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Abstract

Gait disturbances are the clinical hallmark of ataxia disorders, fundamentally impairing the mobility of ataxia
patients. In clinical routine and research the severity of the gait disturbances is assessed within a well-established
clinical scale and graded into categorial levels. Sensor-free motion registration and subsequent movement analysis
allowed to overcome the obvious shortcoming of such coarse grading: Using time series models (tsfresh, ROCKET) we
were not only able to successfully reproduce the categorial scaling (Human performance: 44.88% F1-score; our model:
80.28% F1-score). Particularly subtle, early gait disturbances and longitudinal progression below the perception
threshold of the human examiner could be captured (Pearson’s correlation coefficient human performance -0.060, not
significant; our model: -0.626, p < 0.01). Furthermore, SHAP analysis allowed to identify the most important features
for each clinical level of gait deterioration. This could further improve the sensitivity to capture longitudinal changes
tailored to the pre-existing level of gait disturbances (Pearson’s correlation coefficients up to -0.988, p < 0.01). In
conclusion, the ML-based analysis could significantly improve the sensitivity in the assessment of gait disturbances in
ataxia patients. Thus, it qualifies as a potential digital outcome parameter for early interventions, therapy monitoring,
and home recordings.
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1 Introduction

Neurodegenerative ataxias are a group of sporadic and hered-
itary movement disorders characterized by a progressive loss
of balance and coordination accompanied by slurred speech
leading to increasing disability and premature death. Gait
disturbances are one of the clinical hallmarks resulting in
substantial restriction of mobility with the need to use walk-
ing aids and finally the loss of ambulation in later disease
stages. Initially, imbalance and resulting gait disturbances
only become obvious during challenging tasks, such as a tan-
dem walk or on uneven ground. As the disease progresses,
also the normal gait becomes increasingly impaired. Since
gait disturbances are one of the core features of ataxias, the
clinical onset of the disease is most often defined as the pa-
tient’s reported onset of gait disturbances (Klockgether et
al., 1998). The clinical scale for the assessment and rating
of ataxia includes gait as the first item (Scale for the As-
sessment and Rating of Ataxia, SARA) (Schmitz-Hubsch
et al., 2006). Here, a person’s gait is rated from 0 (normal)
to 8 (unable to walk) based on two tasks: Task 1 is a 10m
normal gait walk with a turn at the end followed by walking
the same distance back. Task 2 is a walk in tandem (heels
to toes) for at least 10 consecutive steps (Schmitz-Hubsch
et al., 2006). The clinical rating is based on parameters
such as missteps in tandem walk or staggering. For ataxia
patients, alterations in e.g. step width while simultaneously
decreased step length, increased variability in the placement
and general trajectories of the feet have been described ei-
ther from sensor-based gait assessments or with a multi-
camera system. (Buckley et al., 2018; Ilg and Timmann,
2013; Kadirvelu et al., 2023; Seemann et al., 2024; Serrao
and Conte, 2018). While this needs particular prerequisites,
video-based markerless motion capturing has been used to
study gait disturbances on a rodent model of ataxia (Lang
et al., 2020). Lang et al. were able to characterize ataxia-
specific movement in their model and further quantify sub-
tle movement changes that could not be identified visually.
In our work, we aimed to characterize gait disturbances
in a large adult cohort of > 90 ataxia patients suffering
from sporadic neurodegenerative or hereditary ataxias, as
well as healthy controls autonomously by utilizing multiple
machine-learning models within a straightforward sensor-
free setting. For this purpose, we used participant’s nor-
mal gait that was videotaped during clinical examinations
(N = 159). First, a deep learning-based markerless motion-
capturing model was used to quantify a person’s gait by
extracting time series of body markers and subsequently
characterizing features thereof. Second, machine learning
models were trained to reproduce the clinical classification,
employing the human examiner’s SARA gait item scoring
as ground truth. Third, we conducted a feature importance
investigation to identify those features, most important for
the final model prediction. Fourth, we analyzed the most
important digital parameters in terms of their sensitivity
to changes over time compared to the clinical scale. The
aim of this study was to investigate to which extent ma-
chine learning (i) is suitable to reconstruct a clinical rating
score usually determined by a trained neurologist, and (ii)
can even improve sensitivity to detect subtle and longitu-
dinal changes. Especially, in those hereditary ataxias, for
which gene therapies are currently being tested in safety tri-
als (clinicaltrials.gov NCT05822908), the detection of early
subtle gait pathologies is of particular interest concerning

their potential as digital outcome parameters in future pre-
vention studies. The approach presented in this work offers
great opportunities in assessing ataxia diseases more fine-
grained and personalized which ultimately allows improved
disease modelling and prediction. In general, the digital as-
sessment of gait disturbances based on markerless motion
capturing is beneficial as it can be easily integrated into
the clinical routine and could even be performed at home,
allowing for closer monitoring of treatment responses and
daily fluctuations.

2 Methods

2.1 Data

Participants & clinical assessment 119 participants
of ongoing observational studies in neurodegenerative atax-
ias at the German Center for Neurodegenerative Diseases
(DZNE) in Bonn, Germany, were included. Thereof were
91 ataxia patients suffering from various neurodegenera-
tive ataxia disorders as follows: 58 spinocerebellar ataxia
(SCA), 2 early-onset ataxias, 11 multiple system atrophy of
cerebellar type (MSA-C) as well as 6 sporadic adult-onset
ataxia (SAOA)), 3 FXTAS, 2 BRAT1, 2 SYNE1, 2 sporadic
ataxias suspect for autoimmune ataxia, 2 Friedreich’s ataxia
(FRDA), 1 CTX, 1RFC1 and 1 CANCA1A missense mu-
tation. Moreover, 28 healthy controls (HC) were included
in the study. All participants underwent a standardized
clinical assessment including the Assessment and Rating of
Ataxia (SARA) (Schmitz-Hubsch et al., 2006), which was
videotaped, and the Inventory of Non-Ataxia Signs (INAS)
(Jacobi et al., 2013). The first SARA item ’gait’ consists of
two tasks: (i) normal gait: normal gait walk for a 10m dis-
tance with a turn at the end on point followed by walking
the same distance back (Task 1) and (ii) tandem walk: walk
in tandem (heels to toes) for at least 10 consecutive steps
(Task 2) (Schmitz-Hubsch et al., 2006). Graded scaling of
the SARA gait item includes the assessment of both tasks
and ranges from 0 (normal) to 8 (unable to walk even with
assistance). The study was approved by the local ethics
committee and all patients gave written consent including
the assessments and the videotaping according to the Dec-
laration of Helsinki.

2.2 Human rating

The on-site assessment of both SARA gait item tasks of
normal gait and tandem walk instructed and rated by a cer-
tified rater was considered as ground truth for the SARA
gait score. For the clinical rating by the human examiner,
the evaluation of both tasks is needed. Particularly, the
tandem walk needs to be considered for the discrimination
between SARA gait scores 0 and 1. An unimpaired, normal
gait with no difficulties in walking and turning as well as an
unimpaired tandem walk is rated with 0, while the combi-
nation of an unimpaired normal gait but slight difficulties
only visible when walking 10 consecutive steps in tandem is
rated with 1. A subset of video recordings has been rated a
posteriori by three clinical experts in consensus as part of
the SARA training tool development (Grobe-Einsler et al.,
2024) (N = 44). These posterior ratings were considered a
human prediction and compared with the ground truth (on-
site ratings). The resulting performance scores were taken
as baseline performance for this work.
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Video taping for markerless motion registration &
selection of videos In a total of 246 visits, SARA as-
sessments were videotaped following a standardized pro-
tocol. For for the gait item, the camera is positioned di-
rectly in front of the proband (See Supplementary Figure
S1). Notably, for the subsequent analysis of automated mo-
tion capturing, we only used the videos of Task 1, normal
gait, of the SARA gait item. For quality control, all videos
were inspected visually for suitability and excluded if un-
suitable. Reasons for exclusion were: disturbances of the
overall scene by other persons (e.g. clinic personnel), in-
sufficient video quality, or environmental factors, such as
mirroring surfaces, that disturb the motion capturing. We
restricted the analysis to those patients who were able to
perform the normal gait task without walking aids, which
corresponds to a SARA gait score of less than 5. Thus, the
final dataset included 159 recordings. In the end, each video
is labeled with its respective on-site SARA gait score and
additionally tagged as HC or ataxia patient.

2.3 Motion capturing

We used Alpha Pose, a full-body pose estimation model
to extract movement markers from joints and other parts
of the human body (Fang et al., 2023). Alpha Pose was
favored over other frameworks such as OpenPose (Cao et
al., 2019; Cao et al., 2017; Simon et al., 2017; Wei et al.,
2016) due to its ease-of-use and superior performance on
benchmark datasets commonly used in pose tracking (Fang
et al., 2023). The Alpha Pose pipeline works in a two-step
process which comprises at first a person localization step,
using YOLOV3 (Redmon and Farhadi, 2018) and Efficent-
Det (Tan et al., 2020), and subsequently a pose estimation
step, while the latter utilizes ResNet (He et al., 2015) as its
backbone model. Using the pose estimation model, 17 mo-
tion markers were extracted corresponding to 17 body parts,
e.g. left ankle or right hip (see Supplementary Table S2 for
details). The data provided by Alpha Pose yielded the hor-
izontal x- and vertical y-positions for each marker in each
frame of the video. Further on, from the Alpha Pose output,
4 multivariate time series were extracted, where each frame
was considered a time step. (1) The first time series was
based on the raw x positions of the hips, wrists, and ankles
(each left and right respectively), which were assembled to
a 6-dimensional (2+2+2) time series from here on referred
to as X-pos. (2) Furthermore, distances between pairs of
markers were extracted and formed the 6-dimensional time
series here referred to as Dist. The elements of Dist are the
distances between the ankles, between the wrists as well as
the distances between the left hip and left wrist, between
the right hip and right wrist, and the distance between the
neck and left and right hip, respectively. (3) & (4) Finally,
triples of markers were used to form triangles and extract
angles from those at certain body positions. Those are from
now on referred to as Upper and Lower. Upper consists of
the angles at the shoulders, formed by the triangle shoulder,
wrist, and hip, left and right respectively. Lower comprised
the angles at the hips, formed by the triangle hip, left an-
kle, and right ankle, left and right hip respectively. Thus,
two 2-dimensional time series resulted from that. In other
words, each of the markers provided by Alpha Pose gives
a certain value at a certain time step, respectively video
frame. Observing these values, or values derived from those
(e.g. angles and distances), over time yields a time series.

This data generation, is further illustrated in Supplemen-
tary Figures S6, S7, S9, and S8.

2.4 Models and training

Two approaches, aimed to solve the task of SARA gait score
reconstruction, were implemented, with each approach con-
sisting of a classifier and a regressor. In the first approach,
we combined tsfresh (Christ et al., 2018) and XGBoost
(Chen and Guestrin, 2016). Here, time series features were
obtained using tsfresh, which is a Python package that al-
lows the extraction of 794 time series features from a single
1-dimensional time series. For the categories of multivariate
time series as used in this work (X-pos, Dist, Upper, Lower),
one obtains N*794 features, with N being the dimensional-
ity of the times series included in the respective category (6,
6, 2, 2). The 794 time series features are predefined (Christ
et al., 2018) and include parameters such as the variance
of all values or the number of local maxima for each time
series. To perform the final predictions a XGBoost model -
classifier and regressor - was fitted on a subset of these ex-
tracted features to perform the final prediction. This subset
of features resulted from a feature reduction procedure de-
scribed further down.
The second approach utilizes ROCKET, a time series model
that was able to report state-of-the-art performance scores
in several time series classification tasks with significantly
lower computational costs than established methods (Demp-
ster et al., 2020). ROCKET extracts time series features by
applying random convolutional kernels to the time series.
Subsequently, a linear model is fitted on these features to
perform the final prediction. As in (Dempster et al., 2020),
ridge regression was used as the linear model and 10,000 was
chosen as the number of convolutional kernels. The regular-
ization strength used for the ridge regression was optimized
in an inner cross-validation.
Both models, tsfresh and ROCKET, were fitted on the time
series X-pos, Dist, Upper, and Lower as well as every combi-
nation of those. Each result reported in the following results
section states the best score reached among all of these time
series (-combinations). For instance, a model may achieve a
worse performance using X-pos alone instead of using Dist
and Upper combined. Note that when combining two multi-
variate time series of dimension n and m the resulting time
series in a multivariate time series of dimension n+m, e.g.
X-pos+Dist is a 12 (6+6) dimensional time series.

As mentioned above, both models were trained and eval-
uated in a regression and classification scenario. In the re-
gression setting, the models were trained to predict on the
SARA gait score range [0,4] in all participants while the
classification problem was subdivided into 15 binary clas-
sification problems, with one binary classification for every
pair out of the SARA gait scores [HC,0,1,2,3,4], exclud-
ing self-pairs. Note that in the classification scenario, the
ratings are considered as classes rather than values on an
ordinal scale, and healthy controls were considered as their
own class. Thus, within the classes of SARA gait scores 0-4
comprised ataxia data only. The regression problem is eval-
uated in terms of Root Mean Squared Error (RMSE) and
R2-score. To test whether the models could distinguish be-
tween neighboring classes within the regression scenario, a
Mann-Whitney U-test was conducted on the predicted val-
ues of neighboring classes and statistically significant differ-
ences between neighbors were reported. Additionally, the
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regression experiments are repeated excluding HC from the
data. To account for class imbalances we report the classi-
fication scores in terms of a macro-averaged F1-score. That
score is formed by calculating the F1-score for each class
and averaging the result.

All models were trained and evaluated in a leave-one-out
cross-validation with a slight modification as follows: For
those participants (N = 30) with follow-up visits, all other
videos of the participants whose video is currently in the
test set were excluded. This was undertaken to avoid short-
cut learning theoretically possible by the model recognizing
a certain participant by personal gait characteristics. Addi-
tionally, the cross-validation of the tsfresh models included
an inner cross-validation in which the number of features
was reduced to the top k features ranked by SHAP (SHapley
Additive exPlanations) values. A feature reduction mecha-
nism was employed since the feature vectors assembled from
tsfresh are high-dimensional and reducing the dimensional-
ity in a sophisticated way can remove redundant data and
avoid overfitting (Khalid et al., 2014; Mwangi et al., 2014).
The feature selection mechanism used in this analysis has
been shown to provide better results in feature reduction
than other commonly used strategies (Marcilio and Eler,
2020). The parameter k was tuned in the inner loop with
a 5-fold cross-validation on the current training set and ac-
cordingly can differ in each leave-out setting. Subsequently,
the calculated SHAP values are used in terms of model ex-
plainability. Incorporating SHAP for model explainability
has become a popular choice in machine learning (Fryer et
al., 2021) and hence was also used in this work. The SHAP
values were accumulated during the entire training process
of the tsfresh models and finally, the extracted time series
features were ranked by their respective SHAP values. The
mean SHAP values are interpreted as feature importance
and allow us to gain insight into the final model prediction.
The regression experiments produce predictions on a float-
ing scale which is not directly comparable to the integer-
valued SARA gait scores resulting from the human baseline
effort. However, a crucial step to investigate whether the
proposed models are capable of tackling the task of rat-
ing gait disturbances according to SARA was necessary to
compare their predictive performance to the human base-
line performance. To map the float-valued predictions of
the regression models to the actual SARA gait scale, the
following procedure was undertaken. For one assessment,
the regression model was used to locate the rating on the
floating SARA gait scale. Subsequently, a specific classifi-
cation model was incorporated to determine the final class.
For instance, the regression model predicted a score of 2.42,
subsequently a classification model trained on distinguish-
ing SARA gait scores 2 and 3 was used to determine whether
the final SARA gait score is a 2 or a 3. This was done for
both tsfresh and ROCKET. Finally, the resulting integer-
valued predictions were used to compare the models of this
work with the human baseline.

2.5 Longitudinal analysis

Thirty patients were followed up longitudinally, which al-
lowed to investigate the performance of the extracted gait
features in capturing progressing gait disturbances that are
expected over time compared to the clinical scale. For each
feature extracted from the time series utilizing the tsfresh
package, a correlation analysis was performed that inves-

tigated for which feature the greatest Pearson’s correlation
coefficient was found. The correlation coefficient was formed
between the value of that feature and the time variable. All
SARA gait scores assessed in these 30 patients were nor-
malized with respect to their initial baseline visit and the
variable was numerically handled in days since the baseline
visit. Finally, a linear regression analysis revealed whether
the linear correlation between feature values and days since
the baseline visit was significant. This investigation was
performed on the entire longitudinal cohort (N=30) and
on four sub-cohorts that were derived from grouping pa-
tients with the same SARA gait score assessed during their
baseline visit. For instance, one sub-cohort was formed by
grouping patients with a SARA gait score of 2 during their
baseline visit. Finally, this study considered the predic-
tions of the two models, tsfresh and ROCKET, derived from
the regression experiments as a variable, here referred to as
floating point SARA gait score, and investigated for cor-
relation with the days since the baseline visit in the same
manner as with the time series features.

2.6 Fairness analysis

Since this work aims to be incorporated into clinical prac-
tice in the future, it was necessary to investigate whether
the models resulting from this work are fair. Here, we con-
sider the models as fair if no sex or age group has to ex-
pect a significantly lesser performance from it. Hence, the
mean absolute error for males and females as well as for
the age groups 19-39, 40-59, and 60-82 were calculated and
reported.

3 Results

Table 1 summarizes the demographic data of the patient
and human control cohorts. 159 videos of participants per-
forming the 10m walk formed the basis for the analysis. 87
videos had to be excluded. The on-site ratings, which serve
as the ground truth, were distributed as depicted in Sup-
plementary Table S3.

HC Patients

N 28 91
(f/m) (14/14) (46/45)
Age 47.75 (19.67) 50.21 (13.80)

SARA sum score 2.59 (3.36) 10.16 (5.26)
SARA gait score 0.36 (0.66) 1.89 (1.07)

INAS count 0.76 (0.76) 2.57 (1.62)

Table 1: Demographic and characterizing data. Infor-
mation is given as mean and standard deviation in brack-
ets, resp. female (f)/male (m) distribution. INAS count
was available for 139 and SARA sum score was available
for 149 videos. Age, INAS, SARA, and SARA gait score is
averaged over all videos within the respective group. The
mean/standard deviation of SARA sum score, SARA gait
score, and INAS count were calculated by including all vis-
its of each participant.

The age distribution across the groups of ataxia patient sub-
groups according to their baseline SARA gait scores as well
as the HC can be found in Supplementary Figure S5. The
upcoming section presents the results of the two modeling
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approaches in both the regression and classification scenar-
ios. Subsequently, this section presents the results of the
explainability efforts and concludes with the results of the
longitudinal analysis and fairness analysis. Note that in this
section the models are referred to as tsfresh or ROCKET,
however, tsfresh stands for the model using time series fea-
tures generated from tsfresh and then fitting an XGBoost
model on that. ROCKET refers to the model applying ran-
dom kernels on the time series and subsequently fitting a
ridge regression model on the result.

3.1 Human baseline

Out of the 159 videos, 44 were used to compare the on-site
rating (the ground truth) with a posteriori consensus rating
of the videos by three trained neurologists (Grobe-Einsler
et al., 2024). The resulting human baseline performance
scores are depicted in Table 3. The posterior consensus
rating was able to reconstruct the SARA gait score with
a macro-averaged F1-score of 44.88%, precision of 54.88%,
and recall of 49.33%.

3.2 Regression Experiments

The evaluation of tsfresh and ROCKET prediction of the
SARA gait score yielded RMSE and R2 scores presented in
Figure 1. The experiments were conducted with every time
series combination possible and the reported scores are the
best noted, in terms of RMSE and R2-score. The tsfresh
model, which utilizes explicit time series features, e.g. num-
ber of peaks, was able to score an RMSE of 0.824 while
reporting an R2-score of 0.505. These scores were reached
by utilizing the combination of times series X-pos+Lower,
i.e. the body markers taken from the 6 raw x-positions
combined with the two angles at the left and right hip of a
person. Moreover, the model demonstrated a statistically
significant (p < 0.05) distinction in the distribution of pre-
dictions between videos rated as 1 and those rated as 2. This
suggests that the model effectively captured the nuances be-
tween these closely adjacent values on the SARA gait scale.
Additionally, this was the case for the neighboring values 3
and 4. The model utilizing implicit time series features by
applying random convolution kernels, ROCKET, was able
to score a greaterRMSE andR2-score than tsfresh was able
to do. The ROCKET model was able to score an RMSE
of 0.763 and an R2-score of 0.575. Furthermore, the statis-
tical analysis revealed that the model predicted significant
differences in SARA gait scores between videos rated as 0
and those rated as 1. This was also the case for two more
neighboring scores, i.e. 1 and 2, and 2 and 3. The scores
presented were scored by the ROCKET model adopting the
time series combination X-pos+Upper+Dist, i.e. the 6 raw
x-positions, the angles at the shoulders, and the 6 distances.
All regression experiments were repeated excluding those
participants without HC. Supplementary Figure S2 and S3.
Table 2 depicts the results of the same experiments exclud-
ing HC together with the previously presented scores for
comparison. The results for tsfresh show that including HC
yielded a greater R2-score than excluding these. However,
in terms of RMSE the opposite was observed. Including
HC led to a higher RMSE, which is to be interpreted as a
worse performance. Considering the ROCKET model, both
scores, RMSE and R2-score, benefited from including HC.
That means a greater R2-score while simultaneously reach-

ing a lower RMSE.

Case Time Series R2 ↑ RMSE ↓
tsfresh

Including HC X+L 0.504 0.823
Excluding HC U+L 0.482 0.769

ROCKET

Including HC X+D+U 0.575 0.762
Excluding HC X+D+U 0.470 0.778

Table 2: Regression results for different cases for
handling HC. Results for tsfresh in the upper half of the
table, ROCKET results in the bottom half of the table.
Arrows indicate the favorable outcome, i.g. for R2 higher
values are favorable, for RMSE lower values. X, D, U, and
L indicate which time series combination lead to the best
outcome. X=X-pos, D=Dist, U=Upper, L=Lower

3.3 Classification Experiments

3.3.1 Binary Classification Experiments

The classification experiments comprised 15 experiments for
each model architecture, tsfresh, and ROCKET. Figure 2
presents the results of these experiments in color-encoded
matrices. Considering tsfresh (Figure 2(a)) a clear trend
is observable where the greater the distance between two
classes - in other words, the absolute difference between the
two corresponding SARA gait scores - the more accurately
the model could distinguish between them. The maximal
F1-score with 95.38% was reached for the classification ex-
periment separating SARA gait scores 0 and 4. The low-
est F1-score with 60.92% came from the binary classifica-
tion experiment that was trained on distinguishing SARA
gait scores 0 and 1 of the patient group. Notably, tsfresh
achieved an F1-score of 78.78% in the classification between
HC and SARA gait score of 0 in the patient group. The
tsfresh model utilizes explicit time series features and per-
formed best when incorporating either the time series Lower
or Upper or Upper+Lower, i.e. the two angles at the shoul-
ders and two angles at the hips, in the majority of all bi-
nary classifications experiments (in 13 out of 15). Generally,
the ROCKET model showed lower F1-scores for the binary
classification experiments. As before, the more distant two
classes were, the better the classification performance. The
best performance was achieved by the ROCKETmodel with
a perfect 100% F1-score in the classification of the SARA
gait scores 1 versus 4. That score was achieved by incor-
porating the time series combination X-pos+Dist, namely
the raw x positions of 6 markers combined with the 6 dis-
tances between markers. Here, the lowest reported F1-score
of 55.85% was related to the classification of HC and SARA
gait score of 1 in patients. Contrary to the tsfresh model,
for the ROCKET model the most preferred time series are
X-pos and Dist. All top-ranking F1-scores, in the binary
classification experiments, were reported by utilizing either
X-pos or Dist or both. On average, the tsfresh model could
reach a macro-averaged F1-score of 83.65% (standard devi-
ation (SD) 10.28) while ROCKET reached an F1-score of
76.70% (SD 13.89).
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(a) tsfresh (b) ROCKET

Figure 1: Regression experiments results. Results of tsfresh (left) and ROCKET (right) in terms of RMSE and
R2-score. The numbers at the very top row present the RMSE constrained to that specific SARA gait score, e.g. the
tsfresh model scored an RMSE of 0.623 on the SARA gait score 1. The thick black line is a linear fit on the model
predictions while the dotted line is the diagonal representing a theoretical 1:1 relationship between true and predicted
values. The brackets in the top section indicate whether the model predicted significant differences between neighboring
SARA gait scores. Ataxia patients are represented by colored dots, HC are represented by black crosses. * p < 0.05, **
p < 0.01, not significant (n.s.)

(a) tsfresh (b) ROCKET

Figure 2: Classification experiments results. Results of tsfresh (a) and ROCKET (b) models. Each row-column
combination in the upper right triangle depicts the best reported macro-averaged F1-score (in %) for the respective binary
classification. The lower left triangle depicts for which time series or combination of time series this performance was
reported. For instance, the best tsfresh model trained to classify between the SARA gait scores 0 and 1 within the ataxia
group was able to score a macro-averaged F1-score of 60.92% when using the times series assembled from the angles at
the shoulders only (Upper). X=X-pos (time series of raw x-positions of each marker separately), D=Dist (time series of
distances between two markers), U=Upper (times series of angles of the upper body part, e.g. shoulders), and L=Lower
(times series of angles of the lower body part, e.g. hip).

3.3.2 Evaluating on the entire SARA gait range

Finally, this work evaluated the ability of tsfresh and
ROCKET to classify between all 5 SARA gait classes con-
sidered, namely [0, 1, 2, 3, 4] (Table 3). HC was not consid-
ered as a separate group in this experiment. The presented
scores are macro-average scores over all classes.

Both models outperformed the human baseline. Evalu-
ating tsfresh on all samples achieved an F1-score of 52.39%
and 52.74% when the data was restricted to the 44 as-
sessments retrospectively rated by three neurologists (hu-
man baseline). ROCKET, when evaluated on all samples,

achieved an F1-score of 81.23% and 80.28% when the data
was restricted to the 44 samples of the human baseline.
Thus, here the model based on random convolution kernels,
ROCKET, yields superior performance compared to tsfresh
and the human baseline.

3.4 Explainability

Since the implementation of tsfresh features involved a fea-
ture reduction mechanism that uses SHAP values, we were
able to utilize these values to gain insight into feature im-
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Model Features Prec. ↑ Rec. ↑ F1 ↑
tsfresh U+L 57.92 50.21 52.39

tsfreshH44 U 63.77 54.31 52.74
ROCKET U+L 85.16 78.59 81.23

ROCKETH44 D+U+L 88.80 76.98 80.28

HumanBaseline n.a. 54.88 49.33 44.88

Table 3: Classification results on entire scale. Re-
sults of the classification experiment on the SARA gait score
classes [0,1,2,3,4], presented in %. {ROCKET, tsfresh}H44

indicates that the models were evaluated on the subset of
the 44 cases, which were used to create the human base-
line. Both models outperformed the human baseline. All
scores are presented in %. Prec.=Precision, Rec.=Recall,
F1=F1-score. Arrows indicate the favorable outcome, for
all considered metrics, higher values are favorable. n.a.=not
applicable

portance. Accumulating these SHAP values for each time
series feature over the entire training process allowed us to
evaluate which markers were most important for the model
to generate its final prediction. Figure 3 presents the results
of this investigation in a radar plot. The most important
features originated from the time series comprising the an-
gles of the upper and lower body. The angles at the left
shoulder achieved the highest SHAP value on average, fol-
lowed by those of the right shoulder. Features derived from
the angles at the hips were on rank 4 (right hip) and 6
(left hip). In between, on rank 5 was the first distance fea-
ture: distance between both ankles. Lesser importance was
given to those features taken from the raw x positions of
certain body markers (X-pos) and from the pairwise dis-
tances (Dist), except for the distance between the ankles.
The same analysis was performed for neighboring classes in
the classification experiments. Neighboring classes here re-
fer to the binary classifications HC vs. 0, 0 vs. 1, 1 vs. 2, 2
vs. 3, and 3 vs. 4. This is presented in the Supplementary
Table S4. The pairwise analysis revealed that for the model
to distinguish between the HC and SARA gait scores 0 in
the ataxia group as well as to distinguish between 0 and 1,
the most important body marker is the angle at the right
shoulder. Concerning 1 vs. 2, the distance between the neck
and the left hip received the greatest SHAP value. Moving
on to 2 vs. 3, the distance between the ankles and the dis-
tance between the neck and right hip share a similar high
SHAP value. Finally, to separate the SARA gait scores 3
and 4, the model benefited the most again from the time
series features extracted from the angle at the right shoul-
der. Summarizing the explainability analysis of the binary
experiments yielded that the markers on the right side of
the body tend to receive higher feature importance than the
markers on the left side, and particularly the angles exhibit
the highest feature importance.

3.5 Longitudinal analysis

Thirty participants returned for at least one follow-up visit.
Table 4 characterizes this longitudinal sub-cohort. To inves-
tigate features suitable to model gait disturbances in ataxia
over time, we plotted the relative change to the value as-
sessed at the baseline visit of each considered parameter
against the time since baseline in days 4. This section refers

Figure 3: Explainability analysis. Mean SHAP values
by marker presented in a radar plot. SHAP values are cal-
culated during the feature reduction step implemented in
the regression experiment of the pipeline utilizing the ts-
fresh model.

Time of observation in days
mean, [min, max]

463.43 [130, 810]

Number of visits: 2 visits: 24
3 visits: 6

Number of patients SARA gait score of 0: 5
according to their baseline SARA gait score of 1: 4
level of gait disturbances: SARA gait score of 2: 15

SARA gait score of 3: 5
SARA gait score of 4: 0

Table 4: Characterizing data of the longitudinal sub-
cohort. The baseline rating refers to the SARA gait score
rating assessed by a neurologist during the first SARA as-
sessment of the respective participant. 24 patients had 1
follow-up visit, 6 patients had 2 follow-up visits.

to particular features, e.g. numbers of local minima, of a re-
spective time series, e.g. x position of the left hip (as part of
the X-pos time series) or the angles of the right shoulder (as
part of the Upper time series). Thus, a longitudinal deterio-
ration of gait disturbances might result in either a decrease
or an increase, e.g. negative or positive deltas compared to
baseline. Detailed information on the selected features is
given in Supplementary Table S1.

Clinical scale The clinical scale, SARA gait score, it-
self failed to show any significant longitudinal changes in
the studied cohort. Increases and decreases relative to the
SARA gait score at baseline were roughly balanced, whereby
the expected deterioration in gait was barely captured with
a Pearson’s correlation coefficient of -0.06.

Overall time series feature For the overall analysis of
the whole ataxia cohort the x-position of the left hip was
identified as the time series containing the one feature best
modeling the longitudinal change. The correlation of fea-
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ture change to baseline versus days since baseline was signif-
icant (Pearson’s correlation coefficient -0.625, p<0.01) (Fig-
ure 4 B).

Stage-dependent time series features Further strati-
fication of the longitudinal cohort by their SARA gait score
rating at baseline allowed to identify features tailored to the
stage-dependent severity of ataxic gait. All stage-dependent
time series features were significant and reached higher cor-
relation coefficients than the overall time series feature (3.5)
ranging from absolute Pearson’s coefficients between 0.841
to 0.988 compared to 0.625. For patients that started with
a baseline SARA gait score rating of 0, again one feature of
the time series constructed from the x position of the left
hip was identified as the best feature for modeling longitudi-
nal changes (Pearson’s coefficient of 0.934, p<0.01)(Figure
4 C0). For patients with a baseline SARA gait score rat-
ing of 1 a certain time series feature of the x position of
the right ankle best modeled the longitudinal change with
the highest absolute observed Pearson’s coefficient of -0.988
(p<0.01)(Figure 4 C1). For patients initially rated with a
SARA gait score of 2 a feature of the time series from the
angle at the left hip (Lower) best captured the longitudinal
change with a Pearson’s coefficient of 0.841 (p<0.01)4 C2).
Finally, we considered those patients who were rated with a
SARA gait score of 3 at baseline. For those, a feature from
the time series of the angle at the right hip (Lower) best
captured the longitudinal change yielding a Pearson’s coef-
ficient of -0.943 (p< 0.01)4 C3). For patients with a SARA
gait score of 4 only baseline assessments were available.

Predicted SARA gait score The two final analyses per-
formed on the longitudinal cohort aimed to answer whether
the floating point SARA gait score, which was predicted
by the two models, tsfresh and ROCKET (3.2) during the
regression experiments, can capture a significant longitu-
dinal change. Concerning the tsfresh model, this was not
the case. A positive Pearson’s coefficient was reported with
a value of 0.132 but this relationship was not significant
(p>0.05). However, the model utilizing random convolu-
tional kernels, ROCKET, predicted significantly increasing
SARA gait scores over time with a Pearson’s correlation
coefficient of 0.369 (p<0.01) (Figure 4 D0, D1).

3.6 Fairness

Evaluating the mean absolute error (MAE) produced by
each model, tsfresh and ROCKET, on different age and sex
groups gives insight into the fairness of the model. The
model using ROCKET performs best applied to the age
group 60 to 82 (MAE: 0.555) and worst for participants
aged 40 to 59 (MAE: 0.707). The age group 19 to 39 ranked
between the two other groups (MAE: 0.660). The tsfresh
model produces residuals that yielded a similar MAE for
all age groups (MAE: 0.665 for age 19-39; MAE: 0.657 for
age 40-59; MAE: 0.637 for age 60-82). Concerning the split
male/female, the ROCKET model produced an MAE of
0.579 for males and 0.645 for females. The tsfresh model
on the other side produced an MAE of 0.702 for males and
0.556 for females. The results are presented in Table 5. In
summary, no model showed relevant performance increases
or decreases in any sex and/or age group.

ROCKET
MAE

tsfresh
MAE

Age-range / N

19-39/35 0.660 (0.43) 0.665 (0.55)
40-59/59 0.707 (0.49) 0.657 (0.53)
60-82/34 0.555 (0.51) 0.637 (0.41)

Sex / N

male/59 0.579 (0.45) 0.702 (0.53)
female/60 0.645 (0.47) 0.556 (0.44)

Table 5: Fairness evaluation. Mean absolute error
(MAE) of each model for the age and sex groups. MAE
is given as mean and standard deviation (SD) in brackets.

4 Discussion

We used videotaped 10m walks of normal gait in a large
cohort of ataxia patients and healthy controls and incorpo-
rated multiple machine learning methods to reproduce the
human clinical rating of gait disturbances as well as for the
assessment of longitudinal changes. A markerless motion-
capturing model, AlphaPose, creates the time series by ex-
tracting the xy-position for every marker in every frame of
the video. Two modeling approaches were used. In the first
approach, referred to as tsfresh, a time series feature vector
was generated using tsfresh and we subsequently fitted an
XGBoost model on it. The second approach, ROCKET,
applied random convolutional kernels to the time series and
fitted a ridge regression on the generated features. Both
models outperformed the human rater in capturing early,
subtle gait disturbances as well as longitudinal changes.

The general performance of both models is convincing.
The predicted (floating point) SARA gait values of both
models showed a strong correlation with the human SARA
gait rating (R2 > 0.5). As expected, the binary classifi-
cation improved on average for more distant classes, e.g.
greater difference between the two considered SARA gait
scores. Moreover, there are two notable details, with regard
to the superiority of the automated gait analysis to detect
subtle changes occurring in the early disease course. First,
within the classification experiments, the binary classifica-
tion between HC and ataxia patients rated with a SARA
gait score of 0 (normal gait) by the human examiner achieved
higher macro averaged F1-scores than between human SARA
gait score rating of 0 and 1 in ataxia patients. Moreover,
the R2-score was slightly stronger in the entire cohort com-
prised of ataxia patients and HC than for the ataxia patients
only, for both models. Thus, including HC might overall re-
duce variances within the group of participants rated with
a SARA gait score of 0. We hypothesize, that both obser-
vations are related to the fact that ataxia patients, even
if rated as 0 (normal gait) by the human examiner, might
nonetheless already exhibit very subtle alterations or higher
variability within their gait parameters. From a concep-
tual point of view a gradual deterioration is reasonable and
particularly for hereditary ataxias, alterations of gait pa-
rameters - assessed with body-worn sensors or a 6-camera
system - have been described for early, so-called pre-ataxic
disease stages with an overall SARA sum scores < 3 (Ilg et
al., 2022; Shah et al., 2021). Second, both models ”outper-
formed” the human rater in the discrimination accuracy of
SARA gait score 0 (”normal gait”) (Schmitz-Hubsch et al.,
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Figure 4: Longitudinal analysis. The relative change to baseline of the on-site SARA gait score (human baseline,
ground truth) (A), the overall (B) as well as stage-dependent particular features of certain time series (C0-C3) and the
floating point SARA gait scores predicted in the regression task of each model, tsfresh (D0) and ROCKET (D1), are
plotted against the time since baseline in days. The stage-dependent features were studied in subgroups of respective
ataxic gait severity levels at baseline: SARA gait score of 0 (C0), 1 (C1), 2 (C2), and 3 (C3) at baseline. The black line
represents the mean trajectory, created by a linear interpolation, with the gray shaded area being the respective standard
deviation. The yellow dotted line illustrates the linear regression fit of the given data. Pearson’s correlation coefficient and
a p-value from the linear regression analysis are given. For the time series features (B, C0-C3) the anatomical miniature
reference depicts the respective time series from which the feature was extracted. TS = time series, R = right, L = left

2006) and SARA gait score 1 (”slight difficulties only visible
when walking 10 consecutive steps in tandem”) (Schmitz-

Hubsch et al., 2006). In our video analysis the second task
of the gait assessment, the tandem walk, was not consid-
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ered. Thus, based on the normal gait task alone, the human
rater should not be able to discriminate SARA gait scores
of 0 versus 1. In contrast, the macro averaged F1-score
of this particular binary classification was around 60% for
both models, which again underlines the potential for the
detection of subtle, early gait disturbances.

Incorporating machine learning models into clinical prac-
tice benefits from models being able to reason about their
decisions. This not only allows clinicians to gain insight
into the importance of certain features leading to the mod-
els’ final decision but also increases the trust in these models
(Shin, 2021). Hence, this work included an explainability
approach where the captured body markers are ranked by
SHAP values. This analysis could only be carried out for
the tsfresh approach, as this works with explicit time series
features, in contrast to ROCKET with its random kernel
approach. This ”explainable AI” analysis revealed, that for
the overall prediction of SARA gait scores, the top 5 features
with the greatest influence on the model’s final prediction
were features extracted from the time series of the angles
at the shoulders and hips as well as the distance between
both ankles. This seems reasonable since the ataxic gait
is characterized by a widened base, staggering, and trun-
cal instability with balancing movements of the arms. We
also included the explainable AI approach for the longitu-
dinal analysis. For the overall evaluation of longitudinal
changes, a feature from the x-position time series of the left
hip did by far outperform the human rating, which was not
able to capture the expected longitudinal change, as well as
the predicted floating point SARA gait scores of both mod-
els. Obviously, but nevertheless important to note is, that
the selection of stage-dependent features tailored to the re-
spective severity level of a participant further improved the
detectability of progressive longitudinal changes. This is in
line with previous studies in SCA2 with body-worn sensors
(Seemann et al., 2024). In addition to the superiority in
detecting subtle and longitudinal changes, the automated
analysis was more accurate in the reproduction of onsite
ratings compared to a human baseline. We have defined the
on-site SARA rating of an experienced human examiner as
ground truth. The clinical scale, SARA, has been shown to
have a high inter-rater reliability. However, in comparison
to both models, the reproduction of the on-site rating based
on a consensus rating of the videos by three neurologists (re-
ferred to as human baseline) did show a lower F1-score than
both models (44.88% vs. 52.74% for tsfresh and 80.28% for
ROCKET). This might be due to the limited perspective
with only the front video caption, while the human exam-
iner on site has the advantage of the best positioning for
them to rate the gait of participants. Yet, the possibility of
bias on the part of the on-site investigator due to the gen-
eral impression gained during the entire clinical visit cannot
be ruled out. Nevertheless, this underlines the potential of
digital methods to reproduce clinical scores.

With regard to the overall prediction of the SARA gait
score, ROCKET showed a better performance with lower
values for RMSE and a higher R2. One big advantage of
the ROCKET model is its low computational costs. This
would even make it possible to run ROCKET locally on a
smartphone device, providing an elegant way to analyze gait
parameters without the need to transfer video data, which
can be favorable in terms of data protection. However, with
regard to the discrimination of neighboring classes as well
as for the identification of the most important features, ts-

fresh is more convincing. In particular, longitudinal changes
were accurately recorded, when considering the pre-existing
ataxia severity. Thus, allowing a very tailored monitoring
of progression as desired within the framework of clinical
trials. Moreover, since tsfresh still works with concrete
time series features (instead of random kernels as ROCKET
does), the explainability AI approach allowed to gain in-
sights into the most important features overall as well as
for particular patient subgroups. The test setup was very
simple with a single camera positioned in front of the par-
ticipant’s walking distance and is therefore suitable for fast
and easy recording during clinical routine as well as for
home recordings. Studies with recordings at home using
a walking distance shorter than 10 m have already been
demonstrated to have a good correlation with the estab-
lished distance investigated here Grobe-Einsler et al., 2021.
Interestingly, this study was also able to document the daily
form-dependent fluctuations often reported by ataxia pa-
tients. The digital methods presented in our work allow
large amounts of data to be analysed in a very short time,
making it possible to evaluate high numbers of recordings.
Therefore, they have enormous potential for overcoming the
dependence on individual assessments in the clinical setting
- which may be influenced by the current form of the day -
as well as for a regular therapy monitoring at home.

5 Conclusion and Outlook

Applying machine learning to clinically assessed video data
of normal gait using markerless motion capturing and fit-
ting time series models on the results, as done in this study,
has been demonstrated to be suitable for an automated rat-
ing of ataxic gait disturbances. Particularly, subtle early
and longitudinal changes, not observable by a human ex-
aminer could be detected. Thus, it provides a feasible and
easy-to-use tool for clinical routine as well as assessments at
home. However, further investigation, including more data,
particularly more longitudinal data in homogeneous disease
groups, is needed to build more accurate models. In addi-
tion, comparative studies with wearable sensors are desired,
as is the consideration of adding further recording angles.
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8 Abbreviations and introduced terms

• RMSE - Root mean squared error

• MAE - Mean absolute error

• X-pos - Multivariate time series constructed from the
x positions of single body joints, namely left and right
wrist, ankle, and hip (Supplementary Figure S6)

• Dist - Multivariate time series constructed from the
pairwise distance between the ankles, left hip and left
wrist, right hip and right wrist, as well as neck and
hips (Supplementary Figure S7)

• Upper - Multivariate time series constructed from the
angles of the triangles formed by the shoulder, wrist,
and hip, each left and right respectively (Supplemen-
tary Figure S8).

• Lower - Multivariate time series constructed from the
angles of the triangles formed by (left and right) hip
and both ankles (Supplementary Figure S9)
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9 Supplementary Material

S9.1 Implementation details

tsfresh model. The time series features were generated with the tsfresh framework implemented in Python https:
//tsfresh.readthedocs.io/en/latest/. The XGBoost models were taken from the Python implementations of XGBoost
https://xgboost.readthedocs.io/en/stable/. Hyperparameters were tuned using Optuna https://optuna.org/. SHAP
values were calculated using the SHAP python implementation https://SHAP.readthedocs.io/en/latest/index.html.

ROCKET model. We used the ROCKET implementation provided as a part of sktime https://github.com/sktime/
sktime.

S9.2 Supplemantary Tables

Cohort considered for longitudinal analayises Best preforming feature
Corresponding multivariate time series

Whole longitudinal cohort x-pos-LHip change quantiles f agg ”mean” isabs True qh 1.0 ql 0.4
X-pos

Subgroup with baseline rating: 0 x-pos-LHip fourier entropy bins 3
X-pos

Longitudinal analysis; baseline rating: 1 x-pos-RAnkle fft coefficient attr ”angle” coeff 70
X-pos

Subgroup with baseline rating: 2 LHip-(LAnkle,RAnkle) number peaks n 5
Lower

Subgroup with baseline rating: 3 RHip-(LAnkle,RAnkle) fft coefficient attr ”imag” coeff 8
Lower

Table S1: Time series features in longitudinal analysis. Time series features referred to in the longitudinal
analysis 3.5, which did best model the longitudinal change. Note that implementations of the features can be found here:
https://tsfresh.readthedocs.io/en/latest/text/list of features.html

Abbreviation Internal Name Body Part

0 Nose Nose
1 LEye Left Eye
2 REye Right Eye
3 LEar Left Ear
4 REar Right Ear
5 LShoulder Left Shoulder
6 RShoulder Right Shoulder
7 LElbow Left Elbow
8 RElbow Right Elbow
9 LWrist Left Wrist
10 RWrist Right Wrist
11 LHip Left Hip
12 RHip Right Hip
13 LKnee Left Knee
14 RKnee Right Knee
15 LAnkle Left Ankle
16 RAnkle Right Ankle

Table S2: Body markers available. 17 body parts extracted by Alpha Pose model.

SARA gait score N

0 44
1 22
2 61
3 28
4 7

Table S3: SARA gait score distribution. Distribution of SARA gait scores throughout the cohort used in this study.
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S9.3 Supplementary Figures

Figure S1: Video protocol. Protocol for the SARA video assessments. Figure from Grobe-Einsler et al., 2024.

Figure S2: Regression results. Results of tsfresh in terms of RMSE and R2-score in the ataxia patient group only.
The numbers above present the RMSE constrained to that specific SARA gait score, e.g. the model scored an RMSE of
0.590 on the SARA gait score 2. The thick black line is a linear fit on the model predictions while the dotted line is the
diagonal representing a theoretical 1:1 relationship between true and predicted values. The brackets in the top section
indicate whether the model predicted significant differences between neighboring SARA gait score scores. * p < 0.05, **
p < 0.01, n.s. = not significant.
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Figure S3: Regression results. Results of ROCKET in terms of RMSE and R2-score in the ataxia patient group only.
The numbers above present the RMSE constrained to that specific SARA gait score, e.g. the model scored an RMSE of
0.573 on the SARA gait score 2. The thick black line is a linear fit on the model predictions while the dotted line is the
diagonal representing a theoretical 1:1 relationship between true and predicted values. The brackets in the top section
indicate whether the model predicted significant differences between neighboring SARA gait score scores. * p < 0.05, **
p < 0.01, n.s. = not significant.

Figure S4: Explainability in classification experiments. Feature importance in direct neighbor comparisons in
terms of SHAP values. Binary classifications of the neighboring classes: HC versus ataxia patients rated with a SARA
gait score of 0; ataxia patients rated with a SARA gait score of 0 versus 1, etc. See Section 3.4
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Figure S5: Age distributions. Age distributions of participants stratified by the subgroups of HC as well as for ataxia
patients by SARA gait score.

Figure S6: X-pos markers. Illustration of the body markers used to create the time series X-pos.
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Figure S7: Dist markers. Illustration of the distances between body markers used to create the time series Dist.

Figure S8: Upper markers. Illustration of the angles in the upper body used to create the time series Upper.

Figure S9: Lower markers. Illustration of the angles in the lower body used to create the time series Lower.
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