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Abstract  

Exploring the molecular correlates of metabolic health measures may identify the 

shared and unique biological processes and pathways that they track. Here, we 

performed epigenome-wide association studies (EWASs) of six metabolic traits: body 

mass index (BMI), body fat percentage, waist-hip ratio (WHR), and blood-based 

measures of glucose, high-density lipoprotein (HDL) cholesterol, and total cholesterol. 

We considered blood-based DNA methylation (DNAm) from >750,000 CpG sites in 

over 17,000 volunteers from the Generation Scotland (GS) cohort. Linear regression 

analyses identified between 304 and 11,815 significant CpGs per trait at P<3.6x10-8, 

with 37 significant CpG sites across all six traits. Further, we performed a Bayesian 

EWAS that jointly models all CpGs simultaneously and conditionally on each other, as 

opposed to the marginal linear regression analyses. This identified between 3 and 27 

CpGs with a posterior inclusion probability ≥ 0.95 across the six traits. Next, we used 

elastic net penalised regression to train epigenetic scores (EpiScores) of each trait in 

GS, which were then tested in the Lothian Birth Cohort 1936 (LBC1936; European 

ancestry) and Health for Life in Singapore (HELIOS; Indian-, Malay- and Chinese-

ancestries). A maximum of 27.1% of the variance in BMI was explained by the BMI 

EpiScore in the subset of Malay-ancestry Singaporeans. Four metabolic EpiScores 

were associated with general cognitive function in LBC1936 in models adjusted for 

vascular risk factors (Standardised βrange: 0.08 – 0.12, PFDR < 0.05). EpiScores of 

metabolic health are applicable across ancestries and can reflect differences in brain 

health.
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Introduction  

Measures of adiposity and lipids are central to profiling metabolic health. There are 

several clinical measures of metabolic health, which include body mass index (BMI), 

body fat percentage, waist-hip ratio (WHR), blood glucose levels, high-density 

lipoprotein (HDL) cholesterol, and total cholesterol. These traits have routinely been 

linked to health-related risks including cardiovascular disease (1-3), myocardial 

infarction (4), and stroke (2, 3, 5). Multiple associations between metabolic traits and 

cognitive function and rate of cognitive decline have also been observed (6-12). BMI 

is a widely assessed indicator of metabolic health but is limited by its inability to directly 

track the amount or distribution of fat in the body (13, 14). BMI has previously shown 

low specificity in identifying individuals with excess body fat (15). Considering multiple 

measures that track different aspects of adiposity (and related traits) may provide a 

more complete assessment of metabolic health. Furthermore, exploring the molecular 

correlates of these metabolic indices may help to inform the shared and unique 

biological processes and pathways that they are associated with.  

The epigenetic modification DNA methylation (DNAm) is dynamic, tissue/cell-type 

specific, and can be affected by genetic and environmental factors. Epigenome-wide 

association studies (EWASs) have detailed associations between individual blood-

based DNAm loci (CpG sites) and metabolic traits including BMI, WHR, HDL 

cholesterol, and total cholesterol (16-32). In our previous work, penalised regression 

models have been applied to DNAm data to develop molecular predictors for a 

multitude of complex traits. These epigenetic scores, or EpiScores, may augment 

associations with health outcomes when combined with their measured phenotypic 

counterparts (33-35). For example, an EpiScore for BMI increased the amount of 

variance in metabolic health outcomes accounted for by measured BMI alone by an 
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average of 3% (36). An EpiScore for WHR was also associated with all-cause mortality 

in the same population of healthy older adults after adjusting for measured WHR (33).  

Here, we modelled EWASs with both linear regression and Bayesian penalised 

regression on six metabolic traits in the Generation Scotland (GS) study (N > 17,000). 

In the former approach, we obtained marginal estimates for each CpG, which do not 

take into account correlations across CpGs. By contrast, the Bayesian penalised 

regression estimated CpG effects jointly so that the effect of each CpG was conditional 

on all other loci. We compared findings from the individual EWASs to determine 

whether the six traits showed unique or common methylomic signatures. We then 

trained EpiScores for the six metabolic traits in GS (N > 17,000) and projected them 

into two independent test cohorts – the Lothian Birth Cohort 1936 (LBC1936) and the 

Health for Life in Singapore (HELIOS) cohort. Finally, we tested metabolic trait 

EpiScore associations with general cognitive function level and change in LBC1936 

(N = 861). Associations identified between EpiScores for metabolic traits and cognitive 

phenotypes could offer new opportunities to examine the relevance of metabolic 

health indicators to ageing, and cognitive and neurological health outcomes. A visual 

summary of the study is shown in Figure 1. 
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Figure 1: Summary of metabolic trait study. This figure provides an overview of the analysis performed in this 

study. Created with BioRender.com. 

Methods  

Generation Scotland Cohort  

The Generation Scotland (GS) Cohort has been described in detail previously (37). 

Briefly, it is a Scotland-wide, family-based study of health. In the current study, 18,411 

individuals had DNA methylation profiled on the Illumina EPIC array from blood 

samples taken at the study baseline between 2006 and 2011. Quality control (QC) 

details can be found in Supplementary Methods. 59% of the cohort was female and 

the mean age at baseline was 47.5 years (SD: 14.9). Six metabolic measures from 

GS were utilised in this study: body mass index (BMI, kg/m2), body fat percentage, 

waist-hip ratio (WHR), glucose (mmol/L), serum HDL cholesterol (mmol/L), and serum 

total cholesterol (mmol/L) (Table 1, Supplementary Methods).  
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The Lothian Birth Cohort 1936 

The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal study of ageing (38, 39). 

The study consists of individuals born in 1936, most of whom sat a general cognitive 

ability test at a mean age of 11 years in Scotland. Individuals living in the Lothian area 

were recruited to the LBC1936 study at around age 70 (baseline N=1,091). The 

volunteers undertook triennial testing across five waves of follow-up (ages ~70, 73, 

76, 79, and 82). Of those with blood-based DNA methylation data (profiled on the 

Illumina 450k array) at wave 1, the mean age was 69.6 years (SD: 0.83) with 49.4% 

females. QC and pre-processing for the DNA methylation in the LBC1936 can be 

found in Supplementary Methods. Three metabolic measures were utilised in this 

study: BMI (kg/m2), serum HDL cholesterol (mmol/L), and serum total cholesterol 

(mmol/L) (Table 1, Supplementary Methods). Thirteen cognitive tests were 

assessed longitudinally (details in Supplementary Methods). 

The Health for Life in Singapore cohort 

The Health for Life in Singapore (HELIOS) study is a single-centre, multi-ancestry 

cohort of approximately 10,000 individuals residing in Singapore. A subset of the 

cohort in which Illumina EPIC DNA methylation data have been profiled has a mean 

age of 54.3 (SD: 11.7) and 61.2% of the cohort was female. The subset is made up of 

three self-reported ancestry groups: Chinese and other East Asian (Chinese) (N = 

1,778), Malay and other South-East-Asian (Malay) (N = 242), and South Asian (Indian 

and other countries from the Indian subcontinent) (N = 225). QC and pre-processing 

of DNA methylation in HELIOS can be found in the Supplementary Methods.  Five 

metabolic measures were utilised in this study: BMI (kg/m2), body fat percentage, 

WHR, serum HDL cholesterol (mmol/L) and serum total cholesterol (mmol/L) (Table 

1, Supplementary Methods). 
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Epigenome-wide association studies of six metabolic traits in GS 

Linear regression models tested for associations between 752,722 CpG sites and 

each of the six metabolic traits in GS using the fast linear method in the OmicS-data-

based Complex trait Analysis (OSCA) software (40). To facilitate less computationally 

expensive analyses, phenotypes were regressed on age, age2, sex and family 

structure (to account for relatedness in GS) (41)) using linear mixed-effects models 

(lmekin function from the coxme package (version: 2.2.18.1) in R) (42). Family 

structure was modelled with a kinship matrix constructed using the R package kinship2 

(version: 1.9.6). CpG M-values were pre-corrected for age, sex and experimental 

batch (N = 121 batches) in linear regression models using the lm function in R. 

Residuals from the regression models for each outcome trait and CpG were taken 

forward for the EWASs. An epigenetic smoking score, EpiSmokEr, derived using the 

SSc method which adds up methylation levels of 187 CpG sites found to be 

significantly associated with smoking in a study by Zeilinger et al (43, 44) and 

Houseman-estimated white blood cell proportions (45) were included as fixed-effect 

covariates in the OSCA analysis. Finally, the first 20 methylation principal components 

(PCs) were included as covariates to account for potentially unmeasured confounders. 

Descriptive statistics can be found in Supplementary Table 1. A significance level of 

P < 3.6 x 10-8 was set to detect significantly associated CpGs as suggested by Saffari 

et al in a study investigating significance thresholds in EWAS using a simulation 

approach (46). Mapping of CpG sites to genes was performed using Illumina 

annotation files. Principal component analyses (PCA) were performed on the 

significantly associated CpG sites from each metabolic trait EWAS. The number of 

approximate independent signals was denoted as the cumulative number of principal 

components that accounted for at least 80% of the variance among all significantly 
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associated probes. PCA was performed using the scikit-learn package in Python 

(2.7.17) (47).  

 

 

Measure 
 

N 
 

Mean  
 
SD 

 

Range  

Generation Scotland 

Age (years) 18,411 47.5 14.9 17.1 to 98.5 

BMI (kg/m2) 17,304 26.5 4.7 17 to 49 

Body fat (%)  17,304 29.8 9.1 8 to 50 

WHR 17,304 0.9 0.1 0.4 to 1.4 

Glucose (mmol/L) 17,908 4.7 0.6 1.3 to 9.2 

HDL cholesterol 
(mmol/L) 

18,225 1.5 0.4 0.4 to 3.1 

Total cholesterol 
(mmol/L) 

18,270 5.1 1.1 0.9 to 9.3 

Lothian Birth Cohort 1936 

Age (years) 861 69.6 0.8 67.7 to 70.4 

BMI (kg/m2) 860 27.8 4.3 16 to 47.3 

HDL cholesterol 
(mmol/L) 

779 1.5 0.4 0.5 to 3.8 

Total cholesterol 
(mmol/L) 

851 5.4 1.2 2.7 to 10.8 

Health for Life in Singapore 

Age (years) 
BMI (kg/m2) 

2,245 
2,226 

54.3 
24.1 

11.7 
1.2 

30.2 to 85.4 
14.2 to 43.7 

Body fat (%) 2,063 38.2 7.2 17.6 to 63.1 

WHR 2,233 0.9 0.1 0.67 to 1.1 

HDL cholesterol 
(mmol/L) 

2,227 1.5 0.4 0.7 to 3 
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Total cholesterol  
(mmol/L) 

2,223 5.3 1 2.4 to 8.6 

 

Table 1: Cohort demographics for Generation Scotland, the Lothian Birth Cohort 1936 and the Health for 

Life in Singapore study. Table 1 shows the demographics of the data included in this study including N, mean, 

range and standard deviation for each variable after outlier removal. SD = standard deviation, BMI = body mass 

index, WHR = waist-hip ratio, HDL = high-density lipoprotein. 

Gene ontology enrichment analysis  

We tested whether common CpGs identified across all six marginal linear regression 

EWAS models were over-represented among gene ontology (GO) terms using the 

gometh function from the missMethyl R package version 1.34 (48). The probability of 

significant differential methylation due to the number of probes per gene was taken 

into consideration. Statistically significant results were defined as having PFDR < 0.05. 

Bayesian EWAS 

Probe-by-probe (marginal) linear regression models fail to consider the correlation 

structure that exists across the methylome. Therefore, we considered Bayesian 

penalised regression, conducted using BayesR+ (49), as a secondary analysis. This 

method estimates single marker or probe effects whilst controlling for all other probes 

as well as being able to control for known and unknown confounding variables. This 

method also estimates the amount of phenotypic variation attributed to genome-wide 

DNA methylation. We applied the same covariate and phenotype preparation strategy 

as in the linear regression models. Significant CpGs were defined as sites with a 

posterior inclusion probability (PIP) ≥ 0.95. Details on the methods used for the 

Bayesian strategy can be found in the Supplementary Methods.  

Replication of previous literature 
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The EWAS catalogue (16) was used to determine if the overlapping CpGs that were 

found to be associated with all six metabolic traits in the linear regression EWASs 

have previously been identified in other studies. The EWAS catalogue was filtered to 

whole blood samples, CpG-metabolic trait associations with P < 3.6 x 10-8 (in line with 

our study and consistent with Saffari, et al (46)) and study sample N > 1,000 

participants. The search terms used to identify traits from the EWAS catalogue can be 

found in Supplementary Table 2. The EWAS catalogue was not filtered for studies 

that may contain GS data.  

Generation and projection of DNA methylation-based proxies of six metabolic 

traits 

Penalised regression models were trained in GS to generate epigenetic scores 

(EpiScores) of each of the six metabolic traits using the R package biglasso (version 

1.5.2). Each trait was modelled as the response variable (using the same phenotype 

files from the EWASs) and 395,380 CpGs (the 450K methylation array subset that was 

present in GS) were used as predictors. Cross-validation was carried out (nfolds = 20) 

and an elastic net (elnet) penalty was set (alpha = 0.5). CpG sites with a non-zero 

coefficient were retained and used to derive EpiScores in LBC1936 (n = 861). This 

was followed by further testing in the HELIOS cohort (n = 2,245). Missing CpGs were 

mean imputed in LBC1936 and HELIOS. Predictors obtained from the Bayesian 

penalised regression models were also projected into LBC1936 and HELIOS using 

the mean posterior effect sizes as weights for the scores. The variance explained 

(incremental R2) in each metabolic trait by their corresponding EpiScore over and 

above age and sex in linear regression models was then calculated. In HELIOS, the 

variance explained was calculated in the full cohort and ancestry subgroups. In 

HELIOS full cohort models, additional adjustments for ancestry were included.  
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EpiScore associations with general cognitive function and change in LBC1936 

A latent intercept and age-related slope for general cognitive function were generated 

in LBC1936 using a structural equation modelling (SEM) framework with the R 

package Lavaan (version 0.6.12) (50). Measured traits and EpiScores were regressed 

on intercepts and slopes in separate linear models. Full details are provided in 

Supplementary Methods and Supplementary Tables 3-6.  

Results  

Epigenome Wide Association Studies (EWASs) of six metabolic traits  

Correlations between metabolic traits in GS ranged between -0.36 (WHR and HDL 

cholesterol) and 0.6 (BMI and body fat percentage), and are shown in Supplementary 

Figure 1. Marginal linear regression EWASs of six metabolic traits were performed in 

GS. The number of CpG sites significantly associated (P < 3.6 x 10-8) with each of the 

traits are summarised in Table 2. This ranged between 304 for glucose to 11,815 for 

BMI. Manhattan plots can be observed in Supplementary Figure 2 and the top 1,000 

significantly associated CpGs with each trait are listed in Supplementary Table 7. 

Full summary statistic output will be available upon publication. 

The large number of significant associations observed in our models may reflect 

correlation structures among CpG sites (Quantile-Quantile plots and inflation factors 

– which ranged between 1.18 and 2.48 – can be observed in Supplementary Figure 

3 and Supplementary Table 8). Therefore, we performed PCA for each trait to 

determine the approximate number of independent features present among CpG sites 

that surpassed the epigenome-wide significance threshold (P<3.6 x 10-8). We 

identified between 80 and 1,302 (for glucose and BMI, respectively) principal 
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components or ‘independent features’ that accounted for ≥ 80% of the variance in the 

underlying CpG sites (Table 2).  

Next, we performed Bayesian penalised regression, which jointly models all CpGs and 

accounts for genome-wide correlation patterns. Table 2 shows the number of high-

confidence associations (PIP ≥ 0.95), which ranged between 3 (glucose) and 27 

associations (BMI) (Supplementary Table 9). Using the Bayesian method, we 

obtained estimates for the variance captured by genome-wide DNA methylation that 

ranged between 24% for WHR and 53% for BMI (Supplementary Table 10).  

 

Trait Number of CpGs in 
marginal linear 
regression EWASs at 
P<3.6x10-8 

Number of PCs that 
explain ≥ 80% of 
variance in the 
significant CpGs from 
linear regression 
models 

Number of CpGs in 
Bayesian EWASs at PIP ≥ 
0.95  

BMI 11,815 1,302 27 

WHR 4,334 687 12 

Body fat 
percentage 

8,468 1,189 18 

Glucose 304 80 3 

HDL cholesterol 7,623 1,085 20 

Total cholesterol 1,722 328 19 

 

Table 2: The number of significantly associated CpGs with each metabolic trait in Generation Scotland. 

The table shows the number of significantly associated CpGs with each metabolic trait using marginal linear 

regression and Bayesian penalised regression. The table also shows the number of principal components that 

account for ≥ 80% of the variance of the significant CpGs from the linear regression analyses for each metabolic 

trait. BMI = body mass index, WHR = waist-hip ratio, HDL = high-density lipoprotein, PCs = principal components. 

37 CpG sites were significant (P < 3.6x10-8) across all six metabolic traits in the 

marginal linear regression models (Supplementary Table 11, Supplementary 

Figure 4. In the Bayesian models, a single CpG site, “cg06500161” (mapped to the 
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ABCG1 gene), was associated with BMI, body fat percentage, HDL cholesterol, total 

cholesterol, and WHR (PIP ≥ 0.95, Supplementary Table 9).  

14 of the 37 common CpGs from the linear models had been previously associated 

with metabolic traits in studies using whole blood samples at P < 3.6 x 10-8 and study 

N > 1000 reported in the EWAS catalogue (Supplementary Table 11). Of the 37 

CpGs associated with all traits in the linear models, four mapped to the CPT1A gene, 

four mapped to the ABCG1 gene, and three mapped to the PHGDH gene. Seven of 

the overlapping CpGs did not map to any genes. The remaining 19 CpGs mapped to 

unique genes giving a total of 22 unique genes containing the overlapping CpGs. Gene 

ontology (GO) enrichment analysis of the 37 common CpGs was performed. Eleven 

GO terms were found to be enriched, including cholesterol biosynthetic process and 

regulation of lipid storage. The full list of enriched GO terms identified can be found in 

Supplementary Table 12.  

Epigenetic Scores (EpiScores) of metabolic traits tested in the LBC1936 and 

HELIOS 

EpiScores for each of the six metabolic traits were trained in GS using elastic net 

(elnet) penalised regression and projected into the LBC1936 and HELIOS cohorts. We 

explored how much additional variance could be accounted for in each metabolic trait 

by the corresponding EpiScore over and above linear regression models adjusting for 

age and sex. In the LBC1936, EpiScores accounted for 3.2% of the variance for total 

cholesterol, 18.5% for HDL cholesterol, and 14.4% of the variance in BMI. In HELIOS 

full cohort analysis, the incremental R2 estimates ranged between 7.1% (for total 

cholesterol) to 20.8% (for BMI). However, there was variability within the ancestry-

specific subsets of HELIOS. Most notably, the body fat percentage EpiScore 
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accounted for 9.2% and 9.5% in the Chinese and Malay subgroups but only 3.1% in 

the Indian subgroup (Figure 2, Supplementary Table 13). In LBC1936 and HELIOS, 

the correlations between all six EpiScores are shown in Supplementary Figure 5. 

Correlations between measured traits ranged from -0.3 – 0.38 for LBC1936, and -0.46 

- 0.47 for HELIOS (Supplementary Figure 6). Correlations between measured traits 

and EpiScores ranged between -0.41 – 0.5 in LBC1936 and -0.66 – 0.92 in HELIOS 

(Supplementary Figure 7).  

 

 

Figure 2: The variance explained in measured metabolic traits by elnet EpiScores in the Lothian Birth 

Cohort 1936 (LBC1936) and the Health for Life in Singapore (HELIOS) study. Additional variance (incremental 

R2) accounted for in each metabolic trait by their corresponding elnet EpiScores over and above age and sex-

adjusted (and ancestry in HELIOS full cohort) linear regression models in LBC1936 and HELIOS. Measured 
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glucose levels were not available for either cohort. Incremental R2 was calculated for each ancestry group and in 

the whole cohort in HELIOS. BMI = body mass index, WHR = waist-hip ratio, HDL = high-density lipoprotein. 

Next, we tested the Bayesian EpiScores in both LBC1936 and HELIOS, observing 

similar results to the elnet approach (Supplementary Figure 8, Supplementary 

Table 13). 

EpiScore associations with general cognitive function  

Metabolic traits have previously been linked to cognitive outcomes. Given this, we 

tested if the metabolic (elnet) EpiScores were associated with general cognitive 

function level and longitudinal changes in the LBC1936 (n=861). In models adjusting 

for age and sex, the three measured traits (BMI, total cholesterol and HDL cholesterol) 

and all EpiScores, except the total cholesterol EpiScore, were significantly associated 

with general cognitive function (intercept) in LBC1936 (PFDR < 0.05, Supplementary 

Figure 9, Supplementary Table 14).  In fully-adjusted models, significant (PFDR < 

0.05) EpiScore associations were observed for WHR, glucose, body fat percentage 

and BMI (standardized βrange -0.08 to -0.12), and for measured BMI (standardized β: -

0.10, Figure 3A). No significant associations were observed with general cognitive 

change over ~12 years (mean age 70 to mean age 82) of follow-up (PFDR > 0.05, 

Supplementary Table 14). A combination of EpiScore and measured trait accounted 

for more variance in general cognitive function level than EpiScore or measured trait 

alone (Figure 3B, Supplementary Table 15). EpiScores augmented the measured 

trait variance explained for general cognitive function by an average of 0.3%. 
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Figure 3: EpiScore and measured metabolic trait in relation to general cognitive function level in the 

Lothian Birth Cohort 1936 (LBC1936). Panel A shows the significant (PFDR < 0.05) associations between 

measured traits/EpiScores and general cognitive function level in models with full adjustments. Error bars represent 

95% confidence intervals. Panel B shows the additional variance accounted for in general cognitive function level 

by measured metabolic traits, metabolic Episcores and both combined, over and above linear regression models 

adjusted for age and sex.  

 

Discussion  

Epigenome-wide association studies of six metabolic traits were performed in 

Generation Scotland (N > 17,303). A large number of significantly associated CpGs 

were identified for each trait via linear regression (marginal associations with P < 3.6 

x 10-8 ranged from 304 to 11,815 per trait). A Bayesian approach, which modelled the 

CpGs jointly and conditionally upon each other, resulted in between 3 and 27 high 

confidence (PIP ≥ 0.95) CpG associations for the six traits. EpiScores for each 

metabolic trait were trained in GS and projected into two independent test cohorts, 

LBC1936 and HELIOS. The metabolic EpiScores were tested for associations with 

general cognitive function level and change. Four of the EpiScores were associated 

with general cognitive function in fully adjusted models (PFDR < 0.05), but none were 

associated with longitudinal cognitive change.  

37 CpGs were associated with all six traits when using the marginal linear regression 

modelling approach. This included 14 CpGs previously linked to metabolic traits in the 

literature (17-24, 32, 51-54). Gene ontology analysis revealed the genes that the 

overlapping CpGs mapped to were enriched for relevant biological functions, including 

regulation of lipid storage, and cholesterol biosynthetic process. Several genes the 37 

CpGs mapped to had known metabolic functions. ABCG1 and ABCA1 are part of the 

ABC transporter superfamily involved in the transport of cholesterol (55, 56). CPT1A 
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is a rate-limiting fatty acid oxidation enzyme that oxidises medium and long acyl-CoA 

esters, an important step that allows these molecules access to the inner mitochondrial 

membrane (57). PDK4 is a kinase that inhibits the pyruvate dehydrogenase complex 

(PDC) which is responsible for the decarboxylation of pyruvate to acetyl-CoA (58). The 

inhibition of PDC results in a switch from glucose oxidation to fatty-acid oxidation and 

PDK4 has been suggested as a marker for increased fatty-acid oxidation (58, 59).   

Metabolic EpiScores accounted for additional variance in metabolic traits over and 

above age and sex in both LBC1936 and HELIOS. The elnet EpiScores for BMI and 

total cholesterol accounted for more variance in their corresponding measured traits 

in the HELIOS full cohort than in the LBC1936. Conversely, the EpiScore for HDL 

cholesterol accounted for more variance in the LBC1936 than in the HELIOS full 

cohort. The performance of elnet metabolic EpiScores in HELIOS varied by ancestry 

group. In particular, the body fat percentage EpiScore performed similarly in Chinese 

and Malay individuals (~9% variance accounted for) but had a much lower 

performance in Indian participants (3.1% variance accounted for). Within the Asian 

population, it has been reported that Indians have a higher body fat percentage 

compared with Chinese and Malay populations (60). Asian Indian individuals also 

have been shown to have increased total and centrally distributed body fat compared 

with those of European ancestries (61).  

The potential usefulness of using DNA methylation to impute measured traits in 

studies where they are not available was highlighted by the similarity of effect sizes 

between metabolic EpiScores and their corresponding measured traits in models 

predicting general cognitive function level (basic adjustments).  
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This study has multiple strengths including large sample sizes, the use of multi-

ancestry cohorts, a multi-method approach (linear regression and Bayesian penalised 

regression), volunteers from a wide range of ages across adulthood, and longitudinal 

data to test for cognitive changes in late-life testing (LBC1936). Of the two EWAS 

strategies, and despite adjustments for relevant covariates, the marginal linear 

regression approach yielded a vast number of significant CpGs associated with each 

metabolic trait. However, this approach is naïve in that it does not account for the 

genome-wide correlation patterns and structure across the methylome. This leads to 

an inflation in the number of significant findings and biased estimation of effect 

sizes.Using more stringent methods like BayesR+ helped to overcome such issues, 

resulting in a high confidence set of CpG-trait associations. Another key strength of 

the study is that the metabolic EpiScores trained in a cohort of individuals residing in 

Scotland could account for variance in metabolic traits in a multi-ancestry cohort of 

Chinese, Malay and Indian Singaporeans. A limitation is that only three of the six 

metabolic traits were measured in LBC1936, therefore we were unable to compare 

EpiScore performance against measured WHR, glucose and body fat percentage in 

this cohort. Finally, alternative strategies for feature pre-selection prior to training 

EpiScores are likely to result in improved predictors (62, 63).  

To conclude, our findings suggest that different EWAS strategies (i.e., marginal linear 

models and conditional Bayesian models) vastly alter the number of significant CpGs 

associated with metabolic traits. As increasingly large cohorts with DNA methylation 

are generated, conditional analyses will help to control false positive rates although 

they will not identify all correlated/co-dependent sites under a peak. We have also 

shown that metabolic EpiScores trained in a Scottish population perform well in 

external Scottish and multi-ancestry Singaporean cohorts. However, further testing is 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.29.24308103doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308103
http://creativecommons.org/licenses/by/4.0/


 

 

required in e.g., populations from African or Hispanic ancestries to determine how well 

the predictors generalise. Further, metabolic EpiScores and measured metabolic traits 

had comparable magnitudes of association with general cognitive function. This 

highlights the potential usefulness of metabolic EpiScores to “impute” the 

corresponding traits where they have not been measured in a cohort.  
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