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Abstract 
Metabolic-dysfunction associated steatohepatitis (MASH) is a major cause of liver-related morbidity and 
mortality, yet treatment options are limited. Manual scoring of liver biopsies, currently the gold standard 
for clinical trial enrollment and endpoint assessment, suffers from high reader variability. This study 
represents the most comprehensive multi-site analytical and clinical validation of an AI-based pathology 
system, Artificial Intelligence-based Measurement of Nonalcoholic Steatohepatitis (AIM-NASH), to assist 
pathologists in MASH trial histology scoring. AIM-NASH demonstrated high repeatability and 
reproducibility compared to manual scoring. AIM-NASH-assisted reads by expert MASH pathologists 
were superior to unassisted reads in accurately assessing inflammation, ballooning, NAS >= 4 with >=1 in 
each score category, and MASH resolution, while maintaining non-inferiority in steatosis and fibrosis 
assessment. These findings suggest AIM-NASH could mitigate reader variability, providing a more 
reliable assessment of therapeutics in MASH clinical trials. 
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Main 
 
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly termed nonalcoholic fatty liver 
disease (NAFLD) [1] is emerging as a significant global health challenge, affecting approximately a 
quarter of the global population [2]. The progression of MASLD to Metabolic dysfunction-associated 
steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH) has emerged as the 
foremost reason for liver transplants among women [3], with predictions suggesting it may soon account 
for the leading overall cause of liver transplant [4]. The urgency of the situation is underscored by the 
limited number of approved therapeutic interventions by the Food and Drug Administration (FDA) and 
European Medicines Agency (EMA) for MASH, even though it affects a significant number of patients 
worldwide. The landscape of drug development in this domain is fraught with trials that have shown 
borderline results or outright failures based on liver histology. 
 
The challenge is exacerbated by the absence of a broadly reliable and validated histologic scoring 
mechanism to ascertain patient suitability for clinical trials and to evaluate the success of experimental 
treatments. Histologic-based assessment of liver biopsies is currently the gold standard for MASH 
diagnosis. This diagnosis is based on the presence of specific histologic patterns observed in the 
absence of significant alcohol consumption, and the patterns with extent of fibrosis play a pivotal role in 
disease staging. The FDA has recognized that alterations in these histologic attributes, observable 
through liver biopsies, are likely indicative of clinical benefits [5]. Consequently, these score-based 
disease activity and stage changes are deemed viable surrogate endpoints in MASH clinical trials for 
accelerated approvals [6, 7]. Key instruments like the MASLD activity score (MAS) by the MASH Clinical 
Research Network (CRN) facilitate disease activity measurement [8], while the CRN fibrosis scale 
evaluates fibrosis progression or improvement and is an influential predictor of long-term outcomes [9]. 
Regulatory bodies such as the FDA and the EMA predominantly rely on the CRN MASH measurement 
systems to determine surrogate endpoints [6, 7, 10].  
 
The recent emergence of noninvasive tests (NITs) has led to an initiative to replace biopsies with NITs 
and has been discussed widely in the MASH community. However, there are no NITs or combination of 
NITs that are currently analytically or clinically validated for broad use in trials, which demonstrate high 
sensitivity, specificity, and reproducible grading and staging of patients with MASH for use as surrogate 
endpoints in MASH clinical trials. Acquiring this validation data, including clinical outcomes across 
multiple drug candidates, will take years. Many biopsy-based MASH clinical trials are currently in phase 2 
and approaching phase 3 trials, and the recent accelerated approval of Resmetirom was achieved 
through consensus scoring and several re-read methods utilized to confirm histologic score-based 
primary endpoints [11]. This burdensome approach can be necessary to overcome questions around 
reader bias and variability, which can affect accuracy of histologic-based score change and, therefore, 
determination of whether a drug candidate has met its primary endpoint or to measure and monitor its 
efficacy. Additionally, the current gold standard approach has been shown to still be subject to significant 
inter-panel variability, demonstrating that there is still lack of standardization and therefore of reliable, 
accurate scoring [12]. Full approval will not occur until clinical outcomes show a favorable benefit to risk 
profile in treated patients, when these results are collected over multiple years. This significant read 
variability is a major risk for potentially effective treatments to fail in phase 2b trials which have relatively 
low sample sizes, and phase 3 trials, or to require very costly and burdensome, multiple read strategies to 
confirm and measure efficacy. Therefore, there is still an urgent unmet need for a tool that can be used by 
pathologists to enroll and measure histologic change for accelerated approval accurately, precisely, and 
in a standardized manner. In addition, it will be important to understand the relationship between 
histologic-based assessment in validating NITs for diagnostic contexts of use.  
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The interpretation of the current scoring systems present significant challenges to clinical trial outcome 
analysis, particularly concerning reproducibility [13–17]. Given that the gold standard endpoint for 
accelerated approval is a difference in histological scores from baseline to treatment timepoints, inherent 
intra and inter-reader variability can confound the measurement of true drug effect [18]. This variability 
can significantly undermine the power of a study, posing challenges especially in trials with smaller 
sample sizes, such as phase 1 and 2 trials. To circumvent this limitation, trials are often required to be 
over-powered, adding cost and time to trials. Such variability likely arises due to discrepancies in feature 
interpretation, feature heterogeneity within a biopsy sample and the quantification of these features using 
scoring systems [19]. Additionally, the current scoring criteria were not developed to quantify change in 
disease activity.  
 
The rapidly evolving field of artificial intelligence (AI) offers a promising avenue to address these 
challenges. AI has demonstrated significant advancements in numerous medical disciplines, with a 
marked rise in CE marked (a standard for European health, safety, performance and environmental 
requirements) and FDA approved in vitro diagnostics for AI-based medical devices and algorithms from 
2015 to 2020 [20] and the FDA approval for an AI product in digital pathology in 2021 for Paige Prostate 
[21]. However, the field of quantitative pathology in MASH therapeutic development still awaits a tool that 
is scalable, reproducible, and validated. Recently, we described the development and verification of the 
AIM-NASH (Artificial Intelligence-based Measurement of Nonalcoholic Steatohepatitis), AI-based clinical 
trial tool [22]. In this previous body of work, the algorithm was developed and verified (without any 
pathologist review) for accuracy compared to a panel of manual readers to confirm that the tool was 
ready to be locked. As proof of concept, the algorithm alone (without pathologist review) was also 
retrospectively deployed on ATLAS clinical trial dataset to demonstrate the utility of the tool. The work 
presented here represents extensive, multi-site analytical and clinical validation of the algorithm alone 
and as an assist to MASH pathologists, as it would be used prospectively in a clinical trial, with each 
histologic component score being assessed individually and as a part of histologic-based composite 
inclusion criteria and endpoint determination. This validation study, the largest known of its kind, included 
approximately 13,000 independent reads for over 1400 biopsies across 4 completed, global MASH 
clinical trials with various drug mechanisms of action. The study was performed across multiple sites 
(internal and external) and included samples with extensive variation in disease activity as well as biopsy, 
staining and scanning quality. Multiple, prospectively collected pathologist reads per case (where readers 
were either unassisted or assisted by AI) were collected from MASH expert pathologists, including reads 
from an independent "gold standard” consensus group. These reads were used to externally and robustly 
test both the algorithm alone and as used as an aid to pathologists (Figure 1A), in representative trial 
settings. This extensive collection of AIM-NASH validation studies and analyses was designed in 
partnership with FDA, EMA, and multiple experts from academia and drug development over several 
years of collaborative work. The aim was to demonstrate the tool’s ability to provide a reliable, efficient 
solution for pathologists to address the urgent unmet need for accurate, standardized, clinical trial 
enrollment and histologic endpoint assessments, paving the way for more streamlined MASH drug 
approval pathways. 
Once a tool such as this is analytically and clinically validated and is fully qualified by FDA and EMA in 
the Drug Development Tool (DDT) and Novel Methodologies for Drug Development programs, it is then 
more broadly available for use by pathologists in place of manual scoring for all histologic assessments in 
MASH trials. 
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Results 
 
Overlay Validation Analyses 

Up to 160 frames per feature (steatosis, lobular inflammation, hepatocellular ballooning, fibrosis, H&E 
artifact, and trichrome artifact) were evaluated in this study (some frames were enrolled for multiple 
features). Distribution of frames based on slide level score (GT scores) are listed in Table S1 and 
distribution of frames based on frame level scores (collected from the enrollment pathologist) are listed in 
Table S2. For each frame and each feature, the pathologists indicated whether the feature was present 
(yes/no), shown in Table S3. 
The acceptance criteria for true positive (TP; underestimation) success were met for all feature overlays 
except for hepatocellular ballooning, where it was narrowly missed, and the mean success rates were all 
above 0.85. H&E artifact TP success rate was 0.97 (95% CI, 0.95, 0.99), trichrome artifact was 0.99 (95% 
CI, 0.97, 1), lobular inflammation was 0.94 (95% CI, 0.92, 0.96), steatosis 0.96 (95% CI, 0.93, 0.98) and 
fibrosis 0.97 (95% CI, 0.95, 0.99). For hepatocellular ballooning the overall TP success rate was 0.87, with 
95% CI (0.83,0.91). The acceptance criteria for false positive (FP; overestimation) success rate were met 
for all 6 feature overlays. H&E artifact success rate for FP was 0.97 (95% CI, 0.95, 0.99), trichrome artifact 
was 0.93 (95% CI, 0.90, 0.96), lobular inflammation was 0.99 (95% CI, 0.98, 0.99), steatosis was 1.00 (95% 
CI, 0.98, 1), hepatocellular ballooning was 0.92 (95% CI, 0.90, 0.94) and fibrosis was 0.99 (95% CI, 0.99, 
1).  
 
The individual pathologist TP and FP success rates are listed in Table 1. Proportion of frames where all 3 
evaluating pathologists agreed on presence of the feature when at least 1 pathologist indicated presence 
of feature in a frame was 89% (132 frames out of 148 frames) for H&E artifact, 55.1% for hepatocellular 
ballooning (65 of 118 frames), 80.0% (124 of 155 frames) for lobular inflammation, 99.4% (1358 of 159 
frames), 72.0% (108 of 150 frames) for trichrome artifact and 96.8* (149 of 154 frames). Given that the 
agreement for presence of hepatocellular ballooning was the lowest between pathologists (55.1%) out of 
all features and the TP success rate for ballooning was above 0.90 for 2 out of 3 of the pathologists, the 
sources of variability between pathologists for hepatocellular ballooning were further examined. For the 65 
frames where all 3 evaluating pathologists indicated presence of hepatocellular ballooning, the TP success 
rate was calculated. Pathologists A and B identified underestimation in 1 and 3 of the 65 frames, 
respectively, resulting in TP success rates of 0.99 for pathologist A and 0.95 for pathologist B for those 
frames. However, given that pathologist C identified underestimation in 10 of the 65 frames, showing a TP 
success rate of 0.85, and pathologist C identified a total of 111 frames that had some ballooned cells 
compared to 92 and 71 for pathologist A and B (Table S3), this indicates that pathologist C may be 
identifying more cells as ballooned hepatocytes than the other two pathologists and the algorithm. This is 
expected given the lack of standardization across expert pathologists in both identifying and quantifying 
ballooned hepatocytes [23].  
 
Algorithm Repeatability and Reproducibility 
 
For inter-day scanner repeatability (AIM-NASH deployment on the same glass slides on different scans 
from the same scanner on different days), mean agreement rates between the AIM-NASH scoring on the 
3 separate Whole Slide Images (WSIs) for steatosis was 0.93 (95% CI of (0.89, 0.96), p<0.0001), lobular 
inflammation was 0.96 (95% CI of (0.94, 0.99), p<0.0001), hepatocellular ballooning was 0.96 (95% CI of 
(0.93, 0.98), p<0.0001) and fibrosis was 0.93 (95% CI of (0.89, 0.96), p<0.001), (Figure 2A).  
 
For inter-site scanner reproducibility (AIM-NASH deployment on the same glass slides on different scans 
from 3 different sites), mean agreement rate for hepatocellular ballooning was 0.91 (95% CI of 0.87, 0.95, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.29.24308109doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308109


 5 

p=0.02), meeting the acceptance criteria. The mean agreement rates for steatosis, lobular inflammation, 
and fibrosis were approximately 85% but the CIs fell slightly below the 0.85 acceptance criteria (steatosis 
0.86 (95% CI of 0.81, 0.9, p=0.39), lobular inflammation 0.85 (95% CI of 0.80, 0.89, p=0.53), and fibrosis 
0.87(95% CI of 0.82, 0.91, p=0.21) (Figure 2B).  
 
Pairwise inter-reader agreements were calculated between IMR pathologists across all cases (Table S4) 
to explicitly compare reproducibility across study pathologists to reproducibility achieved by AIM-NASH 
across sites and scanners. For all histologic components, inter-scan, intra-site repeatability, and inter-scan, 
inter-site reproducibility was higher than for pathologist mean pairwise agreement (for pairs of pathologists 
who read at least 10 common cases) (Table 2).  
 
Accuracy of Algorithm Alone and as an Assist Tool for Pathologists  
 
Evaluation for non-inferior accuracy of AIM-NASH (algorithm only and AI-assisted) to IMRs was assessed 
by comparing the mean Weighted Kappa (WK) of IMRs with GT to the WK of AIM-NASH with GT (Figure 
3).  
 
For AIM-NASH only (Figure 3A), the difference in WK for AIM-NASH and GT compared to mean WK for 
IMR and GT for hepatocellular ballooning was 0.15 (95% CI of (0.11, 0.18); non-inferiority p<0.0001) and 
for lobular inflammation was 0.12 (95% CI of (0.08, 0.17); non-inferiority p<0.0001) with a p<0.0001 for 
superiority for both components. The difference in WK for AIM-NASH only and GT compared to WK of 
mean IMR and GT for steatosis was 0.01 (95% CI of (-0.02, 0.03); non-inferiority p<0.0001) and for 
fibrosis was -0.01 (95% CI of (-0.04, 0.02; non-inferiority p<0.0001). Steatosis and fibrosis met non-
inferiority but did not achieve superiority. 

For AI-assisted pathologist reading (Figure 3B), the difference in WK for AI-assisted and GT compared to 
mean WK for IMR and GT for hepatocellular ballooning was 0.15 (95% CI of (0.11, 0.19); non-inferiority 
p<0.0001) and for lobular inflammation was 0.12 (95% CI of (0.08, 0.17); non-inferiority p<0.0001) with a 
p<0.0001 for superiority for both components. The difference in WK for AI-assisted and GT compared to 
mean WK for IMR and GT for steatosis was 0.01 (95% CI of (-0.02, 0.04); non-inferiority p<0.0001) and for 
fibrosis was 0.01 (95% CI of (-0.02, 0.03); non-inferiority p<0.0001). Steatosis and fibrosis met non-
inferiority but did not achieve superiority. For all MASH score components WKs for AI-assisted and GT 
were in the ranges of published CRN pathologists WKs [8, 14]. 

For AI-assisted pathologist reading accuracy was higher for composite histologic scores as compared with 
IMRs (Figure 4). The WKs for AI-assisted and GT and WKs for IMR and GT for fibrosis 2 and 3 (F2&F3) 
vs other were equivalent, with WK for AI-assisted and GT being slightly higher than WK for IMR and GT 
(0.57 vs 0.53, respectively; Figure 4). WKs for trial relevant enrollment criteria NAS > 4 with >1 in each 
score category between AI-assisted and GT was significantly higher than the WK between IMR and GT 
((0.63 vs 0.51, respectively, with a difference of 0.11 and 95% CI of (0.07 0.16)) and for MASH resolution 
(defined as hepatocellular ballooning score of 0, lobular inflammation score of 0 or 1 and any steatosis 
score) between AI-assisted and GT was also significantly higher than the WK between IMR and GT (0.54 
vs 0.37, respectively, with a difference of 0.16 and 95% CI of (0.10, 0.22)) (Figure 4). 

For AI-assisted evaluation against a mode/median of a panel of pathologists, non-inferiority was met for 
all histologic components for agreement of AI-assisted reads with statistical ground truth reads, compared 
to the agreement between mode/median read scores derived from two different groups of pathologists 
(ground truth workflow in Figure 1B and C; results in Figure 5). For steatosis, the average WK for AI-
assisted vs GT was 0.68 and for manual mode/median was 0.75, with a difference of –0.07; for lobular 
inflammation the WK for AI-assisted vs GT was 0.43 and for manual mode/median was 0.44, with a 
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difference of –0.02; for hepatocellular ballooning the WK for AI-assisted vs GT was 0.56 and for manual 
mode/median was 0.53, with a difference of 0.04;  and for fibrosis the WK for AI-assisted vs GT was 0.65 
and for manual mode/median was 0.72, with a difference of –0.09. 
 
Discussion 
 
AI-based tools have the potential to solve many of the issues around standardized, accurate and 
reproducible scoring, within and across trials. Multiple pathologists can assess biopsies on validated WSI 
viewers [24], both for sample adequacy, evaluability and for overall diagnosis and additional findings, 
while using AI tools to efficiently provide the accurate, standardized and consistent scores needed.  
 
The AIM-NASH outputs have been validated according to their proposed use with representative trial 
datasets, both variable in disease activity, stain, scanning site, and drug candidate. Further, the overlays 
presented to the pathologist, identifying key areas that the model is predicting as artifact, steatosis, 
hepatocellular ballooning, lobular inflammation, and fibrosis, have been validated by multiple pathologist 
readers on a frames level, demonstrating they are highly sensitive and sufficiently specific in playing their 
role as a highlighter, to guide pathologist review, along with the associated model scores. These results 
demonstrate the precision of AIM-NASH in measuring each component of the CRN scoring system in liver 
biopsies from patients screened and/or enrolled in a MASH clinical trial. 
 
Additionally, repeatability studies demonstrated superior performance of AIM-NASH when comparing to a 
performance goal of 85% as well as to relevant published manual intra-pathologist trial read agreements 
(steatosis 0.72, lobular inflammation 0.55, hepatocellular ballooning 0.70 and fibrosis 0.72) described in 
the literature [14]. AIM-NASH reproducibility across the three external laboratories, utilizing different 
operators and different Leica Aperio AT2 scanners, was higher for all MASH components than published 
inter-pathologist variability across expert MASH pathologists (0.63 for steatosis, 0.60 for lobular 
inflammation, 0.63 for hepatocellular ballooning and 0.51 for fibrosis) [14]. Further, the repeatability and 
reproducibility agreement achieved in this study with AIM-NASH was higher than the inter-pathologist 
agreement for independent manual reads.  
 
Finally, the clinical validation study demonstrated that AIM-NASH consistently brought individual 
pathologists closer to ground truth reads for the histologic components historically most difficult to score 
(hepatocellular ballooning and lobular inflammation), while maintaining high levels of accuracy for 
steatosis and fibrosis. To evaluate AIM-NASH reads against a statistical consensus currently being used 
as a gold standard read during MASH trials, the agreement of AI-assisted reads with the median 
consensus of the ground truth reads, was compared to the agreement between two different median 
consensus groups (derived from IMR pathologist reads and GT pathologist reads) in the same non-
inferiority analysis used in the primary endpoint for accuracy. AI-assisted reads achieved non-inferiority 
for every histologic component score in this analysis, and AI-assisted read agreement with median 
ground truth for hepatocellular ballooning was higher than that for median IMR agreement with median 
ground truth. For steatosis, although the two manual median groups mean agreement with each other 
was higher than that for AIM-NASH vs. median ground truth, AI-assisted reads were still within the non-
inferiority margin and should be interpreted as such. Additionally, accuracy and reproducibility are inter-
connected in the MASH trial context of use for assessment of primary endpoints, and AIM-NASH provides 
for a more reliable, reproducible read across all components. Furthermore, the gold standard is still 
subject to enrollment bias and lack of standardization, as demonstrated by the Kappas achieved by the 
median IMR vs. median ground truth in this study (Figure 5) and supported by the findings from Sanyal et 
al., [12] which evaluated agreement between two gold standard panel reads. Finally, the achievement of 
non-inferiority by AIM-NASH for accuracy compared to a gold standard read across a robust clinical 
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validation dataset, provides strong evidence that AIM-NASH agrees with two consensus groups as well 
as they agree with each other, and, therefore, could replace the current gold standard consensus read 
approach for trials while enabling a more standardized, less biased approach to accurately enrolling and 
determining change in score over time for primary histologic endpoints.  
 
The sum of the ordinal scores for steatosis, lobular inflammation, and hepatocellular ballooning (NAS) 
being greater than or equal to 4 (NAS≥4) is one of the main indicators for a probable MASH diagnosis, as 
well as commonly being a requirement for trial inclusion. Additionally, one component of the composite 
endpoint is MASH resolution, defined as a hepatocellular ballooning score of 0, lobular inflammation 0 or 
1, and any score for steatosis. AI-assisted reads for NAS≥4 with ≥1 in each component category and for 
MASH resolution were superior compared to independent manual reads. This is an important indicator 
that AIM-NASH can be a powerful tool in increasing and standardizing key aspects of trial scoring for 
enrollment and for FDA and EMA recommended endpoints. 
 
In addition, the AIM-NASH algorithm alone has also demonstrated to either recapitulate or demonstrate 
that primary efficacy results were met across several trials and drug candidates (semaglutide, 
pegbelfermin, resmetirom [25–28]). In a phase 2b study for pegbelfermin AIM-NASH revealed a 
statistically significant difference in the proportion of primary endpoint responders in treatment vs. placebo 
groups, whereas the central pathologist scoring did not reveal a statistically significant difference [26]. In a 
phase 2b study for resmetirom, all endpoints met via both individual manual readers were also met by 
AIM-NASH [27]. In the phase 3 study for resmetirom, for both MASH resolution and fibrosis improvement 
endpoint, the percentage of patients that responded were comparable when assessed by AIM-NASH or 
manual pathology assessment [28]. Lastly, in a cirrhotic patient population from another phase 2 study for 
semaglutide, a numerically higher proportion of patients was seen across both assessment methods 
(AIM-NASH and manual reads) for semaglutide vs placebo for inflammation, steatosis and ballooning 
from baseline to week 48. Additionally, a lower placebo effect response was observed with AIM-NASH 
compared to manual reads [25]. This supportive evidence, along with the accuracy of AIM-NASH alone 
and AI-assisted evidence demonstrates the robust nature of the AIM-NASH across a wide range of 
disease activity and in the phase of drug treatments. 
 
As the samples for this study were sourced from completed clinical trials with a wide range of sample 
quality and the reads were performed retrospectively, the limitations of the study include the inability of 
the pathologists to request a re-stain or a rescan of samples where they thought the sample was not of 
sufficient quality. This could have led to higher rates of samples being deemed inadequate or non-
evaluable for scoring, as in a clinical trial setting these samples could be re-stained or rescanned. 
However, these cases represented less than 4% of all clinical validation cases. Additionally, although the 
dataset was large and robust, new trial populations and/or drug candidates with novel mechanisms of 
actions not encountered here could potentially present a challenge to the algorithm in its current state. 
This highlights the importance of the pathologist evaluation and quality control of the algorithm results, 
and performance monitoring will be utilized to indicate where there may be room for future improvement 
through additional training.  
 
Together, the above data supports the use of AIM-NASH by pathologists in trials and can play a 
significant role in resolving the accuracy and precision gaps in MASH assessment, while guiding 
pathologists in an efficient evaluation to result in a standardized and reproducible score within and across 
trials. This in turn could significantly benefit MASH patients in helping to bring truly effective therapies to 
market.  
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Online Methods 
 
Datasets and Study Oversight 
 
The analysis utilized existing de-identified glass slides and WSIs derived from liver biopsies procured 
during four MASH clinical trials, including three phase 2 trials and one phase 3 trial (screen failures and 
enrolled population from Intercept Pharmaceuticals REGENERATE trial NCT02548351, enrolled 
population from Bristol Myers Squibb FALCON 1 trial NCT03486899 and FALCON 2 trial NCT03486912 
and enrolled population from Novo Nordisk Semaglutide trial NCT02970942). These data encompassed a 
broad spectrum of disease manifestations, captured both screened and enrolled participants, and 
mirrored the variances observed in the MASH clinical trial population. Sample collection varied, 
encompassing historical and study biopsies, with staining procedures executed across multiple sites. The 
research was granted expedited approval by the WCG Institutional Review Board (IRB00000533). 
 
AIM-NASH Development 

AIM-NASH was trained using 103,579 pathologist-provided annotations of 6235 hematoxylin and eosin 
(H&E) and 6223 Masson’s trichrome WSIs from 6 completed phase 2b and phase 3 MASH clinical trials. 
For every WSI, AIM-NASH employs a sequential approach where convolutional neural networks produce 
tissue overlays containing colorized predictions of segmentation, signifying various histologic features. 
Additionally, slide-level quantifications of the proportionate area of each feature are generated. 
Simultaneously, graph neural networks predict an ordinal MASH CRN grade or stage for each histologic 
feature. The development of AIM-NASH is further described in Iyer et al 2023 [22]. 
 
Overlay Validation Analyses 

In order to assess the accuracy of the heatmap overlays generated by the AIM-NASH model to enable 
efficient review of key histologic features considered by the algorithm, up to 160 500 x 500-micron sized 
frames for each feature (steatosis, lobular inflammation, hepatocellular ballooning, fibrosis, H&E artifact 
and trichrome artifact) were selected to represent a wide range of each histology and commonly 
encountered artifacts (e.g., tissue folds, stain pooling, scanning blur). Only usable tissue is considered in 
predicting scores. These overlays are intended to facilitate the pathologist’s review in the AIM-NASH 
scoring workflow and therefore, were designed with preference for sensitivity. The enrolling pathologist 
estimated the amount of each feature in each frame on images with no overlays. Three board-certified 
expert hepatopathologists were provided with the enrolled frames from both H&E and trichrome slides. 
The pathologists were asked specific questions for each frame to determine to what extent the overlay 
may or may not be under- or overestimating a given feature, defined as true positive (TP) and false 
positive (FP) success rates. Overlay performance was considered acceptable if TP success rate and FP 
success rate were greater than or equal to 85%.  
Frames from 222 WSIs were enrolled. Overall, 312 unique H&E frames and 249 trichrome frames were 
enrolled from 3 clinical trials (both baseline and follow-up time points from placebo and treatment groups). 
 
Repeatability and Reproducibility Analyses 
 
For the assessment of AIM-NASH's reproducibility, we incorporated glass slides from two completed 
phase 2 trials (one non-cirrhotic and one cirrhotic) and a phase 3 MASH trial. To gauge inter-day 
repeatability, 150 cases, each comprising a H&E and a trichrome slide, were repeatedly scanned using 
the same Leica Aperio AT2 scanner at 40x magnification across three non-sequential days. For inter-site 
reproducibility assessment, identical cases were singularly scanned at 3 distinct labs by different 
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operators using separate AT2 scanners. Reproducibility and repeatability were deemed acceptable when 
mean pairwise agreement rates consistently matched or surpassed 85%. No pathologist review of AIM-
NASH scores was incorporated in repeatability and reproducibility studies. 
 
Establishment of Ground Truth 
 
Ground truth (GT), defined as the presumed accurate diagnosis, was ascertained by dual panels of 
hepatic pathologists. Each panel consisted of two main reader pathologists and an auxiliary tie-breaker 
pathologist. Discrepancies in scoring among the primary readers prompted the intervention of the 
tiebreaker pathologist, who was blinded to initial assessments. When the tiebreaker's scoring diverged 
from both primary readers, a panel discussion was convened for consensus, with the tiebreaker's score 
being decisive in rare cases of continued disagreement. Overall, five distinct pathologists contributed to 
establishing the ground truth (Figure 1B). 
 
Analytical Validation Protocol 
 
For analytical validation, 1,481 cases extracted from two finalized phase 2 trials and select cases from a 
phase 3 trial, representing 3 different drug candidates with unique mechanisms of action (semaglutide, 
pegbelfermin, resmetirom), were evaluated in comparison to GT and individual manual reader (IMR). 
Cases from the phase 3 trial were selected to match the original trial enrolled population (baseline and 
follow-up timepoints) and included screen failures. Each case underwent scanning via a Leica Aperio AT2 
scanner at 40x magnification. Notably, this phase excluded pathologist review of resultant scores. 
 
Clinical Validation Protocol 
 
The same cohort of 1,481 cases incorporated in the analytical validation phase was used for clinical 
validation. This phase aimed to ascertain AIM-NASH's capability to bolster pathologists' accuracy in 
MASH diagnosis in a therapeutic trial context. The AI-assisted workflow integrated pathologist review of 
the sample quality, staining, scanning adequacy, assessment of any additional findings and subsequent 
AIM-NASH scoring. Although pathologists could record minor disagreements with AIM-NASH scores, only 
major discrepancies (2 points or greater difference) permitted score alterations (Figure 1A). 
 
Panel comparison 

The same cohort of 1,481 cases utilized in analytical and clinical validation was utilized to determine 
accuracy of AI-assisted reads against 2 panels of readers. Statistical ground truth using mode/median 
scores instead of panel consensus (Figure 1C) and statistical median derived from a minimum of 3 IMRs 
were determined.    
 
Statistical Analysis 
 
Both analytical and clinical validation phases were designed to initially assess AIM-NASH's non-inferiority 
to manual scoring. Upon confirmation of non-inferiority, its accuracy was further assessed for superiority. 
Non-inferiority was established when the difference between AIM-NASH Cicchetti-Allison kappa with the 
GT exceeded a non-inferiority margin of -0.1 compared to the independent manual read (IMR) weighted 
Kappa (WK) with the GT for each MASH component (Bootstrap percentile p < 0.025). Linearly WK was 
utilized, as pairwise comparisons are used to determine the level of agreement and using this metric, 
agreement between raters adjusting for the agreement that might occur by chance could be computed. 
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The linear weights, in this case, penalize disagreement due to distant scores (e.g. 3 vs. 1) more 
compared to that between closer ordinal scores (e.g. 2 vs. 1).  
 
Data Availability 
The glass slides and WSIs used in these validation studies are from existing clinical trials and the authors 
had access to these during the study in accordance with the relevant license agreements. Due to the 
nature of the source data, it is not currently publicly available. 
 
Code Availability 
Not all original code can be made publicly available. The code for cell- and tissue-type model training, 
inference, and feature extractions are not disclosed. To safeguard PathAI's intellectual property, access 
requests for such code will not be considered. The source code for all downstream data analyses and 
figure generation in this work are publicly available and can be downloaded from GitHub: 
https://github.com/Path-AI/NASH_DDT_Manuscript 
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Table 1: True Positive (TP) and False Positive (FP) Success Rate per Individual Pathologist for 
Overlay Validation 

Feature Pathologist TP Success Rate 
(95% CI) 

FP Success Rate 
(95% CI) 

H&E Artifact A 0.97 (0.94, 0.99) 0.96 (0.92, 0.99) 

B 0.98 (0.95, 1.0) 0.98 (0.95, 0.99) 

C 0.97 (0.94, 0.99) 0.99 (0.97, 1.0) 

Hepatocellular 
ballooning 

A 0.96 (0.91, 0.99) 1.00 (0.98, 1.0) 

B 0.94 (0.89, 0.99) 1.00 (0.98, 1.0) 

C 0.72 (0.64, 0.81) 0.76 (0.70, 0.83) 

Lobular inflammation A 0.98 (0.95, 1.0) 1.00 (0.98, 1.0) 

B 0.98 (0.95, 1.0) 1.00 (0.98, 1.0) 

C 0.86 (0.81, 0.92) 0.98 (0.95, 0.99) 

Steatosis A 0.94 (0.90, 0.98) 1.00 (0.98, 1.0) 

B 0.99 (0.97, 1.0) 1.00 (0.98, 1.0) 

C 0.94 (0.90, 0.98) 1.00 (0.98, 1.0) 

Trichrome Artifact A 0.99 (0.97, 1.0) 0.88 (0.82, 0.92) 

B 0.98 (0.96, 1.0) 0.94 (0.91, 0.98) 

C 0.99 (0.97, 1.0) 0.98 (0.95, 0.99) 

Fibrosis A 0.97 (0.94, 0.99) 1.00 (0.98, 1.0) 

B 0.99 (0.98, 1.0) 1.00 (0.98, 1.0) 

C 0.95 (0.91, 0.98) 0.99 (0.98, 1.0) 

 
 
 
Table 2. Manual pathologist vs. AIM-NASH repeatability and reproducibility 

Feature Mean AIM-NASH 
Inter-scan, Intra-site 

Repeatability 
 (% Agreement) 

Mean AIM-NASH  
Inter-site Reproducibility  

(% Agreement) 

Mean pairwise 
Agreement for 
Pathologists 

(% Agreement) 
Steatosis 93.1 85.6 70.3 
Lobular 

inflammation 
95.8 84.7 45.3 

Hepatocellular 
ballooning 

96.3 91.2 55.6 

Fibrosis 92.6 86.8 61.5 
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Figure Legends 
 
Figure 1. AI-assisted workflow with representative AIM-NASH overlays and ground truth panel 
workflows. (A) In the AI-assisted workflow, the primary pathologist reviews the AIM-NASH output and 
does a quality control review of the slide (determines if re-stain or rescan of the slide is necessary, 
confirms all trial specific criteria is met and notes any additional findings). If the primary pathologist 
disagrees with any MASH component(s) by 2 points or more, the case goes to a review by a secondary 
pathologist, who independently reviews the discordant AIM-NASH score(s). If the secondary pathologist 
agrees with the primary pathologist’s modified score, this will be the final score, if they disagree with the 
primary pathologist or agree with AIM-NASH, the 2 pathologists will convene on a consensus call where 
they agree on the final score. (B) Consensus Ground truth (GT) was determined by two panels of 
hepatopathologists. Each panel consisted of two main reader pathologists and an auxiliary tie-breaker 
pathologist. Discrepancies in scoring among the primary readers prompted the intervention of the 
tiebreaker pathologist, who was blind to initial assessments. When the tiebreaker's scoring diverged from 
both primary readers, a panel discussion was convened for consensus, with the tiebreaker's score being 
decisive in rare cases of continued disagreement. (C) For median GT score, when the tiebreaker's 
scoring diverged from both primary readers, the median of the 3 scores was considered final. Overall, five 
distinct pathologists contributed to establishing the GT. 
 
Figure 2. Scanner repeatability and reproducibility of AIM-NASH. (A) For scanner repeatability, a 
subset of 150 cases from the clinical validation were scanned multiple times using the same Leica Aperio 
AT2 scanner at 40x magnification on 3 non-consecutive days. (B) For scanner reproducibility, the same 
slides were scanned once at 3 different labs by 3 different operators using 3 different Leica Aperio AT2 
scanners at 40x magnification. 
 
Figure 3. Accuracy concordance comparison of MASH histologic components. (A) AIM-NASH scores 
without pathologist review, (B) AI-assisted workflow. Dataset of 1,481 cases was used for clinical validation. 
(A) AIM-NASH scores without pathologists’ review workflow. (B) The AI-assisted workflow integrated 
pathologist review of the sample quality, staining, scanning adequacy, assessment of any additional 
findings and subsequent AIM-NASH scoring. Although pathologists could record minor disagreements with 
AIM-NASH scores, only major discrepancies (2 points or greater difference) permitted score alterations. * 
indicates statistical superiority. IMR – individual manual read; GT – ground truth 
 
Figure 4. Comparisons for MASH aggregate component scores (F2&F3 vs other and NAS > 4 with 
>1 in each score category vs other) and MASH resolution. Aggregate components scores relevant to 
MASH clinical trial enrollment and endpoint assessment were calculated for AI-assisted vs ground truth 
(GT) and individual manual reader (IMR) vs GT. MASH resolution is defined as a hepatocellular ballooning 
score of 0, lobular inflammation 0 or 1, and any score for steatosis. AI-assisted reads for NAS≥4 with ≥1 in 
each component category and for MASH resolution were superior compared to independent manual reads. 
 
Figure 5. Weighted Kappa analysis for NASH components AI-assisted and mode/median panel 
comparisons. The same cohort of 1,481 cases utilized in analytical and clinical validation was utilized to 
determine accuracy of AI-assisted reads against 2 panels of readers. Statistical ground truth (GT) using 
mode/median scores instead of panel consensus and statistical mode/median individual manual read 
(IMR) panel derived from a minimum of 3 IMRs were determined.    
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Figures 
 

 
 
Figure 1. AI-assisted workflow with representative AIM-NASH overlays and ground truth panel 
workflows. 
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Figure 2. Repeatability and Reproducibility of AIM-NASH.  
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Figure 3. Accuracy concordance comparison of NASH histologic components. (A) AIM-NASH 
without pathologist review, (B) AI-assisted workflow. 
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Figure 4. Comparisons for MASH aggregate component scores (F2&F3 vs other and NAS > 4 with 
>1 in each score category vs other) and MASH resolution. 
 
 
 
 
 

 
Figure 5. Weighted Kappa analysis for MASH components AI-assisted and median panel 
comparisons.  
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Supplementary Information 
 
Table S1. Frame Distribution based on Slide Level Score for Overlay Validation 

Feature Score (n/N) % 
Hepatocellular 

ballooning 
0 (13/86) 15.1 

1 (36/86) 41.9 

2 (37/86) 43.0 

Lobular 
inflammation 

0 (2/87) 2.3 

1 (46/87) 52.9 

2 (31/87) 35.6 

3 (8/87) 9.2 

Steatosis 0 (5/87) 5.8 

1 (31/87) 35.6 

2 (31/87) 35.6 

3 (20/87) 23.0 

Fibrosis 0 (1/79) 1.27 

1 (16/79) 20.3 

2 (21/79) 26.6 

3 (30/79) 38.0 

4 (11/79) 13.9 
Note: N<160 since multiple frames can selected from a slide 
 
Table S2: Frame Distribution based on Frames Level Score for Overlay Validation 

Feature Score Category (n/N) % 
H&E Artifact None (20/160) 12.5 

Present (140/160) 87.5 

Hepatocellular 
ballooning 

None (16/160) 10.0 

1-Few (72/160) 45.0 

Frequent (72/160) 45.0 

Lobular 
inflammation 

None (11/160) 6.88 

1 (50/160) 31.3 

2-4 (50/160) 31.3 

>4 (49/160) 30.6 
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Steatosis None (10/160) 6.25 

Low (50/160) 31.3 

Medium (50/160) 31.3 

High (50/160) 31.3 

Trichrome Artifact None (22/160) 13.8 

Present (138/160) 86.3 

Fibrosis None (10/160) 6.25 

Low (53/160) 33.1 

Medium (50/160) 31.3 

High (47/160) 29.4 

 
Table S3: Presence of Feature per Pathologist for Overlay Validation 

 
Feature 

  
Pathologist 

  
Presence 

  
(n/N) 

  
% 

H&E Artifact A Yes (141/160) 88.1 

B Yes (135/160) 84.4 

C Yes (143/160) 89.4 

Hepatocellular 
ballooning 

A Yes (92/160) 57.5 

B Yes (71/160) 44.4 

C Yes (111/160) 69.4 

Lobular inflammation A Yes (132/160) 82.5 

B Yes (132/160) 82.5 

C Yes (155/160) 96.9 

Steatosis A Yes (159/160) 99.4 

B Yes (158/160) 98.8 

C Yes (159/160) 99.4 

Trichrome Artifact A Yes (114/160) 71.3 

B Yes (124/160) 77.5 

C Yes (149/160) 93.1 

Fibrosis A Yes (151/160) 94.4 

B Yes (150/160) 93.8 
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C Yes (153/160) 95.6 

 
 
Table S5. Pairwise inter-reader agreement rates 

Feature Raters N Agreement Rate 
Steatosis 

  
Rater 1 vs Rater 2 606 0.632 

Rater 1 vs Rater 3 605 0.674 

Rater 1 vs Rater 4 80 0.725 

Rater 1 vs Rater 5 21 0.810 

Rater 1 vs Rater 6 10 1.000 

Rater 2 vs Rater 3 605 0.590 

Rater 2 vs Rater 4 80 0.750 

Rater 2 vs Rater 5 21 0.762 

Rater 2 vs Rater 6 10 0.600 

Rater 3 vs Rater 4 80 0.675 

Rater 3 vs Rater 5 21 0.714 

Rater 3 vs Rater 6 10 0.600 

Rater 4 vs Rater 5 21 0.619 

Rater 4 vs Rater 6 10 0.600 

Rater 5 vs Rater 6 10 0.800 
Lobular 

inflammation 
  

Rater 1 vs Rater 2 605 0.388 

Rater 1 vs Rater 3 605 0.397 

Rater 1 vs Rater 4 80 0.488 

Rater 1 vs Rater 5 21 0.429 

Rater 1 vs Rater 6 10 0.500 

Rater 2 vs Rater 3 605 0.438 

Rater 2 vs Rater 4 80 0.238 

Rater 2 vs Rater 5 21 0.381 

Rater 2 vs Rater 6 10 0.800 
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Rater 3 vs Rater 4 80 0.388 

Rater 3 vs Rater 5 21 0.476 

Rater 3 vs Rater 6 10 0.600 

Rater 4 vs Rater 5 21 0.476 

Rater 4 vs Rater 6 10 0.300 

Rater 5 vs Rater 6 10 0.500 

Hepatocellular 
ballooning 

  

Rater 1 vs Rater 2 605 0.582 
Rater 1 vs Rater 3 605 0.469 

Rater 1 vs Rater 4 80 0.513 

Rater 1 vs Rater 5 21 0.429 

Rater 1 vs Rater 6 10 0.500 

Rater 2 vs Rater 3 605 0.607 

Rater 2 vs Rater 4 80 0.450 

Rater 2 vs Rater 5 21 0.476 

Rater 2 vs Rater 6 10 0.800 

Rater 3 vs Rater 4 80 0.563 

Rater 3 vs Rater 5 21 0.286 

Rater 3 vs Rater 6 10 0.600 

Rater 4 vs Rater 5 21 0.667 

Rater 4 vs Rater 6 10 0.800 

Rater 5 vs Rater 6 10 0.600 

Fibrosis Rater 1 vs Rater 2 604 0.606 

Rater 1 vs Rater 3 597 0.606 

Rater 1 vs Rater 4 77 0.519 

Rater 1 vs Rater 5 37 0.649 

Rater 1 vs Rater 6 16 0.750 

Rater 2 vs Rater 3 597 0.637 

Rater 2 vs Rater 4 77 0.532 
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Rater 2 vs Rater 5 37 0.649 

Rater 2 vs Rater 6 16 0.688 

Rater 3 vs Rater 4 77 0.584 

Rater 3 vs Rater 5 37 0.514 

Rater 3 vs Rater 6 16 0.688 

Rater 4 vs Rater 5 37 0.622 

Rater 4 vs Rater 6 16 0.688 

Rater 5 vs Rater 6 16 0.500 
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