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ABSTRACT    17 
Immune aging is associated with decreased vaccine responses, but biomarkers for vaccine 18 
responsiveness remain unidentified. We analyzed immunotypes describing baseline immune cell 19 
profiles and their associations with triple vaccine responsiveness to influenza, pneumococcal, and 20 
SARS-CoV-2 vaccines in adults aged 25-78 years. Additionally, we developed an innovative measure, 21 
immune entropy, to quantify cumulative perturbations in the immune cell subset network. Specific 22 
immunotypes associated with either weak or robust triple vaccine responsiveness. In addition, immune 23 
entropy was inversely related to vaccine responsiveness regardless of age. In a validation cohort of older 24 
adults, higher immune entropy was also associated with a lower antibody response to the BNT162b2 25 
vaccine. A separate cohort of kidney transplant recipients, typically exhibiting diminished vaccine 26 
responses, demonstrated significantly increased immune entropy compared to healthy counterparts. Our 27 
findings suggest immunotypes and immune entropy as potential indicators to identify individuals at risk 28 
for suboptimal vaccine responses, potentially guiding personalized vaccination strategies. 29 
 30 
 31 
 32 
 33 
INTRODUCTION  34 
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Aging of the immune system plays a significant role in the prevalence of age-related diseases and co-35 
morbidities observed in older adults 1,2. As individuals age, their immune systems undergo a decline in 36 
function. This phenomenon, known as immunosenescence, contributes to increased susceptibility to 37 
infectious diseases and diminished vaccine responsiveness 1,3–5. Identification of individuals with 38 
reduced vaccine responsiveness is vital for the strategic implementation of targeted vaccination 39 
programs to ensure their protection 6–8. 40 
 41 
Previous studies aimed to identify individuals at risk for reduced vaccine responsiveness by examining 42 
single immune cell subsets, such as Th1, Th17, CD38+ naive B cells, CD38+ memory B cells and 43 
MAIT cells 9–16. Although some correlations between these immune cell subsets and a specific vaccine 44 
response have been reported, ideally, a universal biomarker predicting multi-vaccine responsiveness 45 
would be beneficial to target individuals at risk of generally low vaccine responsiveness.  However, 46 
several reasons complicate the use of single immune cell subsets to identify these low responder 47 
individuals. Since vaccine responsiveness is an emergent property of the immune system, a single 48 
immune subset does not capture the complexity of the immune network, and it often fails as a robust 49 
predictor of vaccine responsiveness 17–19. Moreover, aging trajectories differ from person to person and 50 
inter-individual immune variation increases with age, resulting in diverse immune phenotypes 20–23. 51 
This increased heterogeneous state of the immune system in older individuals also challenges the 52 
identification of shared immune variables. 53 
 54 
Here we employ two innovative measures: (i) immunotypes and (ii) immune entropy, both capturing 55 
the total immune subset profile of individuals across a large age range, to discover predictors of low 56 
vaccination responsiveness. Immunotypes cluster individuals with similar immune profiles, as 57 
previously described 23, whereas immune entropy captures the complexity of the immune network and 58 
reflects the total perturbations in the immune network in a single variable. Using the unique set-up of 59 
the VITAL clinical trials 23,24, we aimed to explore and validate the predictive value of both the 60 
immunotypes and immune entropy as biomarkers of vaccine responsiveness to multiple vaccines 61 
(influenza booster vaccination, primary pneumococcal vaccination, and primary SARS-CoV-2 62 
vaccination) in the same individuals aged 25 to 98 year old 24,25. Since immune entropy was introduced 63 
as an innovative measure, its associations with immune aging, CMV-seropositivity and sex differences 64 
were further investigated. 65 
 66 
Our results reveal significant associations between baseline immunotypes and either weak or robust 67 
vaccine responsiveness towards multiple vaccines. Intriguingly, also our integrative biomarker immune 68 
entropy was associated with vaccine responsiveness overarching multiple vaccines. By introducing and 69 
validating comprehensive immune biomarkers that predict humoral immune responses to multiple 70 
vaccines, our research sets the stage for identifying individuals susceptible to overall diminished 71 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.29.24308098doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308098


vaccine response. Consequently, these biomarkers derived from the total immune profile hold the 72 
potential to develop novel vaccination approaches tailored to individual immune profiles. 73 
 74 
 75 
RESULTS 76 
Study population defined on baseline characteristics  77 
In this study, we included 305 individuals aged between 25 to 98 years who had immune phenotyping 78 
data available at baseline and received the Quadrivalent Inactivated Influenza Vaccine (QIV), Prevenar 79 
13 (PCV13) and SARS-CoV-2 vaccines (mRNA-1273 or BNT162b2) from 2019 to 2022 (Figure 1a, 80 
Supplementary Figure 1a). Previously participants of the VITAL clinical trials were categorized into 81 
nine different immunotypes 23. For 173 participants, immunotype categories and pre- and post-82 
vaccination antibody data for triple vaccine analysis (QIV, PCV13, mRNA-1273) were available 83 
(Supplementary Figure 1a).  These individuals were between 25 to 78 years old, 46% CMV+, and 50% 84 
male (Table 1). Participants' antibody responses to each vaccine were categorized into response 85 
quartiles (Q1 to Q4, with Q1 being the lowest and Q4 the highest) based on antibody levels at day 0 86 
and day 28 post-vaccination. We used the maximum residual values adjusted for baseline levels 87 
(maxRBA)26.  Participants  were not previously vaccinated with SARS-CoV2 vaccines and only 7 88 
individuals showed Spike-specific S1 IgG concentration above the cut-off level for seropositivity (10 89 
BAU/mL) indicative of previous infection, therefore, instead of maxRBA, day 28 antibody levels were 90 
used for antibody response quartiles.   91 
 92 
Baseline immunotypes are associated with vaccine responsiveness overarching multiple vaccines 93 
First, we hypothesized that immunotypes identifying individuals with similar baseline immune profiles 94 
are associated with their vaccine responsiveness. Interestingly, we observed a high variability in 95 
antibody responses to different vaccines between individuals in all immunotypes (Figure 1b). Only 8% 96 
of individuals stayed in the same vaccine response quartile across three vaccines. Meanwhile, 38% 97 
differed by one quartile, and 77% differed by two quartiles for at least one vaccine.  This variability 98 
highlights the importance of studying multiple vaccine responses in the same individual. To this end, 99 
we calculated a triple vaccine response quartile (Materials and Methods) and quantified the distribution 100 
of the immunotypes in these vaccine response groups. The representation of immunotypes was 101 
significantly different for the four triple vaccine response groups (chi-squared p=2.4x10-2) (Figure 1c). 102 
Interestingly, immunotype 8 was absent in vaccine responders showing the highest antibody response 103 
(TQ4), and immunotypes 1 and 6 were not present in those showing the lowest antibody response 104 
(TQ1). However, only immunotype 8 showed a significant relationship with the triple vaccine response 105 
quartile, comprising 48% of the persons in the lowest response group (Benjamini-Hochberg (BH) p.adj 106 
=1.0x10-4). We noted a progressive increase in the proportions of individuals with immunotypes 1 and 107 
6 from TQ2 to TQ4.  In contrast, the proportions of immunotype 8 were reduced among TQ2 responders 108 
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compared to those in TQ4. (Figure 1c). These findings imply an association between the pre-vaccination 109 
immunotypes and the triple vaccine responsiveness. 110 
 111 
To further explore the associations between immunotypes and triple vaccine responsiveness an ordinal 112 
logistic regression model was employed. This model revealed that immunotype 1 was associated with 113 
increased odds of belonging to a higher triple vaccine response quartile (Confidence Interval (CI)=[1.5-114 
6.3], p=3.4x10-3) (Figure 1d). Individuals with this immunotype had a median age of 41, representing 115 
the younger adults in our cohort, who lacked aging-related immune perturbations in their immune subset 116 
profiles (Table 1)23. Furthermore, persons with immunotype 6 also showed significantly increased odds 117 
of higher triple vaccine responsiveness (CI=[1.3-9.2], p=1.5x10-2) (Figure 1d). Notably, despite their 118 
older age (median age of 66) individuals in immunotype 6 resemble more closely individuals in 119 
immunotype 1. In addition, these immunotype 6 individuals lack age-related immune subset differences 120 
when compared to the mainly older individuals with immunotypes 7, 8 and 9  (Supplementary Figure 121 
2a)23. Conversely, persons categorized as immunotype 8 had significantly lower triple vaccine 122 
responsiveness (CI=[0.5x10-1-0.3], p=1.4x10-5). Interestingly, 79% of the individuals with immunotype 123 
8 (median age 65) were CMV-seropositive (Table 1). However, in a separate ordinal logistic regression 124 
model, CMV-seropositivity alone was not associated with triple vaccine responsiveness (p=3.9x10-1). 125 
Although these associations are potentially interesting, immunotypes are categorical variables that 126 
describe immune variation in discreet groups, which may not be easily transferrable to other cohorts. 127 
Therefore, we aimed to seek a continuous variable that could account for the underlying differences in 128 
the immunotypes that are associated with vaccine responsiveness. 129 
 130 
Immune entropy represents cumulative perturbations in the immune cell subset network  131 
Next, we hypothesized that overall immune perturbations in the immune cell subset profile negatively 132 
associate with vaccine responsiveness. We propose that the underlying reason why certain persons with 133 
immunotype 8 are weak responders is related to a highly perturbated immune network. To capture these 134 
immune perturbations in just a single biomarker, we calculated the correlation distance between each 135 
individual and a reference group of the youngest individuals within our cohort (<35 years old, N=18) 136 
and refer to it as immune entropy. The correlation distance calculation was based on a large set of 137 
cellular immune subset data in order to capture the complexity of the immune (Supplementary Table 138 
1).  In short, a higher value of immune entropy indicates a greater deviation of the immune profile from 139 
that of the reference group and, therefore, a higher degree of immune perturbation. The younger 140 
reference group was selected since younger adults typically exhibit a much lower degree of accumulated 141 
perturbations in their immune profiles compared to older adults. Within this reference group, the 142 
proportions of male and CMV+ individuals were 50% and 28% respectively. 143 
 144 
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As expected, a significant correlation between age and immune entropy was observed (Spearman’s rho= 145 
0.46, p=2.0x10-10, Figure 2a). Moreover, immune entropy was significantly higher in males (p=2.6x10-146 
3, Figure 2b), and CMV+ individuals (p=2.9x10-7, Figure 2c). Age was not significantly different 147 
between males and females or CMV+ or CMV- individuals, and both CMV+ and CMV- individuals 148 
showed roughly 50% male/female ratio, suggesting that the differences in immune entropy were not 149 
merely driven by the effect of these factors (Supplementary Figure 3a-c). These results indicate that 150 
immune entropy reflects the established factors known to influence immune variation. Interestingly, 151 
immune entropy was also significantly correlated (BH-adjusted, p.adj<0.05) with serum levels of YKL-152 
40 (Spearman’s rho (r)=0.39, p.adj=4.2x10-5),  CXCL10 (r=0.31, p.adj=2.5x10-3), IL-1RA (r=0.28, 153 
p.adj=6.5x10-3), CRP (r=0.27, p.adj=6.5x10-3), IFNg (r=0.27, p.adj=6.5x10-3), IL-6 (r=0.26, 154 
p.adj=9.8x10-3), Neopterin (r=0.23, p.adj=2.1x10-2) and sCD163 (r=0.21, p.adj=4.7x10-2) out of an 155 
(N=29) inflammatory protein panel known to be associated with low-grade inflammation related to 156 
aging. (Supplementary Figure 4a-h). In linear regression models while correcting for age, sex and 157 
CMV-seropositivity, immune entropy remained significantly associated with CRP (p=2.2x10-3), IL-158 
1RA (p=2.8x10-2), TNFa (p=2.9x10-2) and CXCL10 (p=4.9x10-2). These suggest that immune entropy 159 
also reflects age-associated perturbations in serum proteins. 160 
 161 
Immune entropy is a biomarker of triple vaccine responsiveness 162 
Next, we investigated immune entropy in the context of triple vaccine responsiveness. Immune entropy 163 
was significantly higher in individuals classified in the lowest triple vaccine response quartile (TQ1) as 164 
compared to all other response quartiles (Figure 2d). Moreover, immune entropy was significantly 165 
lower in persons classified into immunotype 8 (weak response associated) as compared to those in 166 
immunotypes 1 and 6 (robust response associated) (p.adj<6.9x10-6, Figure 2e, Supplementary Table 2). 167 
To further investigate the association of immune entropy with vaccine responsiveness, we employed an 168 
ordinal logistic regression model. This model revealed that an increase in immune entropy was 169 
associated with lower odds of a higher triple vaccine response quartile (CI=[6.8x10-11-2.0x10-4], 170 
p=3.0x10-5, Figure 2f red circle). To ensure the robustness of these findings, we conducted a subsequent 171 
analysis where we adjusted for potential confounders: age, sex, and CMV-seropositivity in a 172 
multivariate ordinal logistic regression model. Even after this correction, immune entropy remained 173 
significantly associated with triple vaccine responsiveness (CI=[3.8x10-10-1.2x10-2], p=3.3x10-3, Figure 174 
2f blue triangle). Moreover, in separate ordinal logistic regression models, immune entropy was  175 
associated with the response to PCV13 (CI=[2.6x10-5-8.6x10-1], p=4.4x10-2) and  mRNA-1273 176 
(CI=[2.8x10-10-5.1x10-4], p=7.3x10-5 separately. This highlights the strength of immune entropy as a 177 
biomarker of vaccine responsiveness. 178 
 179 
Immune entropy is associated with BNT162b2 SARS-CoV-2 vaccine response in a validation 180 
cohort 181 
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To validate the association between immune entropy and vaccine response, we next assessed immune 182 
entropy in a different cohort of older individuals who were previously immune phenotyped using a 183 
similar panel of markers as used in the VITAL cohort 27,28 (Supplementary Figure 1b). A subgroup of 184 
these individuals (N=67, aged 64-93) received a primary series of two BNT162b2 SARS-CoV-2 185 
vaccines in 2021 (Supplementary Table 3). Generalized additive models identified a significant non-186 
linear relationship between immune entropy and SARS-CoV-2 Spike-specific antibody levels 28 days 187 
after the first dose (p=2.1x10-3) and the entire primary vaccination series (p=2.7x10-2) (Figure 3a-b). To 188 
increase the sample size for this analysis, we added a subgroup of individuals from the VITAL study, 189 
also comprising older adults (N=32, aged 72-92), who received the BNT162b2 SARS-CoV-2 vaccine. 190 
(Supplementary Figure 1b, Supplementary Table 3). In this consolidated analysis (N=99), immune 191 
entropy consistently showed a significant association with Spike-specific antibody levels at day 28 after 192 
the first vaccine (p=2.7x10-2) and the full primary vaccination series (p=7.9x10-3) (Figure 3c, d). These 193 
results confirm the significant association of immune entropy with vaccine responsiveness across 194 
various cohorts, particularly highlighting its impact on enhancing understanding of the varied responses 195 
observed in older adults (aged 65 and above), a group typically characterized by lower vaccine efficacy 196 
29. 197 
 198 
Kidney transplant recipients show significantly higher immune entropy 199 
Since kidney disease has long been associated with perturbations in the immune system, leading to a 200 
heightened vulnerability to infections and a diminished response to vaccinations 30–32, we assessed 201 
immune entropy in a subgroup of kidney transplant recipients who received a primary series of SARS-202 
CoV-2 mRNA-1273 vaccine (N=59, aged 23-77, Supplementary Table 3, Supplementary Figure 1c) 33. 203 
We employed a similar immune entropy calculation based on the shared immune cell subset variables 204 
between kidney transplant recipients and age-matched generally healthy participants in the present 205 
study (VITAL) who received a primary series of SARS-CoV-2 mRNA-1273 vaccine (Supplementary 206 
Figure 1a, Supplementary Table 1). Compared to VITAL mRNA-1273 participants (N=194, aged 25-207 
78, Supplementary Figure 1a), immune entropy was substantially higher in kidney transplant recipients 208 
(p<2.2x10-16, Figure 4a-b). In VITAL mRNA-1273 participants, immune entropy was non-linearly and 209 
significantly (p=5.9x10-7) associated with Spike-specific antibody levels after the primary series of 210 
mRNA-1273 vaccination in a generalized additive model (GAM)(Figure 4c). Here we observed that 211 
individuals showing approximately 0.1 and higher immune entropies exhibited a decreased vaccine 212 
response, and 97% of kidney transplant recipients who were low responders showing an immune 213 
entropy higher than 0.1.  These insights extend the utility of immune entropy as a potent biomarker, 214 
applicable not just in aging populations but also in disease settings. 215 
 216 
 217 
DISCUSSION  218 
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The heterogeneity in immune aging and the lack of predictive biomarkers of immune function have 219 
been obstacles in identifying individuals at risk of diminished vaccine responsiveness and 220 
immunosenescence. Our study sought to identify predictors of vaccine responsiveness by analyzing 221 
baseline immune phenotypes (immunotypes) and the overall degree of immune perturbations (immune 222 
entropy). These variables were derived from an examination of individuals’ total immune cell subset 223 
profiles. We showed that specific immunotypes and immune entropy are predictors of responsiveness 224 
overarching multiple vaccines, which was independent of sex, age and CMV status 225 
 226 
It is postulated that cumulative alterations and remodeling of the immune system over time lead to an 227 
accumulation of perturbations in  immune profiles, consequently contributing to immunosenescence 228 
4,34. While previous research has been valuable in identifying variables associated with aging and 229 
immune variation, they fall short in capturing the complexity and integrated nature of immune aging in 230 
older adults 18,35–37. We propose that conducting a detailed assessment of these immune states that 231 
captures both the baseline state and potential responsiveness of the system could be used to better 232 
understand immune function and vaccine responsiveness 38. We previously categorized baseline 233 
immunological states, represented as immunotypes, in our cohort of young, middle aged and older 234 
adults 23. In this study, we demonstrated that immunotypes 1 and 6 are associated with robust vaccine 235 
responsiveness to three different vaccines, in contrast to immunotype 8, which is associated with weak 236 
responsiveness. Persons showing immunotypes 1 and 6 represent a mix of both younger and older 237 
individuals with strong immune functionality. Notably, characteristics of these immunotypes are a 238 
higher naïve-to-memory CD4+ and CD8+ T-cell ratio, and lower HLA-DR+ T cell numbers, as we have 239 
previously outlined23,39.  Key immune characteristics of immunotype 8 included a lower percentage of 240 
B cells, a lower naïve-to-memory T cell ratio and higher percentages of follicular (CXCR5+) CD4+ 241 
Teff cells, follicular CD4+ Tem cells, follicular CD8+ T cells and follicular CD8+ Tem cells 23. 242 
Although tissue samples are not available from these individuals to perform further analyses, such 243 
striking differences in B cells and follicular T cell compartments could indicate a dysregulation of 244 
secondary lymphoid organ structures explaining the observed lower vaccine responsiveness, and these 245 
could be potential targets to improve vaccine responses in these people 40.  246 
 247 
Although immunotypes were associated with vaccine responsiveness, these may not be easily 248 
identifiable across different cohorts since the number of immunotypes depends on the initial inter-249 
individual immune variation present in this cohort. Therefore, we sought to determine a continuous 250 
measure that could explain the underlying differences between immunotypes in terms of vaccine 251 
responsiveness. This measure, termed immune entropy, was associated with factors traditionally linked 252 
to immune variation, such as age, sex and CMV-seropositivity21,23,41.  Previous studies reported that 253 
males have lower innate and adaptive immune responses and vaccine responsiveness than females41–43. 254 
Since males showed significantly higher immune entropy than females irrespective of age and CMV-255 
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seropositivity, this could indicate that complex sex-related differences may have an effect on the overall 256 
immune perturbations in the immune subset network which were captured by immune entropy. The 257 
influence of CMV-seropositivity on the immune cell subset profile is known but its effect on vaccine 258 
responsiveness and immune function is still not clearly understood 22,44. Since CMV-seropositivity was 259 
not associated with triple vaccine responsiveness and the difference in immune entropy could be mainly 260 
due to CMV’s effect on the effector T-cell cell compartment, we cannot deduce whether CMV-261 
seropositivity is a confounder or associate of vaccine responsiveness in our analysis.  262 
 263 
Immune entropy was negatively associated with responsiveness to PCV13, mRNA-1273 and combined 264 
response to QIV, PCV13 and mRNA-1273 (triple vaccine response). This fits with the lack of effect of 265 
age on the response to influenza vaccination in comparison to the other vaccines 24. Since the VITAL 266 
cohort includes adult individuals with a broad age range, immune imprinting, also known as original 267 
antigenic sin where immune memory of a pathogen's initial strain could limit the immune system's 268 
ability to respond to a new strain plays an important role45. Moreover, participants in VITAL cohort 269 
were vaccinated with the influenza vaccine in previous years. Individuals older than 60 years were 270 
vaccinated via regular vaccination campaigns and the younger adults were yearly vaccinated because 271 
they were recruited from healthcare workers.  Furthermore, recent research highlighted the critical role 272 
of memory B cell activation in the efficacy of influenza vaccination46. Since our immunotype and 273 
immune entropy analysis do not consider these memory B cells in germinal centers, this could explain 274 
the lack of association we observed. 275 
 276 
Kidney transplant recipients respond poorly to vaccines33 and immune entropy was substantially higher 277 
in these individuals than in VITAL participants (aged 25-78) suggesting its potential use in clinical 278 
scenarios. This elevation in immune entropy may be attributed to the combination of 279 
immunomodulatory drugs used post-transplant and the intrinsic immunological challenges presented 280 
by kidney disease itself. Immune entropy was also associated with chronic low-grade inflammation 281 
markers such as CRP, IL-1RA, TNFa. In cardiovascular disease, chronic low-grade inflammation was 282 
suggested to be casually linked to disease progression47. Hence, the integration of immune entropy in 283 
such disease contexts could provide a more nuanced and comprehensive understanding of patient 284 
immune status. 285 
 286 
For older adults (aged 65+), previous studies reported diminished and more heterogeneous antibody 287 
responses to SARS-CoV-2 vaccines, however, the heterogeneity in these responses is not clearly 288 
understood29. Interestingly, not only across young to older adults, but also within older adults immune 289 
entropy was significantly associated with antibody response to BNT162b2 in the validation cohort (aged 290 
64-93). For these older adults, immune entropy levels higher than 0.2 were associated with a further 291 
decrease in BNT162b2 vaccine responsiveness, whereas in the 25 to 78-year-old group who received 292 
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mRNA-1273, immune entropy levels higher than 0.1 were associated with lower responsiveness. This 293 
highlights that immune entropy is applicable when studied in large age ranges to pinpoint individuals 294 
at risk for low vaccine responsiveness and also in older adults to gain insights into heterogeneity in 295 
antibody response to SARS-CoV-2 vaccines. 296 
 297 
Immune entropy is not a single molecule measurement and requires immune subset data obtained via 298 
flow cytometry analyses 23. Given the widespread use of flow cytometry in clinical contexts, immune 299 
entropy could be assessed in various populations and cohorts to explore its associations with vaccine 300 
responsiveness and immune function. We propose that future research could help to reduce the number 301 
of immune markers required to measure immune entropy, as long as they capture the relevant 302 
accumulation of perturbations in the immune subset profile. In our flow cytometry panel, senescent T 303 
cells, and various Th populations (Th1, Th2, Th17) were not present. Incorporating such variables that 304 
were shown to be important in aging and vaccine responsiveness could further improve the sensitivity 305 
of immune entropy and its predictive power 16,48. 306 
 307 
Although immune entropy was clearly associated with vaccine responsiveness, there were outliers in 308 
the higher triple vaccine responder groups that showed increased entropy and vice versa. One reason 309 
could be that the set of markers used to calculate immune entropy may not reflect the function of the 310 
immune network entirely. Immune entropy calculation using the different collections of immune 311 
subsets that would represent the vaccine responsiveness the best could improve this.  312 
 313 
Our study underscores the potential utility of both immunotypes and immune entropy as innovative 314 
tools to pinpoint individuals at risk of low vaccine effectiveness. This could ultimately guide more 315 
personalized vaccination strategies, shifting the healthcare focus from a blanket approach based on age 316 
to one rooted in individual effectiveness.  This is of high importance to increase vaccine effectiveness 317 
as a whole and protect the increasingly vulnerable group of older individuals from infectious diseases. 318 
 319 
MATERIALS AND METHODS 320 
Study population 321 
This study used samples from the longitudinal intervention studies VITAL and VITAL-Corona as 322 
reported in detail elsewhere24,25. In short, individuals 25 to 98 years old were recruited. All participants 323 
were previously vaccinated with the seasonal influenza vaccination in season 2018-2019 and never 324 
received a pneumococcal vaccination. Detailed inclusion and exclusion criteria have been reported24.  325 
Participants received the seasonal quadrivalent inactivated subunit influenza vaccine in 2019 Autumn 326 
(QIV) (2019-2020), and Prevenar 13 (PCV13) in 2020 Summer/Autumn. A group of older individuals 327 
received SARS-CoV-2 BNT162b2 (Pfizer) via the national immunization program that started in 328 
February 2021 but the majority of participants received the SARS-COV2 mRNA-1273 vaccine 329 
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(Moderna Biotech, Spain) in 2021 Spring (Supplementary Figure 1a-b) as part of the study via the study 330 
team24. Ethical approval was obtained through the Medical Research Ethics Committee Utrecht 331 
(EudraCT: 2019-000836-24). All participants provided written informed consent and all procedures 332 
were performed with Good Clinical Practice and in accordance with the principles of the Declaration 333 
of Helsinki. As a validation cohort, participants from the immune system and aging (ISA) sub-study of 334 
the Doetinchem Cohort Study (DCS), were used. These individuals were immune phenotyped in 2017 335 
27,28. Part of these individuals (N=67, aged 64-93, Supplementary Table 3) further participated in a 336 
SARS-CoV-2 vaccination study (VOCAAL, EudraCT: 2021-002363-22) and received a primary series 337 
of SARS-CoV-2 BNT162b2 (Pfizer) vaccinations from February-April 2021. Kidney transplant 338 
recipients were part of the RECOVAC study (EudraCT: 2021-000868-30) 30,33. A subgroup of these 339 
individuals was immune phenotyped (N=59, aged 23-77, Supplementary Table 3) before receiving the 340 
primary series of two SARS-CoV-2 mRNA-1273 vaccinations in February-March 2021. 341 
 342 
Serum antibodies and vaccine response profiles 343 
Serum antibody measurements for VITAL and VITAL-Corona studies were described elsewhere in 344 
detail24. In short, pre and 28 days post-vaccination, antibody levels for each vaccine (QIV: the H3N2 345 
hemagglutination inhibition titer; PCV13: the IgG concentrations against the 13 pneumococcal 346 
serotypes; and mRNA-1273: the IgG binding antibody units (BAU) against the Spike S1 protein as 347 
measured by Multiplex Immuno Assay were used.  Since pre-existing immunity has been shown to 348 
influence vaccine response for QIV and PCV13 16,39.vaccine responsiveness was studied rather than day 349 
28 antibody levels, , calculated as the maximum residual values following adjustment for baseline levels 350 
(maxRBA) using titer (version 0.0.2) R package26. This process adjusts for the initial antibody levels 351 
by using a model that describes how antibody levels exponentially increase from their baseline values. 352 
Consequently, participants were categorized into vaccine response quartiles (Q1=lowest, Q4=highest) 353 
based on their maxRBA. For mRNA-1273, since pre-existing immunity was not present, day 28 354 
antibody levels were directly used to categorize individuals into vaccine response quartiles. A triple 355 
vaccine response quartile was determined by averaging the response quartiles for QIV, PCV13, and 356 
mRNA-1273. This average was then rounded to define four triple vaccine response categories: TQ1 357 
(lowest), TQ2, TQ3, and TQ4 (highest). 358 
 359 
For the validation cohort (ISA), SARS-CoV-2 Spike S1 protein IgG units were measured 28 days for 360 
both the first vaccine and the primary series of two vaccinations with respectively Bnt162b2 and with 361 
mRNA-1273. The same multiplex platform was used to measure all SARS-CoV-2  Spike S1 protein 362 
antibodies in this study 49. 363 
 364 
Immune phenotyping and immunotypes 365 
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The immune phenotyping data based on a flow cytometry panel of 18 markers utilized in this study has 366 
been described in detail in a previous publication 23. Briefly, baseline immune subset data (n=59) were 367 
subjected to a Spearman correlation matrix analysis to elucidate inter-individual relationships. 368 
Subsequent clustering was performed, informed by gap statistics analysis to ensure the optimal number 369 
of clusters. The entire methodology can be found in the corresponding GitHub repository 370 
(https://github.com/alpercevirgel/Immunotype-Alper2022)23. For the validation cohort (ISA), immune 371 
phenotyping was performed as described previously 27. PBMCs from kidney transplant recipients 372 
participating in the RECOVAC cohort were stained using the following anti-human fluorochrome-373 
conjugated antibodies: CD3 (Sparkblue 550, SK7, Biolegend), CD4 (cFluor-YG584, SK3, Cytek), CD8 374 
(BUV805, SK1, BD), CD45RA (Spark NIR 685, HI100, Biolegend), CD95 (BB700, DX2, BD), HLA-375 
DR (BV570, L243, Biolegend), CD38 (APC-Fire810, HIT2, Biolegend), CD19 (eFluor450, HIB19, 376 
ThermoFisher), CD27 (VioBright FITC, M-T271, Miltenyi), IgD (BUV395, IA6-2, BD), CD127 (APC-377 
R700, HIL-7R-M21, BD), CD25 (PE-AF700, CD25-3G10,ThermoFisher), CXCR5 (BUV563, RF8B2, 378 
BD), CCR7 (BUV616, 2-L1-A, BD), CD28 (BV421, CD28.2, BD) and viability dye (FVS780, BD). 379 
Samples were analyzed in Cytek Aurora 5L (Cytek Biosciences) and unmixed using SpectroFlo 380 
(v3.1.0). Immune subsets that are used in the immune entropy calculation were exported from FlowJo 381 
(version 10.0.7). 382 
 383 
Cytomegalovirus seropositivity 384 
Immunoglobulin G antibodies against CMV were quantified in serum collected before vaccination by 385 
a multiplex immunoassay developed in-house50. Seropositivity thresholds were adapted from a previous 386 
study44. For CMV, a concentration of <7.5 relative units (RU) ml−1 was categorized as seronegative, 387 
≥7.5 RU ml−1 as seropositive.   388 
 389 
Immune entropy  390 
Immune entropy is defined in this study as the correlation distance from a reference group. This distance 391 
is calculated as 1 minus Spearman’s rho (Equation 1), indicating the degree of variation in the immune 392 
systems of participants when compared to the reference group.  393 
 394 

Immune entropy(i)= 1 – ρ ( immune_profile(ref), immune_profile(i) ) 395 
 396 

Equation 1: Data frame ‘immune_profile’ contains 59 immune cell subset variables (Supplementary 397 
Table 1) for each individual, and immune_profile(i) is the vector of 59 variables for a given individual 398 
i. ‘immune_profile(ref)’ contains the median of all vectors where age(i) <35. ‘ρ’ represents the Spearman 399 
correlation coefficient between immune_profile(ref) and immune_profile(i). 400 
 401 
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For the validation cohort (ISA) and kidney transplant recipients (RECOVAC), immune entropy is 402 
calculated using a similar approach. However, due to minor differences in the flow cytometry panels, 403 
slightly different immune subset variables are utilized (Supplementary Table 1). 404 
 405 
Serum/plasma protein measurements 406 
From the baseline visit study time point, Angiopoietin-2, C5a, CCL2, sCD25, sCD163, CXCL10, 407 
sGP130, IL-1RA, sIL-6R, PTX-3, YKL-40, CRP, sCD14, IL-8, Calprotectin, SAA, Neopterini, FABP2. 408 
GM-CSF, IFN-a, IL-1b, TNF-a, IFN-y, IL-6, and IL-10 were measured from serum, and Elastase, PR3, 409 
Cathepsin G, and A1AT-Elastase were measured from plasma as described previously 51.  410 
 411 
Statistical analysis 412 
Data handling, statistical analyses, and visualization were performed in R (version 4.2.2) and R Studio 413 
(version 2022.12.0.353). An ordinal logistic regression was performed to model the triple vaccine 414 
response quartile, using immunotypes as an independent variable, and subsequently in a multivariate 415 
separate model incorporating immune entropy, age, sex, CMV-seropositivity. For ordinal logistic 416 
regression models clm() function from ordinal (version 2022.11-16) package was used. For 417 
immunotypes sum coding was used. This method calculates the deviation of each category from the 418 
overall mean of categories and is particularly useful when assessing differences from the mean rather 419 
than a specific category52. Sum coding was implemented by using stats (version 4.2.2) package. Mann-420 
Whitney-Wilcoxon test was used to compare age or immune entropy between sex and CMV-421 
seropositivity differences. The Kruskal-Wallis test from rstatix (version 0.7.2) package was utilized to 422 
compare immune entropy across immunotypes. Kruskal-Wallis test was subsequently followed by 423 
Dunn's test when p-values were lower than 0.05. Benjamini-Hochberg false discovery rate correction 424 
is applied p-values are reported as p.adj. The correlation between serum proteins and immune entropy 425 
was assessed using Spearman’s rank correlation using stats package. Generalized additive models 426 
(GAM) were used to study the association between antibody levels to both SARS-CoV-2 mRNA-1273 427 
and BNT162b2 vaccines, and immune entropy. Antibody response was log10 transformed to ensure 428 
normality in GAMs. To accommodate potential non-linear associations, immune entropy was modeled 429 
as a smooth term. The optimal complexity of the smooth term was determined by selecting the spline's 430 
degrees of freedom (k) that resulted in the lowest Akaike Information Criterion (AIC), with k values 431 
ranging from 3 to 20 tested. GAMs were conducted using the mgcv (version 1.9-0) package. In the 432 
figures, boxplots display the interquartile range (IQR, 25–75%), with the median indicated by a 433 
horizontal line within each box. Whiskers represent the upper- and lower-quartile ±1.5 × IQR. Mean is 434 
represented as a black dot and error bars around the mean show the standard error of the mean. These 435 
elements combine to provide a detailed visualization of the immune entropy across different 436 
immunotypes." Levels of statistical significance are indicated as: *P < 0.05, **P < 0.01, ***P < 0.001, 437 
and ****P < 0.0001.  Illustrations in the figures are created by using Adobe Illustrator and Biorender. 438 
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 609 
Table 1: Age, sex and CMV-seropositivity per immunotype in those participants included in the triple-610 
vaccine analysis. 611 

     
immunotype median age (range) CMV seropositivity % male % N 
1 41 (25-76) 48 32 25 
2 55 (28-78) 76 48 21 
3 59 (26-71) 10 57 21 
4 55 (26-75) 24 24 17 
5 63 (41-78) 90 50 20 
6 66 (27-77) 23 46 13 
7 70 (48-78) 41 82 17 
8 65 (50-76) 79 58 19 
9 69.5 (50-76) 15 60 20 

Triple vaccine 
response quartile median age (range) CMV seropositivity % male % N 
TQ1 68 (51-76) 47 82 17 
TQ2 63 (26-78) 49 47 77 
TQ3 60 (25-78) 45 42 64 
TQ4 51 (30-69) 33 67 15 

 612 
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 613 

 614 
Figure 1: Baseline immunotypes reveal weak and robust antibody responders overarching 615 
multiple vaccines. (a) Vaccination trial design24. Participants' immunotypes categorized based on pre-616 
vaccination immune subset data23. Antibody response groups were categorized in quartiles based on 617 
antibody levels for each vaccine at day 28 post-vaccination. Antibody response quartiles indicate lowest 618 
(Q1) to highest (Q4) response quartile for each vaccine. (b) Antibody response quartiles illustrated 619 
across multiple vaccines. Each line represents an individual followed across the vaccines. The line color 620 
represents the individual’s immunotype as indicated above. (c) Percentages of each immunotype within 621 
the calculated triple vaccine response group are displayed. This value is derived from averaging the 622 
individual response quartiles across triple vaccines. Triple vaccine response groups (TQ) indicate 623 
lowest (TQ1) to highest (TQ4) response quartile. (d) Ordinal logistic regression model for triple vaccine 624 
response quartiles. *P < 0.05, **P < 0.01, ***P < 0.001 showing immunotypes associated with weak 625 
and strong vaccine responders.  626 
 627 
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 628 

629 
Figure 2: Immune entropy describes the overall immune perturbations and significant 630 
associations with triple vaccine responsiveness. (a) Spearman correlation between immune entropy 631 
and age. (b) Immune entropy differences in sex and (c) CMV seropositivity. The significance was 632 
determined by Mann-Whitney-Wilcoxon test. (d) Immune entropy in triple vaccine response quartile 633 
groups and (e) in immunotypes. The significance was determined using Kruskal–Wallis tests. Post hoc 634 
tests were performed using Dunn’s test with the Benjamini-Hochberg method to adjust for multiple 635 
comparisons. (f) Multivariate ordinal logistic regression model of the associations of immune entropy, 636 
age, CMV and sex with the triple vaccine response. The red circle represents the odd ratios for log10 637 
transformed immune entropy, the blue triangle shows the odd ratios for log10 transformed immune 638 
entropy, age, CMV seropositivity (CMV positive) and sex (male). *P < 0.05, **P < 0.01, 639 
***P < 0.0001,  640 
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 642 
Figure 3: Immune entropy is non-linearly and negatively associated with SARS-CoV-2 vaccine 643 
antibody response in a validation cohort of older persons. Generalized additive model of antibody 644 
levels to S1 spike protein of SARS-CoV-2  investigating non-linear association with immune entropy 645 
after (a) first dose and (b) the primary series of SARS-CoV-2 BNT162b2 vaccine (N=67) (c,d) and 646 
after combining BNT162b2 recipients from both the VITAL and the validation cohorts (N=99). 647 
 648 

 649 
Figure 4: Low SARS-CoV-2 vaccine-responding kidney transplant recipients show increased 650 
immune entropy. (a) Box and violin plots for immune entropy comparing kidney transplant recipients 651 
with generally healthy  VITAL  participants. The significance was determined by Mann-Whitney-652 
Wilcoxon test. ****P < 0.0001.(b) Immune entropy and age distribution for kidney transplant patients 653 
(blue) and VITAL mRNA1273 (orange) individuals. (c) Generalized additive model predictions of 654 
SARS-CoV-2 S1 binding antibody units (BAU) 28 days post primary vaccination series and immune 655 
entropy in VITAL mRNA-1273 participants. 656 
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