
 

 
1 

The Polygenic Score Catalog: new functionality 
and tools to enable FAIR research 
 
Samuel A. Lambert1-5*#, Benjamin Wingfield5*, Joel T. Gibson1-3, Laurent Gil4,6, Santhi 
Ramachandran5, Florent Yvon1-3, Shirin Saverimuttu5, Emily Tinsley5, Elizabeth Lewis5, Scott 
C. Ritchie1-3,7, Jingqin Wu8, Rodrigo Canovas8a, Aoife McMahon5, Laura W. Harris5, Helen 
Parkinson5, Michael Inouye1-4,7-8# 
 

1. Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary 
Care, University of Cambridge, Cambridge, UK 

2. British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and 
Primary Care, University of Cambridge, Cambridge, UK 

3. Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, 
Cambridge, UK 

4. Health Data Research UK Cambridge, Wellcome Genome Campus and University of 
Cambridge, Cambridge, UK 

5. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome 
Genome Campus, Hinxton, Cambridge, UK 

6. Wellcome Sanger Institute, Hinxton, UK 
7. British Heart Foundation Centre of Research Excellence, University of Cambridge, 

Cambridge, UK 
8. Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 

Melbourne, VIC, Australia 
 
 

aCurrent address: The Australian E-Health Research Centre, CSIRO, Parkville, VIC, Australia 
 
*Denotes equal contributions 
#Correspondence to sl925@cam.ac.uk & ￼￼mi336@cam.ac.uk  

Abstract 
Polygenic scores (PGS) have transformed human genetic research and have multiple 
potential clinical applications, including risk stratification for disease prevention and prediction 
of treatment response. Here, we present a series of recent enhancements to the PGS Catalog 
(www.PGSCatalog.org), the largest findable, accessible, interoperable, and reusable (FAIR) 
repository of PGS. These include expansions in data content and ancestral diversity as well 
as the addition of new features. We further present the PGS Catalog Calculator (pgsc_calc, 
https://github.com/PGScatalog/pgsc_calc), an open-source, scalable and portable pipeline to 
reproducibly calculate PGS that securely democratizes equitable PGS applications by 
implementing genetic ancestry estimation and score normalization using reference data. With 
the PGS Catalog & calculator users can now quantify an individual’s genetic predisposition for 
hundreds of common diseases and clinically relevant traits. Taken together, these updates 
and tools facilitate the next generation of PGS, thus lowering barriers to the clinical studies 
necessary to identify where PGS may be integrated into clinical practice.  
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Main Text 

Expanding the PGS Catalog data content and evolving the user 
interface 
The emergence of large cohorts of individuals with detailed phenotypic and genotype 
information has enabled the mapping of genetic variants across the genome associations 
with many hundreds of diseases and quantitative traits in genome-wide association studies 
(GWAS).1 This GWAS information, either individual-level or as summary statistics, can be 
leveraged to estimate an individual’s genetic predisposition for a given phenotype, 
represented as a score (weighted sum of variant dosages multiplied by their effect sizes) 
and is referred to as a polygenic score (PGS), polygenic risk score (PRS) or 
genetic/genomic risk score (GRS) depending on the context and application. Many tools 
exist to develop PGS (i.e. selecting the variants and weights included in the score), among 
the most common are Pruning+Thresholding/PRSice2, LDpred(2)3, or PRS-CS(x)4, and 
pipelines exist to automate development (e.g. GenoPred5). PGS have multiple research 
uses (e.g. instruments to interrogate molecular pathways or in gene x environment studies6) 
and potential clinical applications (e.g. improving risk-stratification, predicting treatment 
response, disease subtyping).7 
 
The PGS Catalog (www.pgscatalog.org) was developed to collect and distribute information 
about PGS that have been developed so that analyses can be reproduced and the scores 
reused.8 The PGS Catalog is an open and FAIR (Findable, Accessible, Interoperable, 
Reusable) database, cataloging the relevant metadata required for accurate application and 
evaluation in a standardized format that is endorsed by co-developed reporting standards.8,9 
This includes information about the samples and methods of PGS development procedure, 
performance metrics summarizing the predictive ability of the PGS in external samples, and 
a scoring file that can be applied to new samples to calculate the PGS. The PGS Catalog is 
based on data curated from publications as well as data deposited by authors directly. 
Metadata and scoring files in the PGS Catalog are accessible by a web interface, FTP or 
REST API for programmatic access and download. The PGS Catalog has been visited by 
~27,000 users from over 140 countries in the past year and it serves as a platform for PGS 
research, for example as the source for scores which can be ensembled for improved 
polygenic prediction 10 or for return of PGS results to individuals as part of a clinical trial.11  
 
Since the initial publication of the PGS Catalog, the data content has grown substantially 
and, as of May 8, 2024, the Catalog contains 4,735 PGS (a 721% increase) comprising data 
from 618 publications (519% increase) (Figure 1). Eligible publications are systematically 
identified using a machine-learning based literature triage12, trained on 1,704 publications 
that have been screened for eligibility since 2019 (encompassing 896 eligible PGS 
publications from 2008 - present), and re-trained yearly. The literature triage identifies ~16 
PGS Catalog eligible papers per week (out of ~30 for screening), papers are prioritized for 
curation and data extraction if the scoring file is made available and if they include 
ancestrally diverse data or new traits. Processes for submissions have been streamlined, 
and authors are encouraged to submit directly to the Catalog by sending a scoring file and 
spreadsheet with required metadata about score development and evaluation (see 
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www.pgscatalog.org/submit). Authors are now also provided the opportunity to embargo 
data until publication of the final manuscript in order to add PGS Catalog identifiers to their 
text (to comply with journal data sharing requirements, such as Nature & Cell groups). Data 
from preprints continue to meet publication eligibility and scores with licenses that do not 
require managed access are indexed. Within the last year, 23% of publications had data 
submitted directly by authors, and we continue to work with journals to ensure all PGS 
publications make their data accessible at the time of publication. The scores in the PGS 
Catalog predict traits mapping to 654 unique ontology terms13 (419% increase), with many 
recent traits being for less prevalent diseases (e.g. hypothyroidism) or quantitative traits (e.g. 
neuroimaging-derived traits).  
 
It is well documented that PGS developed using genetic data from participants of 
predominantly European ancestries have reduced predictive performance in populations of 
non-European ancestries14; however, some scores developed using multi-ancestry data or 
current methods have improved transferability.7,15 Thus, it is important to understand the 
ancestral makeup and diversity of the samples used to develop a PGS in order to assess 
whether it may be a useful genetic predictor for any new population. We developed a new 
interface for all PGS tables on the website that allows users to visualize and filter scores that 
include a specific ancestry group or multi-ancestry data at any stage of score development 
and evaluation (Figure 1). As an example, this can be used to identify scores with measured 
performance metrics in a specific ancestry group. The ancestral diversity of data in the PGS 
Catalog has also grown (Figure 1). The number of PGS in the Catalog being developed 
using multi-ancestry or non-European ancestry data is steadily increasing but remains low 
as a proportion of total data; moreover, the majority of multi-ancestry development samples 
are predominantly made up of European individuals. The majority of PGS in the Catalog are 
now being evaluated in multiple ancestry groups, illustrating the effectiveness of recent 
efforts to raise awareness amongst researchers as to ancestry biases and corresponding 
transferability issues for PGS. 
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Figure 1. Data growth and improvement of the PGS Catalog. (a) Cumulative numbers of 
PGS (scores) and publications indexed in the PGS Catalog since inception (October 2019). 
(b) Cumulative numbers of PGS indexed in the Catalog since inception stratified by ancestry 
groups contributing to PGS development (i.e. GWAS and score development, top panel) or 
evaluation (bottom panel). Ancestry groups with lower numbers of PGS have been combined 
into larger groupings to visualize broader trends in single-ancestry and multi-ancestry data. 
(c) Example of ancestry filter present on every table with multiple PGS, the filter has been set 
to identify any PGS with African ancestry samples used for development (shown here are the 
first 5 of 348 PGS). 
 

Tools for more accessible and reproducible PGS calculation 
Even with consistently formatted data from the PGS Catalog, it remains challenging to 
calculate PGS (i.e. applying scoring files to new genomic data) as it requires interacting with 
multiple different software tools required for genotype data formatting, variant matching, and 
allelic scoring that can also differ across platforms. Few tools dedicated to calculation have 
been developed or implemented in a workflow manager (e.g. Nextflow or Snakemake) which 
limits their portability and scalability.16 Also critical to the use of PGS is the ability to report 
genetic distribution on an interpretable scale since many PGS have distributions that are 
confounded by ancestry.17,18 Currently, no standalone software exists to adjust polygenic 
scores across genetic ancestry groups using standard methods19–21. This is a key barrier to 
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the equitable application of polygenic scores. A tool combining these features would 
increase reusability of PGS data and lower the barrier to entry of PGS analysis to users 
without specific training in bioinformatics, an important consideration to facilitate clinical 
studies. Additionally, given the sensitivity of human genetic data, solutions should easily 
allow users to bring “code to the data'' without requiring data submission to web servers, 
which raises obvious governance issues.  
 
To address these gaps, we developed the PGS Catalog Calculator (pgsc_calc), a 
reproducible workflow for PGS calculation, ancestry analysis, and adjustment of calculated 
scores. The workflow is optimized to enable the user to calculate PGS at biobank scale 
across diverse computing environments, including High Performance Compute clusters 
(HPCs), airlocked Trusted Research Environments (TREs), and cloud architectures. Users 
can specify any combination of scores from the PGS Catalog for calculation using score, 
publication, or trait identifiers, or supply their own custom PGS scoring files. PGS scoring 
results are aggregated and output into a results file along with a summary report. 
 
The PGS Catalog Calculator is implemented in Nextflow, a popular workflow system used by 
many bioinformaticians.22 Nextflow orchestrates parallel computational analyses on multiple 
platforms and job schedulers (e.g. AWS, Google, SLURM) using the most common software 
containers for reproducibility (docker, singularity, conda), and has a community framework 
for open-source development (nf-core).22,23 The pipeline is developed and maintained by the 
PGS Catalog team under a permissive software license (Apache v2.0). The code is open-
source and available on Github (https://github.com/PGScatalog/pgsc_calc), which also hosts 
the documentation (https://pgsc-calc.readthedocs.io/), an active issues tracker, and 
discussion forum to offer support and communicate with users. Contributions (pull requests) 
from other developers are welcomed. 
 
An overview of the workflow is shown in Figure 2 and the implementation is described in 
detail in the Supplemental Note. In detail, PGS Catalog Calculator takes an input of target 
genomes in most commonly-used genomics formats (variant call format [VCF], or PLINK 1 
or 2 format24) and genome build information for PGS calculation. The input file(s) can either 
contain all variants, or be split to have one file per chromosome to enable parallelization and 
faster calculation. Scorefiles from the PGS Catalog are automatically downloaded and 
combined with any custom scoring files. Scoring file variants are matched to variants in the 
target genotypes, automatically handling typical but complex scenarios of multi-allelic 
variants, strand flips, and scores with only the effect allele with sensible default settings. 
Final scoring files are created, along with an auditable log summarizing the variants that 
have been excluded and why. PGS scoring is applied to genotypes in parallel, and the 
results are aggregated and output into a simple tabular results file along with a report that 
summarizes the scores calculated, their matching, and the PGS distributions (see 
Supplemental Note for details). The results file containing the calculated PGS can easily be 
combined with phenotype information for downstream PGS analyses. 
 
A key challenge is that PGS are often on different scales that cannot be easily interpreted 
and have no natural cut-points. A common solution is to express genetic predisposition as a 
relative measure by standardizing the PGS calculation to the sample mean and standard 
deviation; however, this has the problem of being sensitive to the set of samples included in 
the specific run of PGS calculation. Importantly, PGS distributions can also be confounded 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24307783doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24307783
http://creativecommons.org/licenses/by/4.0/


 

 
6 

by genetic ancestries (Figure 2), i.e. differences in PGS means and variances which arise 
from differential allele frequencies and linkage disequilibrium between populations17,18. 
These differences do not necessarily correspond to differences in disease risk (e.g. changes 
in disease prevalence) or quantitative trait values between the populations; however, genetic 
ancestry is important for estimating relative risk.  
 
The PGS Catalog Calculator implements common methods to normalize PGS in the context 
of genetic ancestry to report relative risk information using population reference panels, 
these include: comparison to a reference distribution of scores from a similar population21, 
and continuous PCA-based adjustments19,20 (see Supplemental Note and Supplementary 
Figure 1 for overview). As default, the PGS Catalog Calculator uses the largest open 
dataset of globally-representative genotyped individuals from the Human Genome Diversity 
Panel and 1000 Genomes Project (HGDP+1kGP)25 as a reference panel, to visualize PGS 
distributions and adjust PGS using ancestry similarity and projections. 
 
Methods for ancestry adjustment of PGS start by determining the overlap of variants and 
target genotypes, then creating a principal component analysis (PCA) of the reference panel 
and projecting individual(s) into the genetic ancestry space using the Online Augmentation, 
Decomposition and Procrustes (OADP) method to avoid issues of PCA shrinkage.26 The 
PCA projections are used to determine the population in the reference panel to which the 
individual is most similar. The population labels in the reference panel are not 
comprehensive or deterministic, thus samples from the target dataset are only described in 
terms of their genetic similarity to these populations. This avoids transfer of ancestry labels 
that may not reflect the new individuals.27 The relative PGS for each individual can then be 
calculated by comparing the calculated PGS to the distribution of PGS in the most similar 
population in the reference panel and reporting it as a percentile or Z-score 
(Z_MostSimilarPop, Figure 2). 
 
When treating ancestry as a continuum (represented by loadings in PCA-space) or when an 
individual has an ancestry not in the reference panel, a relative PGS is also calculated 
without the use of population labels together with regression to remove the effects of genetic 
ancestry on PGS distributions. Using regression has the benefit of not assigning individuals 
to specific ancestry groups, which may be particularly problematic for empirical methods 
when an individual has an ancestry that is not represented within a reference panel or has 
recent admixed ancestry (custom reference panels can be used instead of the HGDP+1kGP 
default). The continuous methods work by correcting differences in mean PGS observed 
across ancestry groups (Z_norm1, Figure 2)19, and additionally correcting for the 
differences in the variance of the distributions (Z_norm2, Figure 2).20 These methods of 
adjusting PGS using continuous ancestry representations have been used to report genetic 
risk in clinical trials, with mean normalization (Z_norm1) being used in the GenoVA trial11, 
and variance normalization in eMERGE (Z_norm2).28 Despite the necessity of rescaling 
PGS to a more interpretable relative risk scale, these adjustment methods have thus far not 
been implemented in a reproducible package or workflow (see Supplemental Note for 
detailed comparison to other tools24,29,30). We will continue to optimize these adjustments 
within the PGS Catalog Calculator, and our open-source package and workflows allow for 
the addition of new methods as they are developed.  
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Figure 2. The PGS Catalog Calculator for reproducible PGS calculation with estimation 
and adjustment for genetic ancestry. (a) Visual summary of the PGS Catalog Calculator 
(pgsc_calc) pipeline, displaying the inputs, outputs, and data flows between modules. (b-e) To 
illustrate the utility of the pipeline we calculated PGS000018 (metaGRSCAD, 1,745,179 
variants)31 applied in all ~487,000 individuals with imputed genotypes in UK Biobank32 using 
pgsc_calc and ran the ancestry adjustments using HGDP+1kGP as a reference panel. (b) The 
PGS calculated as a weighted SUM of dosages has different distributions in different ancestry 
groups (grouped based on their Most Similar Population label from the reference panel: 
African [AFR], American [AMR], Central and South Asian [CSA], East Asian [EAS], and 
European [EUR] superpopulation ancestry). (c-e) Ancestry adjustment methods applied to UK 
Biobank data make PGS distributions more comparable across populations. The most similar 
ancestry group labels are used to normalize PGS using their most similar reference population 
distribution (Z_MostSimilarPop, c). Population labels are not used in continuous ancestry 
adjustment methods that adjust for mean (Z_norm1, d) and variance (Z_norm2, e) but are 
grouped in order to visualize the overlap after normalization. 

Conclusions and future developments 
As the research and clinical applications for polygenic scores continue to grow so too will the 
PGS Catalog. This has been particularly evident with the large growth in PGS and 
evaluations from diverse ancestry groups, allowing for the construction of new features that 
allow users to browse these data more easily. The PGS Catalog will continue to evaluate 
how to best represent ancestral diversity to increase genomic equity and in accordance with 
current best practices.27,33 In order to make PGS as accessible as possible we are 
committed to increasing the ease of data deposition into the PGS Catalog and are currently 
developing an automated deposition portal in collaboration with the GWAS Catalog34, our 
sibling resource, to make it easier for users to validate and upload data. Furthermore, we will 
continue to develop our documentation, training materials, and deliver workshops to support 
users and maximize the impact of open sharing of PGS.  
 
To democratize secure PGS calculation and ancestry adjustment, we developed the PGS 
Catalog Calculator. This software tool provides advantages to the user, notably the 
implementation of methods to ensure PGS distributions are consistent among genetic 
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ancestry groups, which represents a barrier to the equitable application of PGS. The 
calculated scores are all forms of relative risk depending on the method used and provided 
in a simple format to allow users to integrate these results into other steps of genetic 
prediction studies (e.g. measuring PGS-trait associations, absolute risk predictions) if they 
choose. The software has been successfully deployed to various computing environments 
including university and cloud HPCs, airlocked TREs, and integrated into online web 
server/platforms and has an active user community on our Github. Future versions will 
further improve ancestry estimation and normalization, and implement newer methods for 
PGS calculation as they are developed. The current PGS Catalog Calculator is optimized to 
calculate PGS on imputed genotypes derived from genotyping array data; however, a 
common user request is to support whole-genome sequencing data (unimputed VCFs). In 
future, tools to support WGS data will be developed, thus ensuring that PGS can be 
equitably and reproducibly applied to all genomic data. Taken together, the PGS Catalog 
now provides an integrated suite of tools to support the use of PGS in clinical studies and 
biomedical research more broadly. 

Data & code availability statement 
Data in the PGS Catalog is distributed according to EBI’s terms of use 
(https://www.ebi.ac.uk/about/terms-of-use) or specifically marked with open-access licenses 
supplied by authors. All code for the PGS Catalog project and calculator are hosted on 
GitHub under the PGS Catalog organization (https://github.com/PGScatalog/) and released 
under an Apache v2 license. The processed reference panels 1kGP and 1kGP+HGDP are 
available from our FTP server (https://ftp.ebi.ac.uk/pub/databases/spot/pgs/resources/). UK 
Biobank data can be accessed via application, the data for this publication was accessed as 
part of projects 49978 and 78537.  
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