high-risk 9–13 year-olds in the ABCD study. Neurotoxicology 

and teratology, 91, 107090. 

[83] Gard, A. M., Hyde, L. W., Heeringa, S. G., West, B. T., & Mitchell, C. (2023). Why 

weight? Analytic approaches for large-scale population neuroscience data. 

Developmental Cognitive Neuroscience, 59, 101196. 

[84] Chen, J., Tam, A., Kebets, V., Orban, C., Ooi, L. Q. R., Asplund, C. L., ... & Yeo, B. 

T. (2022). Shared and unique brain network features predict cognitive, personality, and 

mental health scores in the ABCD study. Nature communications, 13(1), 1-17. 

 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308134
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Material 

1. Study 1: Constructing the matched control group 

The matching was conducted by first generating a pool of all non-SUI participants for 

each SUI participant who were of the same biological sex, with age difference no more 

than 6 months, same bracket in household income, same race/ethnicity, and with 

highest parental education difference no more than 5 years. Income brackets were as 

follows: 1 = Less than $5,000 ; 2 = $5,000 through $11,999 ; 3 = $12,000 through 

$15,999 ; 4 = $16,000 through $24,999 ; 5 = $25,000 through $34,999 ; 6 = $35,000 

through $49,999 ; 7 = $50,000 through $74,999 ; 8 = $75,000 through $99,999 ; 9 = 

$100,000 through $199,999 ; 10 = $200,000 and greater. Next, a participant from each 

of those pools was randomly selected. The process was repeated 10000 times and the 

list with the greatest number of unique participants constituted the control group used in 

the study (N = 228).  The script used for the matching is shared along with the other 

analysis scripts at https://github.com/okardan/future_SUI_rsFC. There were no 

differences between the SUI group and the control group in any of the matched 

categories (age: p = .681; sex: p = .988; income: p = .473; education: p = .888; non-

Hispanic White: p = .508; Black: p = 0.849; Hispanic: p = .812).  

2. Study 1: Partial Least Squares analysis 

We utilized a partial least squares (PLS) multivariate analysis to distinguish the SUI 

group from the matched Control group based on their resting state functional brain 

connectivity in the years prior to SUI. The PLS implementation software was 

downloaded from Randy McIntosh’s lab at: https://www.rotman-

baycrest.on.ca/index.php?section=84. Partial least squares (PLS; [58, 59]) analysis can 

identify the set of brain functional connections that are maximally related to the group-

by-time structure of the data. In PLS, the goal of the analysis is to find weighted patterns 

of the original variables in the two sets (termed latent variables or LVs) that maximally 

co-vary with one another. In Task PLS used here (see [59]), these LVs represent a 

differentiation between levels of experimental design (i. e., two timepoints: baseline and 

Y2, and two groups: SUI and controls). PLS is computed via singular value 

decomposition (SVD; [60]) applied to the covariance between the rsFC and the group-

by-time contrasts. Applying mean-centering to either groups or timepoints can 

emphasize the temporal contrast versus the group differences, respectively. In the 

current analysis, the goal was to allow for a data-driven group-by-time contrast to 

emerge (i.e. allowing for potential group-by-time interaction). Therefore, only the grand 

mean was removed from the rsFC values prior to calculation of the covariance matrix 

X’Y, (where X represents the rsFC matrices and Y represents the group-by-time 

contrasts). X’Y is then subject to singular value decomposition: 
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SVD(X’Y) = USV’ 

Resulting in a set of orthonormal matrices U and V, as well as a diagonal matrix S of 

singular values. The number of LVs from the analysis is equal to the smallest rank of its 

constituent matrices (the rank of the covariance matrix X'Y, which is equal to 4, the 

degrees of freedom in the experimental design in the current study). The LVs are linear 

combinations of functional connections across the whole brain whose combinations are 

differentially instantiated for different groups * time cells. To test the significance of each 

LV, 1000 covariance matrices were generated by randomly permuting condition labels 

for the X variables (rsFC). These covariance matrices embody the null hypothesis that 

there is no relationship between X and Y variables. They were subjected to SVD as 

before resulting in a null distribution of singular values. The significance of the original 

LV was assessed with respect to this null distribution. We only interpreted the primary 

LV in this study, as the other three LVs did not pass the p < .01 threshold for 

significance. The weights in the U singular vector containing the contribution of brain 

connections to the LV are often referred to as salience. 

The reliability with which each functional connection contributes to the overall 

multivariate pattern (i.e. confidence interval for saliences) was determined with 

bootstrapping. A set of 1000 bootstrap samples was created by re-sampling subjects 

with replacement within each group*time cell (i.e. preserving condition labels). Each 

new covariance matrix was subjected to SVD as before, and the singular vector weights 

from the resampled data were used to build a sampling distribution of the saliences from 

the original data set. Saliences that are highly dependent on which participants are 

included in the analysis will have wide distributions. We then calculated the Bootstrap 

Ratio Z value by dividing saliences by their estimated standard errors from the 

bootstraps. The threshold of |Z| > 3 was used for assessing statistical significance of 

connections as in our prior work [61, 62, 63]. To better visualize the network level 

contributions to the LV, the proportion of |Z| > 3 connections within each network and 

also between each pair of networks are presented in Figure 1. 

After the PLS, to assess how discriminative the expression of the rsFC pattern is for 

different types of substances (alcohol, nicotine, cannabis, other drugs, and poly-

substance) versus the control group, we calculated a single discriminative expression 

score for the primary latent variable per participant: 

rsFC pattern expression score = U1X’V1(diff) 

Where X is a 2-by-87153 matrix that contains the connectomes (i.e., flattened rsFC 

matrices) at baseline and Y2 for the participant, U1 (1-by-87153) is the salience vector 

of the primary LV from Study 1, and V1(diff) (2-by-1) is the difference between SUI and 

control group’s right-hand singular vectors in the primary LV (see [59]). 
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3. Study 2: Mixed-effects regression analyses 

In study 2, we projected the identified rsFC pattern from study 1 onto the fMRI 

connectivity data in the remainder of participants (i.e., not among the SUI and Control 

groups) who also had not reported any substance use at baseline or Y2 and had 

complete data for the environmental and family variables included in the regressions (N 

= 2,854). This was done again by multiplying the brain salience matrix (U) from the first 

study (only primary LV) by the rsFC matrix of the study 2 participants at both baseline 

and Y2 and calculating the weighted sum. The summation weights were the PLS 

weights from Study 1 corresponding to the SUI group minus the control group so higher 

projected score corresponds to a Study 2 participant’s connectomes resembling the SUI 

group more compared to the control group: 

rsFC pattern projected score = U1X’V1(diff) 

Where X is a 2-by-87153 matrix that contains the connectomes at baseline and Y2 for 

the participant in Study 2, U1 (1-by-87153) is the salience vector of the primary LV from 

Study 1, and V1(diff) (2-by-1) is the difference between SUI and control group’s right-hand 

singular vectors in the primary LV from Study 1. 

We then regressed these brain scores on the variables of interest (see section 1.3) in 

two ways. Both analyses involved mixed-effects regressions implemented using lmer 

function in R package lme4 where standardized beta and p-values were calculated 

using lmerTest. In both analyses, the model included random intercepts for the data 

collection site, as well as fixed-effects covariates age, sex, mean frame displacement, 

household income, and parental education. The difference between the two analyses 

was whether race/ethnicity was also included as covariates. Race/ethnicity variables are 

generally included to represent some of the systematic adversities of the marginalized 

minority groups in the US ([64], see field-wide debates about using race/ethnicity 

variables as proxies for exposure to unequal levels of adversity, discrimination, and 

opportunity among marginalized communities in the US [65]). However, because some 

of the neighborhood variables of interest in the current study including perceived safety, 

neurotoxins, and ADI may fall within those very adverse experiences, we included the 

version of the analysis where the variance explained by race/ethnicity was not 

accounted for. 

4. Sensitivity analyses: exclusion of family members and equalizing the amount 

of fMRI data do not change the results 

To maximize the sample size and the amount of fMRI data in the main analyses in 

studies 1 and 2, we utilized all available fMRI runs per participant and included all 
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participants regardless of family nesting due to siblings. We conducted two sensitivity 

analyses to assess these decisions’ potential impact on the results. 

In the first analysis, we equalized the amount of data per participant to one resting-state 

fMRI run per time-point (i.e., one random run per timepoint was used for participants 

who had multiple fMRI high quality runs per timepoint). Supplementary Figure S1 shows 

the PLS primary latent variable in this analysis. Overall, the rsFC pattern was highly 

correlated with the pattern in the main analysis (r = .80, p < .001), and the emerged LV 

was similar to the main results (i.e., comparing the group by time loadings between 

Figure 1 and supplementary Figure S1). We then projected this rsFC pattern onto the 

remainder of the participants and conducted similar regression analyses as in Study 2. 

The results suggested increased expression of the pattern with higher concentrations of 

PM2.5, though the other variables in the family, neighborhood pollution, and 

neighborhood SES domains were not significant (see supplementary Table S1). 

In the second sensitivity analysis we randomly retained only one sibling from each 

family and conducted the PLS (N = 187 SUI and N = 180 control) and the subsequent 

regression analyses (N = 2,319) on the reduced sample. Again, the primary latent 

variable in this analysis resembled the main PLS results, with the rsFC pattern highly 

correlated between the two analyses (r = .73, p  < .001). The results for this analysis 

were consistent with the main analysis and are shown in supplementary Figure S2 and 

Table S2. 
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Figure S1. Results of the Partial Least Squares analysis when one run at each 

time-point for each participant was used to equalize the amount of data used per 

participant. In the left panel, the group by time PLS weights in the latent variable are 

shown. The SUI group is in yellow, and the control group is in green; the first two 

columns show the loadings at 9–10 years of age and the second pair of columns show 

the loadings at 11-12 years of age. The right panel shows the extent to which the 

connections across and within brain networks load onto the PLS latent variable. The 

cortical networks are color-coded, and their anatomical mapping can be seen in the 

brain surface maps. Networks are defined according to [55]; the ‘unassigned’ set of 

connections in [55] is labeled here as ‘Orbito and Temp Pole’ as it falls in the 

orbitofrontal cortex and the temporal pole. The somato-motor networks are labeled with 

‘h’ for hand and ‘m’ for mouth. The cross-block covariance is shown as σXY, and 

represents the squared singular value for this LV divided by the sum of squared singular 

values for all LVs. P value is determined by 1000 permutations, and the R2 here is the 

squared Pearson’s correlation (between the left and right-hand sides of the LV (i.e. U 

and V scores). Z values in the right panel and the error bars in the left panel are 

estimated using 1000 bootstraps (see methods). 
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Model 1 
Random effects: Site 
Covariates: Age, Sex, Head 
motion, Family income, Parental 
Education 

Model 2 
Random effects: Site 
Covariates: Age, Sex, Head 
motion, Family income, Parental 
Education, Race/Ethnicity 

Predictor β t p β t p 

Family       
     Parent Hx of Drug Use 0.011 0.701 0.483 0.020 1.285 0.199 
     Parent Hx of Alc Use 0.002 0.139 0.891 0.002 0.152 0.879 
     Family Conflict 0.009 0.581 0.562 0.011 0.732 0.464 

Neighborhood (Pollution)       
     PM2.5 0.075 3.037 0.002* 0.063 2.649 0.008 
     NO2 0.038 1.580 0.114 0.020 0.859 0.390 
     Lead 0.037 1.638 0.101 0.018 0.813 0.416 

Neighborhood (SES)       
     Area Deprivation 0.019 0.847 0.397 0.001 0.058 0.954 
     Perceived Safety -0.014 -0.813 0.416 -0.008 -0.484 0.628 
     Crime Rate 0.041 1.147 0.252 0.016 0.458 0.647 

Table S1. Results of regressions with the expressed rsFC-SUI pattern from the 

equal amount of fMRI as the outcome. β is the standardized estimate for the 

regression coefficient. The difference between Model 1 and 2 is whether race/ethnicity 

are included as covariates or not. Note: N = 2,854 in both models. Grey highlight shows 

p < .05 within the isolated regression, and addition of * shows p < .05 after Holm-

Bonferroni correction for all of the regressions. 
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Figure S2. Results of the Partial Least Squares analysis when only one member 

from each family was used in the analysis. In the left panel, the group by time PLS 

weights in the latent variable are shown. The SUI group is in yellow, and the control 

group is in green; the first two columns show the loadings at 9–10 years of age and the 

second pair of columns show the loadings at 11-12 years of age. The right panel shows 

the extent to which the connections across and within brain networks load onto the PLS 

latent variable. The cortical networks are color-coded, and their anatomical mapping 

can be seen in the brain surface maps. Networks are defined according to [55]; the 

‘unassigned’ set of connections in [55] is labeled here as ‘Orbito and Temp Pole’ as it 

falls in the orbitofrontal cortex and the temporal pole. The somato-motor networks are 

labeled with ‘h’ for hand and ‘m’ for mouth. The cross-block covariance is shown as σXY, 

and represents the squared singular value for this LV divided by the sum of squared 

singular values for all LVs. P value is determined by 1000 permutations, and the R2 

here is the squared Pearson’s correlation (between the left and right-hand sides of the 

LV (i.e. U and V scores). Z values in the right panel and the error bars in the left panel 

are estimated using 1000 bootstraps (see methods). 
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Model 1 
Random effects: Site 
Covariates: Age, Sex, Head 
motion, Family income, Parental 
Education 

Model 2 
Random effects: Site 
Covariates: Age, Sex, Head 
motion, Family income, Parental 
Education, Race/Ethnicity 

Predictor β t p β t p 

Family       
     Parent Hx of Drug Use 0.017 1.117 0.199 0.027 1.797 0.072 
     Parent Hx of Alc Use 0.019 1.283 0.895 0.028 1.922 0.055 
     Family Conflict 0.034 2.216 0.027 0.032 2.159 0.031 

Neighborhood (Pollution)       
     PM2.5 0.096 4.046 <0.001* 0.079 3.452 <0.001* 
     NO2 0.056 2.417 0.0157 0.018 0.794 0.428 
     Lead 0.060 2.657 0.008 0.026 1.172 0.241 

Neighborhood (SES)       
     Area Deprivation 0.049 2.186 0.029 0.021 0.968 0.383 
     Perceived Safety -0.036 -2.228 0.026 -0.014 -0.872 0.744 
     Crime Rate 0.029 0.758 0.449 -0.020 -0.560 0.576 

Table S2. Results of regressions with the expressed rsFC-SUI pattern from the 

one-family-member analysis as the outcome. β is the standardized estimate for the 

regression coefficient. The difference between Model 1 and 2 is whether race/ethnicity 

are included as covariates or not. Note: N = 2,319 in both models (due to exclusion of 

siblings). Grey highlight shows p < .05 within the isolated regression, and addition of * 

shows p < .05 after Holm-Bonferroni correction for all of the regressions. 
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