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Abstract 1 

Personalised Interactive Music Systems (PIMS) are emerging as promising devices for 2 

enhancing physical activity and exercise outcomes. By leveraging real-time data and adaptive 3 

technologies, PIMS align musical features, such as tempo and genre with users’ physical 4 

activity patterns, including frequency and intensity, enhancing their overall experience. This 5 

systematic review and exploratory meta-analysis evaluates the effectiveness of PIMS across 6 

physical, psychophysical, and affective domains. Searches across nine databases identified 18 7 

eligible studies, of which six (comprising 17 intervention arms) contained sufficient data for 8 

meta-analysis. Random-effects meta-analyses and meta-regression were performed to assess 9 

outcomes for physical activity levels, physical exertion, ratings of perceived exertion (RPE), 10 

and affective valence. Results showed significant improvements in physical activity levels (g 11 

= 0.49, CI [0.07, 0.91], p = .02, k = 4) and affective valence (g = 1.68, CI [0.15, 3.20], p = 12 

.03, k = 4), with faster music tempo identified as a significant moderator (p = 0.04). No 13 

significant effects were observed for RPE (g = 0.72, CI [-0.14, 1.59], p = .10, k = 3) or 14 

physical exertion (g = 0.79, CI [-0.64, 2.10], p = .28, k = 5). Substantial heterogeneity and 15 

limited study quality indicate the need for more robust, randomised controlled trials to 16 

establish the efficacy of PIMS in diverse populations.  17 
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Introduction 18 

Regular physical activity and exercise are fundamental to maintaining and enhancing overall 19 

health and well-being. Despite their recognised role in preventing and managing non-20 

communicable diseases such as cardiovascular diseases, cancer, and diabetes, engagement in 21 

regular physical activity and exercise remains below the suboptimal level [1]. This deficiency 22 

undermines the potential for mental health benefits of physical exercise and its contributions 23 

to quality of life [2]. The World Health Organization (WHO) defines physical activity 24 

broadly, encompassing all forms of bodily movement generated by skeletal muscles that 25 

require energy expenditure, including activities such as walking, sports, and dance (WHO, 26 

2022), whereas exercise has been defined as “physical activity that is planned, structured, 27 

repetitive, and purposive, aiming to improve or maintain one or more components of physical 28 

fitness” [3:126–127]. However, the broad spectrum of activities categorised as physical 29 

activity and exercise often presents challenges in promoting consistent engagement and 30 

uptake including individual-level barriers such as motivation and time constraints [4]. Efforts 31 

to increase engagement to physical activity and exercise have faced significant challenges, 32 

frequently producing inconsistent outcomes as exemplified by interventions such as 33 

pedometer-based programs, which show variable effectiveness depending on factors 34 

including participant motivation, and engagement [4,5]. 35 

The role of music in enhancing physical activity and exercise 36 

Music’s rhythmic properties have been shown to influence perceptions, ergonomics, and 37 

physiological markers associated with physical activity and exercise [6–10]. Available 38 

evidence suggests that auditory-motor coupling facilitates predictive synchronisation in 39 

physical activity and exercise settings, which can reduce perceived exertion and enhance 40 

endurance [11,12]. Additionally, when music aligns with individual preferences, such as 41 
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through self-selection, it may further increase motivation, improve affective states, induce 42 

distraction, and lower perceived effort during physical activities and exercise [7,11]. 43 

The integration of music into exercise contexts can be further understood through theoretical 44 

frameworks such as the Affective-Reflective Theory (ART) and Dual-Mode Theory. ART 45 

emphasises the importance of momentary affective responses—such as pleasure or 46 

displeasure—in shaping future exercise behaviours [13,14]. These responses, encapsulated in 47 

the construct of "affective valence," reflect the intrinsic pleasantness or unpleasantness of 48 

emotional states that fluctuate based on internal and external stimuli. Conversely, Dual-Mode 49 

Theory posits that music’s impact on affective responses is most pronounced at moderate 50 

exercise intensities, within a zone of response variability. This zone refers to the range of 51 

exercise intensity where affective responses—such as feelings of pleasure or displeasure—are 52 

particularly sensitive to individual differences (e.g., fitness level, psychological state) and 53 

contextual factors (e.g., music, environment, social setting). In this range, attentional focus 54 

and physiological cues mediate affective experiences [15]. While both theories acknowledge 55 

the importance of affective responses in exercise, Dual-Mode Theory provides a more 56 

nuanced perspective by emphasising intensity-dependent variability and its interaction with 57 

individual and contextual factors. 58 

Extending the principles of ART and Dual-Mode Theory, [16] framework highlights how 59 

music’s intrinsic properties—such as tempo, rhythm, and harmony—interact with personal 60 

and situational moderators, including exercise intensity and individual preferences, to 61 

influence affective and behavioural outcomes in exercise. Music operates through three 62 

primary mechanisms: regulating affective states, dissociating attention from exertional 63 

discomfort, and facilitating temporal prediction and rhythmic synchronisation. These 64 

mechanisms are most effective within the zone of response variability, where affective 65 

valence dynamically influences exercise engagement [15,17]. Empirical studies consistently 66 
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demonstrate that personalised music enhances energy efficiency, reduces perceived exertion, 67 

and improves adherence by fostering positive affect [17]. Such evidence positions 68 

personalised music systems as a key tool for optimising both the immediate and long-term 69 

benefits of exercise. 70 

Personalised Interactive Music Systems (PIMS) in physical 71 

activity and exercise 72 

Recently, advances in personalised music technologies have led to the development of 73 

Personalised Interactive Music Systems (PIMS), which leverage software, sensors, and 74 

computer algorithms to deliver a dynamic, tailored music experience during physical activity 75 

and exercise [18,19]. These systems integrate with smartphones and wearable devices to 76 

monitor user movements and adjust musical features, such as tempo, style, and timbre, in real 77 

time to align with exercise routines, enhancing engagement, and adherence to activity 78 

[20,21].  79 

PIMS have been designed for diverse contexts, targeting both intrinsic factors (e.g., 80 

motivation and attentional focus) and extrinsic factors (e.g., training guidance). For example, 81 

a PIMS, the moBeat system, used real-time interactive music and biophysical feedback to 82 

enhance cycling performance by increasing intrinsic motivation and maintaining pace and 83 

intensity [12]. Similarly, PIMS interventions for older adults have demonstrated benefits for 84 

physical endurance and engagement compared to conventional workout [22]. As mobile 85 

interventions incorporating personalisation have been shown to be more effective at 86 

enhancing physical activity than non-personalised approaches [23], PIMS hold promise for 87 

improving physical activity adherence, reducing the rating of perceived exertion (RPE), and 88 

fostering positive affective states during exercise by dynamically tailoring music to 89 

individual physiological, affective, and contextual needs [7,12,22]. 90 
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Due to the relatively recent advancements of PIMS, there is yet limited empirical evidence on 91 

their effectiveness across physical activity and exercise-related domains. Such information is 92 

essential for informing implementation, replication, and comparative evaluation of 93 

interventions aimed at promoting the adherence to physical activity and exercise [24]. While 94 

systematic reviews and meta-analyses have explored the general effects of music on physical 95 

activity and exercise-related outcomes [6,7,25], these reviews predominantly focused on 96 

traditional music listening interventions and did not systematically evaluate the impact of 97 

personalised and interactive music systems. By specifically examining PIMS, this review and 98 

meta-analysis contribute to understanding how tailored, interactive music interventions 99 

influence physical, psychophysical, and affective dimensions of physical activity and exercise 100 

engagement, thereby addressing a critical gap in the existing literature. 101 

Therefore, this study combines a systematic review and exploratory meta-analysis to evaluate 102 

the effectiveness of PIMS on physical activity and exercise-related outcomes. Specifically, 103 

the study synthesises findings on physical activity levels, psychophysical measures (e.g., RPE 104 

and physical exertion), and affective outcomes (e.g., affective valence and mood states).  105 

Our main research question is: How effective are PIMS across physical, psychophysical, and 106 

affective outcomes during physical activity and exercise? This analysis intends to provide 107 

early insights into the specificity of PIMS’ effects and identify gaps in the literature that 108 

warrant further investigation. 109 

  110 
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Methods 111 

This systematic review and meta-analysis was designed based on the Preferred Reporting 112 

Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol [26]. The full search 113 

strategy can be found in the review registration document (CRD42023465941). 114 

Eligibility criteria 115 

We included: (1) Studies investigating the effect of Personalised Interactive Music Systems 116 

(PIMS) on physical activity or exercise, including their effects on motivation, exercise 117 

intensity, adherence, or related outcomes; (2) Studies  including participants from diverse 118 

populations (e.g., sufficiently active and not sufficiently active individuals); (3) Articles in 119 

the English language, published from January 2010 to May 2024 in peer-reviewed journals or 120 

as published proceedings  (conference papers were considered due to the limited number of 121 

peer-reviewed studies). 122 

We excluded: (1) Studies from non-peer-reviewed sources, books, dissertations and theses; 123 

(2) Articles written in languages other than English; (3) Studies that were not directly related 124 

to the effect of PIMS on physical exercise or physical activity. 125 

Information sources 126 

We searched the following databases: (1) Web of Science, (2) SPORTDiscus, (3) Medline, 127 

(4) Embase, (5) ACM Digital library databases, (6) Springer, (7) Google Scholar, (8) IEEE 128 

Xplore, and (9) Scopus. The database search was supplemented by a backward snowball 129 

search whereby the reference list of all articles was scanned for potential sources. The 130 

snowball search continued until no new sources could be identified. The initial inter-rater 131 

agreement for the identification of relevant sources was k = 0.83, indicating a strong level of 132 

agreement among the two individuals performing two independent snowball searches (AD, 133 

TK). 134 
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Search strategy 135 

A literature search was performed using terminology related to the effects of PIMS on 136 

physical activity and exercise, (“Personali*ed Interactive Music System*” OR “Music 137 

Recommendation Algorithm” OR “Music Recommendation System*” OR “Streaming” OR 138 

“MP3” OR “Digital Music” AND (“Physical Activity” OR “Exercise” OR “Recovery” OR 139 

“Recuperation” OR “Sedentary Behav*” OR “Physical Inactivity”). 140 

Selection process and data collection process 141 

The citations of all retrieved articles were imported into Zotero, where duplicates were 142 

systematically identified and removed. Subsequently, two authors (AD, TK) independently 143 

screened the titles and abstracts of the studies using ASReview [27] and Rayyan [28]. 144 

Articles that could not be definitively excluded based on the title or abstract underwent full-145 

text retrieval for further evaluation. The full-text articles were then independently assessed 146 

for inclusion by the same two authors (AD, TK). Disagreements at any stage were resolved 147 

through discussion, with a third author consulted to achieve consensus when necessary. 148 

Data extraction 149 

The studies’ information was extracted to a spreadsheet, including study characteristics, such 150 

as the type of PIMS, the study design, PIMS measurement, and the target behaviour of the 151 

PIMS (Target Physical Activity or Exercise; Table 2).  152 

Pre-registration deviations 153 

Where available, quantitative data suitable for meta-analysis were extracted. This was done 154 

for the pre-registered outcome of physical activity level, as well as for affective valence, 155 

RPE, and physical exertion, which were not pre-registered as outcomes. The decision to 156 

extract data on these additional outcomes was taken because of the close relationships 157 

between these variables and physical activity and exercise participation, their prevalence as 158 
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outcomes in the included studies, and the limited number of studies reporting data on 159 

physical activity and exercise behaviour. In cases where effect sizes could not be readily 160 

calculated based on the published articles, their authors (n = 2) were contacted at least twice 161 

for additional data, resulting in the provision of calculations for five additional effect sizes. 162 

Operationalisation of terms 163 

This review operationalises four key terms central to physical activity and exercise research. 164 

Physical Activity Level is defined by the quantified volume (e.g., daily activity counts, 165 

weekly minutes), intensity (e.g., metabolic equivalent MET, %VO2R), and compliance (e.g., 166 

adherence to heart rate zones or regimens) [29,30] of physical activity. Affective Valence 167 

refers to the pleasure-displeasure dimension of emotional responses during or after physical 168 

activity, assessed using self-report scales such as the Feeling Scale (FS) [31] and the "good 169 

vs. bad mood" subscale of the Multidimensional Mood Questionnaire (MDMQ), [32]. These 170 

measures capture subjective ratings of positivity or negativity without incorporating arousal 171 

[14,33,34]. Physical Exertion encompasses physiological (e.g., heart rate), biomechanical 172 

(e.g., stride length), and perceptual demands, providing a comprehensive assessment of effort 173 

[35]. These constructs serve as the primary outcomes of interest in this review. The constructs 174 

are summarised in Table 1 and described further in S1 Appendix. 175 

  176 
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Table 1. Operationalisation of terms. 177 

Term Definition Operational Metrics References 

Physical Activity Level Encompasses the volume, 
intensity, and compliance 
with physical activity 
recommendations or exercise 
regimens. 

Volume: Total activity 
counts per day (TAC/d) via 
accelerometer, mean weekly 
minutes. Intensity: Absolute 
intensity using METs, 
relative intensity as % VO2R.  
 
Compliance: Adherence to 
recommendations or 
regimens via changes in 
volume, device usage, or 
adherence to heart rate zones. 

[29,30] 

Physical Exertion Effort exerted to perform 
physical activity, involving 
physiological, biomechanical, 
and perceptual demands. 

Physiological: Heart rate as 
an indicator of cardiovascular 
response. Biomechanical: 
Stride length and pace for 
activities such as running and 
walking. Perceptual: 
Integration of physiological 
and biomechanical cues to 
assess overall effort. 

[35] 

RPE (Rating of Perceived 
Exertion) 

Subjective numerical value 
reflecting perceived effort 
during physical activity, 
integrating sensory cues and 
physiological sensations. 

Scale: Borg RPE Scale for 
aerobic activities (cycling, 
running). Category-Ratio 
Scale: Borg CR-10 to 
measure perceived exertion or 
other sensations.  
Responses: Local sensations 
(muscles, skin, joints) and 
central factors (cardio-
pulmonary system). 

[7,36,37] 

Affective Valence The subjective feeling of 
pleasure or displeasure 
experienced during or after 
physical activity. It is 
independent of perceived 
exertion and reflects 
emotional responses to 
exercise, influenced by 
individual, contextual, and 
social factors. 

Affective valence is measured 
using self-report scales, such 
as: 
 
Scale:  
Feeling Scale (FS): Bipolar 
scale from +5 (very good) to -
5 (very bad). 
 
PANAS (Positive and 
Negative Affect Schedule): 
Assesses positive and 
negative emotions. 
 
Multidimensional Mood 
Questionnaire (MDMQ): 
Evaluates mood during 
exercise using subscales for 
“good vs. bad mood,” 
“calmness vs. agitation,” and 
“alertness vs. tiredness.” Only 
the “good vs. bad mood” 
subscale aligns with the 
pleasure-displeasure 
dimension of affect. 
 
Context: 
Measurement occurs during 
or immediately after exercise. 

[14,31–33] 

 178 
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Study risk of bias assessment 179 

The quality of the studies was assessed by two authors (AD, TK) using the Joanna Briggs 180 

Institute critical appraisal checklist, including tools for Quasi-Experimental Appraisal, 181 

Qualitative Research Appraisal, and the Revised Checklist for Randomised Controlled Trials 182 

[JBI, 38] (Fig 2). 183 

Data synthesis and analysis methods 184 

We conducted a narrative synthesis, categorising studies into two groups based on design: (1) 185 

experimental studies, including randomised, quasi-experimental, pilot, and within-subject 186 

designs, and (2) proof-of-concept and user-testing studies. This classification enabled the 187 

identification of trends within and across these categories. 188 

For experimental studies, we examined outcomes related to physical activity levels, physical 189 

exertion, RPE, and affective valence. Proof-of-concept and user-testing studies were analysed 190 

for their focus on PIMS design features and effectiveness, including synchronisation, user 191 

engagement, and personalisation.  192 

Our synthesis followed the methodological framework of [39], facilitating systematic 193 

comparisons across study groups. Trends and variations in PIMS outcomes were interpreted 194 

through subgroup analyses, accounting for methodological rigour and study design. We also 195 

considered sample characteristics, including demographic variability (e.g., age, fitness level, 196 

and population type) and sample size heterogeneity (ranging from N = 10 to N = 150). 197 

Limitations arising from study heterogeneity were explicitly addressed to provide 198 

transparency regarding factors affecting generalisability.  199 

Hedges’ g effect sizes and standard errors were calculated using [40] tool and analysed in the 200 

JASP environment (version 2024). Random-effects meta-analyses, using the inverse variance 201 

weighting method [DerSimonian & Laird method, 41] were conducted for physical activity 202 

level, physical exertion, RPE and affective valence. These outcomes were selected based on 203 
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the pre-registration criterion: “Meta-analyses will be performed when at least three studies 204 

provide data sufficient for effect size calculation.” For inclusion in the meta-analysis, 205 

physical activity outcomes analysed included behaviours such as walking, running, weight 206 

training, cycling, housework, and gardening, while studies focusing on non-physical activity 207 

outcomes (e.g., subjective feasibility of PIMS) were excluded. Six studies (comprising 17 208 

intervention arms) met this criterion, while outcomes with insufficient data were excluded.  209 

Heterogeneity was assessed using the I² statistic (relative proportion of variability attributable 210 

to heterogeneity), τ² statistic (absolute variance), and Cochran's Q statistic (a formal test of 211 

homogeneity). To address the dispersion of effects across studies, the prediction interval was 212 

calculated, as it provides insights into the range of effects expected in future comparable 213 

studies, beyond the mean effect size [42]. A sensitivity analysis was conducted to evaluate 214 

publication bias by examining the relationship between standard errors and effect size 215 

estimates. Following Sterne and colleagues [43,44] funnel plots were produced to assess 216 

asymmetry, while forest plots were used to summarise the data. Data and syntax files for 217 

these analyses are available in S1 file. 218 

An exploratory meta-regression analysis was conducted to investigate potential moderators 219 

contributing to variability in the effectiveness of PIMS on physical activity level, affect, RPE, 220 

and physical exertion. Candidate moderators were selected based on their theoretical 221 

relevance to physical activity and exercise research: study size, participant age, exercise 222 

intensity, and music tempo. Music tempo was categorised into tempo ranges to standardize 223 

data across studies with differing methodologies, reflecting its established influence on 224 

motivational and psychophysical responses [45]. Exercise intensity was classified using MET 225 

guidelines to enhance comparability [46]. Participant age and study size were included to 226 

address population-level and methodological variability, respectively. Due to the small 227 
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number of studies included in the meta-analyses, the meta-regression encompassed all 228 

outcomes of interest, with a focus on generating hypotheses for future research. 229 

Specifically, within the meta-regression analysis, music tempo was categorised into three 230 

distinct groups based on beats per minute (BPM): Slow (60–90 BPM), coded as 1; Medium 231 

(91–130 BPM), coded as 2; and Fast (131+ BPM), coded as 3. When studies reported 232 

variable tempos, the average BPM or the dominant tempo range was used for classification. 233 

Exercise intensity was categorised using a three-level scale aligned with MET guidelines 234 

[46]: Low (<3 METs), coded as 1; Moderate (3–6.9 METs), coded as 2; and High (≥7 235 

METs), coded as 3. For studies that did not explicitly report METs, intensity was inferred 236 

from descriptions of the exercise type or target heart rate zones. Participant age was handled 237 

as follows: for studies reporting mean age directly, the provided value was used. In studies 238 

reporting age ranges, the midpoint of the range was used as an estimate. If group-specific 239 

mean ages were available, a weighted average was calculated based on group sizes to derive 240 

an overall mean age for the study.  241 

  242 
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Results 243 

Study selection 244 

 245 

 246 

 247 

[Insert Fig 1 here] 248 

*All records excluded by ASReview [27,28]. 249 

Fig 1. PRISMA information flow describing the screening process. 250 

A total of 523 articles were identified through the initial strategic search using the specified 251 

keywords. During the screening process, three articles were excluded as duplicates, while four 252 

additional articles were identified as ineligible based on the inclusion criteria. After screening 253 
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titles and abstracts, 494 articles were excluded for not meeting the inclusion criteria. 254 

Subsequently, 23 full-text articles were assessed for eligibility. Of these, five articles were 255 

excluded because they did not evaluate the desired effect or outcome. In total, 18 articles were 256 

eligible to be included in this review study (Fig 1). 257 

Study characteristics  258 

The study characteristics (Table 2) encompass a diverse range of studies conducted across 259 

various countries, including Canada, Spain, Germany, Taiwan, Singapore, Denmark, Finland, 260 

Belgium, Switzerland, the Czech Republic, the Netherlands, Norway, and locations not 261 

specified. These studies, conducted between 2010 and 2024, provide a broad age range 262 

among participants, with some studies focusing on specific groups such as the elderly, 263 

patients with cardiovascular disease, students, non-athletes and office workers. The PIMS 264 

used in these studies vary in their design and objectives, ranging from personalised music 265 

audio-playlists [47–49] to interactive music systems linked to fitness devices [22,34]. These 266 

systems are utilised in different settings and for various purposes, ranging from synchronising 267 

movement during physical activity and exercise, to enhancing the experience of physical 268 

activity and exercise. 269 

  270 
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Table 2. Characteristics of included studies. 271 

Reference Country Age, 
yrs 

Sample 
Size, N 

Population Type of PIMS Study Design PIMS 
Measurement 

Target 
Behaviour/Target 

Physical Activity or 
Exercise 

Physical Activity 
Results 

g [95% CI] of 
PIMS on outcomes 

of interest 

[50] Canada 47.3 
– 

79.2 a 

34 Patients with 
cardiovascular 

disease 

Personalised 
music audio-

playlists 

Randomised 
Experimental 

Design 

Tri-axial 
accelerometer 

Adherence Improved PA 
volumes (p < 

0.001) 

g = 0.06 [-1.04, 
0.92] for Physical 
Activity Level (No 

RAS) 
 

g = 0.51 [-0.47, 
1.49] for Physical 

Activity Level 
(RAS) 

 

[47] Spain N/A N/A N/A Personalised 
music 

recommendation 
system 

Proof of 
Concept 

Sensors b Motivation/performance 
enhancement 

N/A N/A 

[51]* Germany N/A 1 Elderly 
participant 

Music feedback 
for rehabilitation 

Proof of 
Concept 

Accelerometer Rehabilitation N/A N/A 

[52]* Taiwan 21.56 
± 

1.04 

10 
female 
and 26 
male 

Participants 
from the 

National Yang 
Ming Chiao 

Tung 
University 

Exercise system 
for middle-

distance running 

Experimental Smartphone’s 
built-in tri-axial 
accelerometer 

Adapting music 
selection to user’s pace 

during walking 

N/A g = -0.73 [-1.40, -
0.06] for Physical 

Exertion 
 

g = 1.63 [0.88, 2.39] 
for RPE 

 
g = 2.17 [1.34, 

2.99] for Affective 
Valence 

[53] Taiwan N/A N/A N/A Music Assisted 
Run Trainer 

(MART) 

Proof of 
Concept 

Tri-axial 
accelerometer 

Physiological, 
perceptual, affective 

responses 

N/A N/A 

[48]* Singapore N/A 60 Students A music 
recommendation 

system 

Within-
subjects 

Crossover 
Design 

Music 
recommendation 

ratings 

Motivation N/A N/A 

[34] N/A N/A 45 Non-athletes, 
non-body 

builders, non-
musicians 

Jymmin® – 
Sensor attached 

to fitness devices 
to provide 

musical feedback 

Experimental 
Design 

Movement sensor 

c 
Workout N/A g = 0.96 [0.35, 1.56] 

for Affective 
Valence 

[54]* N/A N/A 27 N/A Runner’s Jukebox 
(RJ) – music 

tempo matching 
the user’s pace 
during exercise 

User Testing 
Design 

Smartphone app 
to recognise user 
pace/adjust music 

tempo 

Walking/running pace 
monitor d 

N/A g = 2.76 [1.63, 3.89] 
for Physical 

Exertion (Fixed 
BPM) 

 
g = 2.29 [1.24, 3.34] 

for Physical 
Exertion (Pace-

Matched) 
 

g = -0.74 [-1.61, 
0.13] for Physical 

Exertion (Random) 

[55]* Denmark N/A N/A N/A Music clips with 
dynamic BPM 

ranging from 110 
– 170 

Proof of 
Concept 

Sensors e Cycling N/A N/A 

[56] Switzerland 18–
45 

7 
females, 
8 males 

Cyclists SoundBike – 
Musical 

sonification to 
improve 

spontaneous 
synchronisation 

of cyclists 

Experimental Sensors Cycling Enhanced cyclist 
synchronisation to 

external music 

N/A 

[57] Finland N/A 2 Elderly 
participants 

Processing 
accelerometry 
data to create 

musical 
sonifications of 
physical activity 

Proof of 
Concept 

Sonification of 
PA data f 

Awareness of PA N/A N/A 

[58]* Belgium N/A 33 Participants 
from public 

event 

DSaT algorithm 
for music 

selection and 
real-time 

adaptation g 

Pilot Study Tri-axial 
accelerometer 

Synchronisation to beat 
of music 

Majority  (56.79%) 
synchronised steps 

with music 

N/A 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2024. ; https://doi.org/10.1101/2024.05.28.24308089doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.28.24308089
http://creativecommons.org/licenses/by/4.0/


 
 

 18 

[59] Belgium, 
Czech 

Republic 

21.9 
± 

12.9 
 

20.2 
± 0.8 
 

21.2 
± 1.7 
 
23 +- 
3 SD 

82 male, 
68 

female 
 
56 male, 

44 
female 

 
12 

female 
 

6 
female, 
4 male 

N/A Synchronise 
music with the 

participant’ 
movements 

Case Study Recordings of 
footfalls & music 

alignment 
strategies h 

Synchronisation to beat 
of music 

Improved 
entrainment 

N/A 

[49]* N/A N/A N/A N/A Context-aware 
recommender 

system (CAMRS) 

Mixed-
method 
Design i 

Automatic 
learning 

algorithm 

Motivate users to 
complete PA 

N/A N/A 

[22] Germany 70.6 
(SD 

± 
3.9) 

11 
females 
5 males 

Non-physically 
active 

Jymmin® – 
Sensor attached 

to fitness devices 
to provide 

musical feedback 

Within-
subjects 
Design 

Movement sensor 

j 
Strength-endurance 

exercises 
N/A g = 0.73 [0.00, 1.46] 

for Physical 
Activity Level 

 
g = 0.20 [-0.27, 
0.67] for RPE 

 
g = 0.09 [-0.47, 

0.64] for Affective 
Valence 

[60]* Netherlands 18 – 
25 

24 Office workers Smart cushion 
providing musical 

feedback 

Within-
Subjects 
Design 

Movement 
sensor-pad   

Posture changes No effect breaking 
sedentary 
behaviour 

N/A 

[61] Norway N/A 3 – 6 k Seniors with 
early-stage 

Alzheimer’s 
disease 

Interactive music 
system 

Qualitative 
Research 
Design 

Sensor-pad Stimulate/motivate PA N/A N/A 

[12] Netherlands 23 – 
51 

26 Philips 
employees 

MoBeat – 
Interactive music 

system 

Within-
Subject 

Experiment 

Cadence sensor, 
heart-rate 

Motivation N/A g = 0.54 [-0.22, 
1.30] for Physical 

Activity Level 
 

g = 0.54 [-0.22, 
1.30] for Physical 

Exertion 
 

g = 0.43 [-0.32, 
1.19] for RPE 

 
g = 3.79 [2.52, 5.06] 

for Affective 
Valence 

Notes: 272 
* = Conference papers. 273 
a = Lowest lower bound: 47.3 years (from the second subgroup). Highest upper bound: 79.2 years (from the first 274 
subgroup). The estimated entire age range for all three groups combined would be from approximately 47.3 years 275 
to 79.2 years. 276 
b = Galvanic Skin Response, oxygen saturation sensor, pulse sensor. 277 
c = Jymmin® – The movement of the sensor-equipped fitness device is mapped to musical parameters, creating 278 
an acoustic feedback signal. 279 
d = Swings Per Minute (SWPM). 280 
e = Monitor cycling pace and heart rate, influencing audio feedback (soundscape sounds) in real-time. 281 
f = Accelerometry data. 282 
g = Dynamic Song and Tempo (DSaT). 283 
h = The methodology involved recording footfalls and various music alignment strategies to synchronise music 284 
with participants' walking or running movements. 285 
i = Includes elements of a proof of concept design and an experimental design. 286 
j = Jymmin® – The movement of the sensor-equipped fitness device is mapped to musical parameters, creating 287 
an acoustic feedback signal. 288 
k = Exact numbers are not specified, but a mention of a group size of 3 to 6 participants. 289 
 290 

  291 
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Reported outcome measures 292 

A variety of outcome measures were reported across studies to explore the effects of PIMS 293 

on physical activity and exercise-related behaviours. The outcome measures included 294 

assessments of physical activity levels, such as accelerometer-based metrics and adherence to 295 

specific heart rate zones, as well as psychological and perceptual outcomes such as mood 296 

(measured through tools such as the MDMQ and FS) and intrinsic motivation (measured via 297 

the Intrinsic Motivation Inventory, IMI). The rating of perceived exertion (RPE) was 298 

frequently captured using the Borg CR-10 scale [36,37]. Table 3 presents this information. 299 

Further information on these outcome measurements can be found in S2 Appendix. 300 

  301 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2024. ; https://doi.org/10.1101/2024.05.28.24308089doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.28.24308089
http://creativecommons.org/licenses/by/4.0/


 
 

 20 

Table 3. Outcome measures as reported in the studies. 302 

Outcome Measure Measurement Method Study 

Physical Activity Level Mean weekly minutes of physical 
activity measured using a tri-axial 
accelerometer. 

[50] 

Duration of exercise until 
exhaustion, timed with a 
stopwatch. 

[22] 

Compliance with exercise regime 
by monitoring adherence to target 
heart rate zones during cycling. 

[12] 

Affective Valence Feeling Scale (FS) based on 
Russell’s circumplex model of 
affect. 

[52] 

MDMQ, evaluating “good vs. 
bad” mood dimensions during 
acute physical exercise. 

[22,34] 

Interest/Enjoyment subscale of the 
Intrinsic Motivation Inventory 
(IMI) for intrinsic motivation. 

[12,62,63] 

RPE Borg CR-10 scale, with RPE 
ratings collected at specific time 
intervals during exercise. 

[12,22,52] 

Physical Exertion Heart rate measured using a Polar 
Verity Sense device based on 
photoplethysmography (PPG). 

[52] 

Pace measured via SWPM (Steps 
per Minute) using smartphone 
accelerometer data. 

[54] 

Heart rate measured using a Polar 
T61 heart rate belt. 

[12] 

 303 

Studies utilised diverse technologies and protocols to assess PIMS' effects on physical 304 

activity and exercise behaviours. Reported technologies included accelerometers, heart rate 305 

monitors, and systems such as Jymmin®, which integrate real-time musical feedback with 306 

gym equipment. Analytical methods, such as ANOVA and MANOVA, were used to evaluate 307 

outcomes, with specific systems adapting music based on cadence, heart rate, and intensity. 308 

Table 4 presents a detailed overview of these technologies and protocols. 309 

 310 
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Table 4. Technologies and Analysis Protocols of PIMS. 311 

Type of PIMS PIMS Description Data Analysis Protocol Reference 

Accelerometer Music synchronisation 
with step cadence 

N/A [54] 

Heart Rate Monitor Music tempo adjustments 
based on physiological 

data 

ANOVA, MANOVA [52] 

Jymmin® Music feedback system ANOVA, MANOVA, 
Wilcoxon Signed-Ranks 

Test  

[22,34] 

Magnet and Heart Rate 
Sensors 

Magnet sensors detect 
RPM, paired with heart 
rate to optimise cycling 

rhythms 

N/A [55] 

MoBeat Music feedback system ANOVA [12] 

Musical Sonification 
Systems 

Converts movement data 
into sound to enhance 

engagement and 
differentiate activity 

patterns 

One proportion z-test [57] 

Musical Sonification 
(Custom Pedals) 

Pedals with load sensors 
and microcontroller 

adjust musical feedback 

ANOVA, Friedman Test, 
Pairwise comparisons 

[56] 

PAM® (Personal 
Activity Monitor) 

N/A Generalised Linear 
Modelling 

[50] 

Three-axis 
Accelerometer 
(Smartphone) 

Adjusts music tempo to 
synchronise with user 
pace using Swings Per 

Minute (SWPM) 

N/A [54] 

Tri-axial Accelerometer Uses accelerometer and 
heart rate to adjust music 

tempo for maintaining 
target heart rate during 

cardio-training 

N/A [53] 

  312 
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Risk of bias in studies 313 

Following the assessment of the study quality using the JBI critical appraisal checklist tools, 314 

the nine criteria were adapted to the five risk of bias domains found in the [64] R package for 315 

risk-of-bias assessments (robvis). This assessment tool tests the risk of bias resulting from the 316 

randomisation process (D1), deviations from intended intervention (D2), missing outcome 317 

data (D3), measurement of the outcome (D4), and selection of the reported result (D5). Each 318 

domain is assessed with a judgement scale indicating a high risk of bias (red cross), some 319 

concerns (yellow circle), low risk of bias (green plus) and No Information (blue question 320 

mark) (cf. Fig 2). 321 

 322 
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[Insert Fig 2 here] 323 

Fig 2. Evaluation of risk of bias in the included studies, categorised across five domains 324 

from D1 to D5 [cf.62]. An overall bias risk assessment for each study is also provided, 325 

conservatively summarising the findings across all five domains. 326 

We included all 18 studies in the review regardless of their overall risk of bias rating (see Fig 327 

2, column ‘Overall’). The overall risk of bias rating for each study was assigned 328 

conservatively, reflecting the highest risk level present across any of the five domains (D1–329 

D5). For example, if one domain was judged to have a high risk of bias, the overall rating for 330 

that study was classified as high risk. Of the 18 studies, one randomised experimental design 331 

study [50] was rated for low risk of bias. Seven studies received a moderate (some concerns) 332 

rating of risk of bias, and 10 were rated for a high risk of bias.  333 

PIMS used in experimental studies 334 

PIMS were explored in experimental studies for their influence on physical, psychophysical, 335 

and affective exercise-related outcomes. Several studies focused on synchronisation and 336 

auditory-motor coupling. [59] examined beat synchronisation using the D-Jogger adaptive 337 

music player. They found that initiating music in phase synchrony significantly enhanced 338 

consistent sensorimotor patterns, while strategies relying on tempo adjustments alone were 339 

less effective. [56] provided detailed analyses of synchronisation strength using SoundBike, 340 

where musical sonification significantly increased pedal cadence synchronisation with 341 

external music. Similarly, [54] found significant increases in step frequency (SWPM) when 342 

music tempo aligned with user pace, enhancing consistency and efficiency of the activity. 343 

[22,34] reported on the Jymmin® system's role in improving mood and exercise duration. 344 

Notably, [34] observed mood enhancements in younger adults, while [22] noted prolonged 345 

exercise durations in elderly participants despite no significant mood changes. This may be 346 

potentially due to age-related differences in energy pacing. [61] explored a tempo-responsive 347 
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system for Alzheimer's patients, observing improved synchronisation and engagement. 348 

Additionally, [12] reported the moBeat system maintained exercise compliance while 349 

enhancing intrinsic motivation and attentional dissociation from discomfort. Sample sizes 350 

varied (N = 10 to 150), with participants aged 18–79 across diverse demographics. Detailed 351 

descriptions of PIMS used in these studies can be found in S1 Table. 352 

PIMS used in proof of concept and user testing studies 353 

Proof-of-concept and user-testing studies used PIMS to adapt music or audio feedback based 354 

on real-time physical activity and exercise-related data (e.g., heart rate, oxygen saturation, 355 

and galvanic skin response, GSR), with a focus on music recommendation systems and 356 

synchronisation features. [47] tested DJ-Running, which integrates environmental (GPS), and 357 

GSR data to provide personalised music recommendations using algorithms such as Artificial 358 

Neural Networks (ANNs). [49] developed a context-aware recommender system using 359 

smartphone sensors to adjust music based on exercise intensity, providing evidence for 360 

preliminary efficacy in low-concentration activities (e.g., low-to-moderate-intensity activities 361 

that require minimal concentration such as walking). 362 

Two synchronisation-based systems were included: [53] Music Assisted Run Trainer 363 

(MART), which adjusts music tempo to heart rate or step frequency; and [51] Music 364 

Feedback Exercise (MFE) system, which synchronises music with movement intensity 365 

through advanced audio processing. For example, as exercise intensity increases, additional 366 

layers of musical elements such as rhythm guitar, bass, or drums are progressively added to 367 

the audio track. [57] introduced musical sonification, converting movement data into music 368 

for users to identify different physical activity patterns. [55] examined ecological 369 

soundscapes to influence cycling behaviour. Soundscapes were, for example, dynamically 370 

altered based on users’ cycling speed and heart rate. 371 
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[58] reported optimal movement entrainment at ~120 BPM using D-Jogger but noted 372 

disruptions during song transitions. [48] reinforcement learning-based system found 373 

improved user satisfaction and fewer track rejections, while [61] found tempo-responsive 374 

music systems beneficial for older adults with Alzheimer’s. Median sample size was n = 6, 375 

with limited demographic data reducing generalisability. Details on these systems can be 376 

found in S2 Table. 377 

Meta-analyses 378 

A single overall meta-analysis of the studies was not achievable due to heterogeneity across 379 

datasets and outcomes [65]. Instead, the outcomes were reported separately based on their 380 

focus. The reported outcomes distinguished between (1) physical activity levels, (2) physical 381 

exertion, (3) ratings of perceived exertion (RPE), and (4) affective valence. 382 

Results for physical activity level  383 

The overall effect size is 0.49 with a 95% CI of 0.07 to 0.91, and a p-value of .02 (k = 4, n = 384 

76). This indicates that the results are statistically significant, supporting the effectiveness of 385 

PIMS in improving outcomes relating to physical activity level (Fig 3). The random-effects 386 

model indicates low heterogeneity (𝘘 = 1.65, p = .65, I² = 0%, Tau = 0.00) between the 387 

studies, suggesting it to be negligible. The calculated 95% prediction interval for the true 388 

effect size is -0.43 to 1.41, indicating that while the average effect is positive, the range of 389 

potential true effects across future studies could include negative or larger positive outcomes. 390 

 391 
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 392 

[Insert Fig 3 here] 393 

Fig 3. Forest plot of effect sizes for physical activity level outcomes associated with 394 

PIMS. 395 

Results for physical exertion 396 

The overall effect size is 0.79 with a 95% CI of -0.64 to 2.21, and a p-value of .28 (k = 5, n = 397 

142), indicating that the results are not statistically significant and do not support the 398 

effectiveness of PIMS in improving physical exertion outcomes (Fig 4). The random-effects 399 

model indicates high heterogeneity (𝘘 = 46.96, p = .00, I² = 93%, Tau = 2.44) between the 400 

studies. The calculated 95% prediction interval for the true effect size is -4.69 to 6.27, 401 

indicating the potential for considerable variation in the effects of PIMS on physical exertion 402 

across future studies. 403 
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 404 

[Insert Fig 4 here] 405 

Fig 4. Forest plot of effect sizes for physical exertion outcomes associated with PIMS. 406 

Results for ratings of perceived exertion (RPE) 407 

The overall effect size is 0.72 with a 95% CI of -0.14 to 1.59, and a p-value of .10 (k = 3, n = 408 

77), indicating that the results are not statistically significant and do not conclusively support 409 

the effectiveness of PIMS in improving RPE outcomes (Fig 5). The random-effects model 410 

indicates substantial heterogeneity (𝘘 = 10.24, p = .01, I² = 81%, Tau = 0.47) between the 411 

studies. The calculated 95% prediction interval for the true effect size is -9.64 to 11.08, 412 

reflecting the significant variability in potential outcomes across future studies. 413 

 414 
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[Insert Fig 5 here] 415 

Fig 5. Forest plot of effect sizes for Ratings of Perceived Exertion (RPE) outcomes 416 

associated with PIMS. 417 

Results for affective valence 418 

The overall effect size is 1.68 with a 95% CI of 0.15 to 3.20, and a p-value of .03 (k = 4, n = 419 

122), indicating that the results are statistically significant and thus consistent with the 420 

effectiveness of PIMS in improving affective valence outcomes (Fig 6). The random-effects 421 

model indicates substantial heterogeneity (𝘘 = 36.69, p = .00, I² = 94%, Tau = 2.24) between 422 

the studies. The calculated 95% prediction interval for the true effect size is -5.58 to 8.94, 423 

highlighting significant variability in potential outcomes across future studies. 424 

 425 

[Insert Fig 6 here] 426 

Fig 6. Forest plot of effect sizes for affective valence outcomes associated with PIMS. 427 

 428 

Meta-regression analysis 429 

Heterogeneity was identified in the meta-analyses, prompting the use of meta-regression 430 

analysis to explore potential moderators of effect sizes. Music tempi showed a statistically 431 

significant positive association with effect sizes (p = .044), suggesting that faster tempi may 432 
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have a significant effect across the outcomes of interest. None of the other predictors, 433 

including participant age, exercise intensity, or sample size, demonstrated a significant effect 434 

on effect sizes (see Table 5). The overall meta-regression model was not statistically 435 

significant (p = .189), and substantial heterogeneity remained unexplained (𝑄 = 76.782, p < 436 

.001, I² = 87.77%, Tau = 1.049). This indicates that other, unexplored factors likely 437 

contribute to the variability in outcomes. Given the inclusion of all outcomes of interest in 438 

this analysis, the potential for residual variability and unaccounted-for heterogeneity is high. 439 

Table 5. A summary of the meta-regression analysis. 440 

Coefficients 

  Estimate Standard Error z p 

Intercept  1.229  3.208  0.383  .702  

Age  -0.036  0.043  -0.822  .411  

Music Tempo  0.623  0.309  2.015  .044  

Exercise Intensity  0.207  1.360  0.152  .879  

Sample Size  -0.026  0.067  -0.381  .703  
 
Note.  Wald test. 
 441 

 442 
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Publication bias analysis (Egger’s test) 444 

Egger’s test [66] indicated non-significant asymmetry for physical activity level (z = -0.968, 445 

p = .333), significant asymmetry for physical exertion (z = 2.927, p = .003), non-significant 446 

asymmetry for RPE (z = 0.832, p = .405), and significant asymmetry for affective valence (z 447 

= 4.961, p < .001) (Fig 7). Because of potential publication bias, the summary effect sizes for 448 

physical exertion and affective valence outcomes may thus be slightly inflated. 449 

 450 

[Insert Fig 7 here] 451 

Fig 7. Funnel plots for Physical Activity Level (A), Physical Exertion (B), Rating of 452 

Perceived Exertion (RPE) (C), and Affective Valence (D). 453 

  454 
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Discussion 455 

The aim of this review was to systematically evaluate the effectiveness of Personalised 456 

Interactive Music Systems (PIMS) across physical activity levels, physiological outcomes 457 

(e.g., heart rate and step frequency), psychophysical outcomes (e.g., the rating of perceived 458 

exertion), and affective valence in relation to physical activity and exercise behaviours. A 459 

central focus was an exploratory meta-analysis of PIMS across these outcome domains. 460 

The exploratory meta-analysis revealed that PIMS demonstrate favourable effects on physical 461 

activity levels and affective valence, with effect size estimates surpassing those of general 462 

music listening [6]. However, the certainty of evidence is limited by methodological 463 

inconsistencies, a moderate to high risk of bias and the limited number of published studies 464 

eligible for meta-analyses. Importantly, no significant effects were observed for ratings of 465 

perceived exertion (RPE) or measured physical exertion. This reflects variability in the 466 

psychophysical outcomes associated with interventions using PIMS. 467 

When examining the findings of individual studies separately, they offer preliminary 468 

evidence that PIMS may improve physical, psychophysical, and affective outcomes related to 469 

physical activity and exercise. For example, [22] observed longer exercise durations during 470 

sessions utilizing Jymmin® compared to routines with passive music listening, without 471 

significant increases in perceived exertion. Similarly, [50] reported increased weekly physical 472 

activity volumes among cardiovascular disease patients using personalised Rhythmic 473 

Auditory Stimulation (RAS)-enhanced playlists. Additionally, [60] provided qualitative 474 

evidence suggesting that PIMS may prompt physical activity, such as reducing sitting time in 475 

office settings. 476 

However, interpreting these findings is challenging due to methodological limitations and 477 

variability in population characteristics. Some studies focus on clinical populations, such as 478 

cardiovascular disease patients [50], while others target healthy younger adults [53] or elderly 479 
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participants [22]. Several studies lack demographic details entirely, further complicating the 480 

assessment of population-specific efficacy. Sample sizes also vary widely, from single 481 

participants [51] to larger groups [53, N = 36]. 482 

Heterogeneity in PIMS outcomes: methodological influences 483 

The wide prediction intervals observed across outcome domains reflect the substantial 484 

heterogeneity in PIMS effects. For example, prediction intervals for physical activity levels 485 

and affective valence highlight significant variability in potential effect sizes. This suggests 486 

that while PIMS may provide positive average effects, individual study outcomes could range 487 

from substantial benefits to negligible or even negative impacts. Similarly, the prediction 488 

intervals for RPE and physical exertion emphasise uncertainty surrounding these 489 

psychophysical outcomes, pointing to inconsistencies in measurement and intervention 490 

design.  491 

Specifically, variations in study methodologies and control group conditions contribute 492 

significantly to this heterogeneity. Some studies utilised passive music or other auditory 493 

stimuli as controls, while others used no-music conditions. This negatively affects 494 

comparability. Well-powered randomised designs, such as [50], produced robust findings, 495 

whereas smaller studies, such as [22], yielded non-significant results, pointing to the 496 

influence of study design and statistical power. Additionally, short intervention durations and 497 

small sample sizes [55,57] constrain the generalisability of findings. The absence of 498 

standardised metrics and protocols across studies further hinders the ability to synthesise 499 

outcomes and develop systematic guidelines for PIMS interventions. To alleviate this, future 500 

research should adopt standardised protocols and outcome measures. This could be achieved 501 

via a Music Selection and Delivery Protocol, ensuring uniformity through a predefined 502 

library of music tracks categorised by tempo and intensity, delivered via standardised systems 503 

(e.g., wireless headphones at consistent volumes). Validated tools such as the Borg Rating of 504 
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Perceived Exertion (RPE) and the Feeling Scale (FS) for measuring affective valence, 505 

administered at fixed intervals, may enhance comparability. 506 

Feasibility of PIMS on physical activity levels and affective 507 

outcomes 508 

Despite methodological inconsistencies, our findings suggest that PIMS may have a positive 509 

influence on physical activity levels. Studies in this cluster were rated as having low [50] to 510 

moderate [12,22] risk of bias, with both [50] and [22] focusing on elderly populations. 511 

Positive effects include increased exercise duration [22; ~66 seconds] and overall weekly 512 

physical activity [50; ~105.4 additional minutes per week on average]. However, [12] found 513 

no significant impact of PIMS on physical activity levels. The low heterogeneity in this 514 

cluster indicates consistent findings despite variations in study design and participant 515 

populations. This is promising and calls for further investigation. 516 

Our results align with Clark et al. (2024), who noted that music listening, when combined 517 

with physical activity, enhances exercise outcomes in older adults. Both [50] and [12] 518 

employed synchronisation strategies—RAS and auditory-motor coupling, respectively—519 

consistent with frameworks by [8,67] that link synchronised music to improved physical 520 

activity and exercise performance. However, the exploratory nature of the meta-analysis and 521 

the small number of studies limit the potential generalisability of these findings. Further 522 

research with diverse populations and robust methodologies is required to confirm whether 523 

PIMS are effective adjuncts for increasing physical activity levels. 524 

For affective valence, the large effect size estimate suggests PIMS contribute to elevated 525 

affective experiences during physical activity and exercise [12,22,34,52]. However, this 526 

finding is strongly influenced by [12], whose notably high effect size estimate substantially 527 

raised the overall meta-analytic effect size estimate. In contrast, smaller effects observed in 528 

other studies [22,34] reduced the precision and generalisability of the overall meta-analytic 529 
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finding. The differences in these outcomes likely reflect variations in music selection 530 

methods: researcher-selected music in [12] prompted synchronisation and enjoyment (‘fun 531 

and enjoyment’ ratings via IMI), while self-selected music [52] and device-generated 532 

feedback [22,34] influenced affective outcomes in distinct ways. In [12] researcher-selected 533 

music facilitated synchronisation, while [52] used self-selected music based on participants' 534 

individual preferences. [22,34] utilised device-generated musical feedback, where 535 

participants’ movements influenced the music. These differences suggest that PIMS may 536 

enhance affective valence outcomes during physical activity and exercise through both self-537 

selected and researcher-selected music, with evidence of positive effects for music tailored to 538 

individual preferences (aligning with prior research by [7,11]) as well as for standardised, 539 

researcher-selected stimuli. 540 

Curiously, [12] reported no significant benefits for RPE, despite utilising auditory-motor 541 

coupling strategies. This discrepancy may find alignment with Dual-Mode Theory, as even 542 

though music can enhance automatic synchronisation and facilitate improved physical 543 

performance, it does not always mitigate RPE if reflective processes (e.g., cognitive appraisal 544 

of effort) are less engaged [13]. The substantial heterogeneity within the affective valence 545 

cluster, driven by variability in musical strategies, participant demographics, and inconsistent 546 

measurement tools (e.g., MDMQ, IMI, FS), further supports Affective-Reflective Theory’s 547 

(ART) assertion that individual and contextual factors critically shape affective outcomes 548 

during exercise. 549 

All studies in the affective valence cluster were deemed to have a moderate risk of bias. 550 

Furthermore, the reliance on measurement scales without strong theoretical grounding, as 551 

noted in [12], suggests the need for alignment with validated frameworks such as ART. For 552 

instance, the Feeling Scale (FS) used by [52] directly measures the pleasure-displeasure 553 

dimensions central to ART, aligning with validated frameworks in physical activity and 554 
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exercise contexts [68]. The FS provides a theoretically robust and context-specific assessment 555 

of affective responses, capturing the transient emotional states during exercise that ART 556 

posits are critical for shaping future behavioural intentions. These findings tentatively 557 

indicate that these PIMS leverage momentary affective responses to improve exercise 558 

experiences [6,7,17]. In sum, findings across the physical activity and affective valence meta-559 

analytic clusters suggest PIMS may support affect augmentation during physical activity, 560 

highlighting their potential to enhance both physical activity levels and affective outcomes 561 

[5,17]. 562 

PIMS tempo adjustments and synchronisation in physical activity 563 

and exercise outcomes 564 

The identification of faster music tempi as a statistically significant moderator in the meta-565 

regression aligns with evidence supporting the role of synchronisation strength and auditory-566 

motor coupling in enhancing exercise outcomes [8,45]. For instance, faster tempi provide 567 

consistent rhythmic cues that facilitate the alignment of motor actions with auditory stimuli. 568 

This can optimise auditory-motor coupling [8–10] which, in turn, enables predictive 569 

synchronisation to reduce RPE [7]. For example, [52] reported that real-time tempo 570 

adjustments based on heart rate significantly reduced RPE and improved affective responses. 571 

This indicates that synchronised music facilitated participants' dissociation from internal 572 

sensory signals and promoted enjoyment during exercise [7]. 573 

Limitations and future directions 574 

This review presents the first systematic exploration of PIMS exclusively within physical, 575 

psychophysical, and affective domains of physical activity and exercise. While it provides 576 

valuable insights, several limitations must be acknowledged. A significant proportion of the 577 

included studies (14 out of 18) primarily assessed the feasibility of PIMS, with few 578 
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investigating direct outcomes related to physical activity or exercise. Many experimental 579 

studies were limited by short durations, small sample sizes, and insufficiently rigorous 580 

methodologies. Similarly, proof-of-concept and user-testing studies largely focused on 581 

system feasibility rather than assessing objective psychophysiological outcomes. 582 

Consequently, the high risk of bias in 10 studies underscores the overall low quality of 583 

evidence. Additionally, the small number of eligible studies precluded sensitivity analyses 584 

which further emphasises the preliminary nature of this review's findings. 585 

Few studies identified physical activity as a primary outcome, often relegating it to secondary 586 

importance. Objective assessments of physical activity—such as measures of frequency, 587 

intensity, and duration—were notably absent, making it difficult to draw robust conclusions 588 

or compare results across studies. Standardising methods for quantifying physical activity 589 

would enhance future research by enabling more meaningful cross-study comparisons.  590 

Furthermore, the methodology used in this study was limited by substantial heterogeneity 591 

across studies. This prevents a unified meta-analysis and necessitates the reporting of 592 

separate outcomes. Variability in study designs, participant demographics, and measurement 593 

tools contributed to unexplained heterogeneity, while the small number of studies precluded 594 

sensitivity analyses. These factors, combined with the exploratory nature of the meta-595 

analysis, point to the need for standardised methodologies and rigorous reporting in future 596 

research. 597 

To address these limitations, future research should prioritise larger, randomised controlled 598 

trials with diverse populations and longer intervention periods. Longitudinal studies are 599 

particularly needed to evaluate the sustained impact of PIMS on physical activity and 600 

exercise. Additionally, investigating the mechanisms underlying individual variability in 601 

PIMS responses could optimise these systems for different populations and exercise contexts. 602 

This highlights the need for more rigorous research to validate these effects and refine PIMS 603 
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interventions, particularly through the development of dynamic systems that can adapt tempo 604 

in real time to suit diverse user needs and exercise contexts [59,67]. 605 

Emerging trends in PIMS, such as music recommender systems examined by [47–49], 606 

highlight the potential for integration with streaming services such as Spotify. These systems 607 

demonstrated promising user feedback [48] and feasibility, suggesting they could serve as a 608 

foundation for future hypothesis-driven studies. Incorporating feedback from wearable and 609 

smartphone devices offers another avenue for development, allowing PIMS to adapt based on 610 

physical activity and exercise metrics as well as music preferences. Finally, many PIMS are 611 

relatively low-cost interventions (e.g., the devices in the [50] study cost approximately $75 612 

per patient) and could have significant cost-effectiveness implications as part of broader 613 

health policy strategies to enhance physical activity and exercise participation at the 614 

population level [5]. 615 

Conclusions 616 

This systematic review provides exploratory evidence that PIMS may positively impact 617 

physical activity levels and affective valence in physical activity and exercise contexts. The 618 

meta-analysis revealed moderate effect sizes for physical activity levels and significant but 619 

heterogeneously distributed effects for affective valence. However, outcomes for RPE and 620 

physical exertion were inconclusive due to high heterogeneity and limited study quality. 621 

The findings are constrained by methodological limitations, including high risk of bias, small 622 

sample sizes, short study durations, and inconsistent measures across studies. Furthermore, 623 

the lack of theoretical frameworks for informing PIMS designs and the absence of 624 

standardisation in quantifying physical activity outcomes limit the generalisability of these 625 

findings. PIMS remain considerably underexplored, and further research is essential. 626 

Overall, PIMS provide promising potential for enhancing physical activity levels and 627 

elevated affective valence, offering engaging physical activity and exercise opportunities for 628 
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the public at large. With advancements in adaptive systems capable of real-time tempo 629 

adjustments, PIMS may emerge as effective adjuncts for physical activity and exercise, 630 

pending rigorous validation in diverse populations. 631 
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Supporting information 

S1 Appendix. Operationalisation of Terms 

• Physical activity level encompasses the volume, intensity, and compliance with 

physical activity recommendations or exercise regimens. Volume represents the overall 

amount of physical activity, and can be measured using metrics such as mean total 

counts per day [29]. Intensity can be categorised as absolute intensity using metabolic 

equivalents (METs) or relative intensity expressed as a percentage of an individual’s 

maximum oxygen uptake reserve (%VO2R, [30]). Compliance, referring to adherence 

to recommendations or regimens, can be assessed by tracking changes in physical 

activity volume, monitoring device usage, or measuring adherence to target heart-rate 

zones during physical activity or acute bouts of physical exercise [29]. 

• Affective valence refers to the emotional response of pleasure or displeasure 

experienced during or after physical activity. It focuses specifically on the valence 

dimension of emotional states—how positive or negative the feeling is—without 

incorporating arousal (activation). Affective valence captures moment-to-moment 

changes in an individual’s subjective emotional state as they engage in physical activity. 

For instance, physical activity often elicits feelings of pleasure (positive affect), though 

the intensity and context of the activity, as well as individual differences, influence 

these responses. 

• Rating of perceived exertion (RPE) is a subjective numerical value that individuals 

assign to their sense of how hard their body is working during physical activity [7,37]. 

It is formed from a multitude of sensory cues, integrating both physiological sensations 

and psychological perceptions [37]. Sensations from muscles, skin, and joints, and 

effects stemming from the cardio-pulmonary system all contribute to this overall 
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perception. The Borg RPE scale is specifically designed to measure perceived exertion 

during steady-state aerobic exercise, such as cycling or running. The commonly used 

Borg CR-10 scale, is a category-ratio scale, designed to measure the perceived intensity 

of various sensations, experiences, and feelings. Its primary application is in assessing 

perceived exertion but can also gauge other subjective experiences. 

• Physical exertion is the effort exerted by the body to perform physical activity, 

characterised by the physiological, biomechanical, and perceptual demands placed on 

the individual [35]. Heart rate is a fundamental physiological indicator of exertion, 

reflecting the cardiovascular system’s response to physical demands [35]. Stride length 

and pace are essential biomechanical parameters, particularly in activities such as 

running and walking [35]. 
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S2 Appendix. Description of the outcome measures used in the studies. 
 
 

• Physical Activity Level: [50] measured physical activity level by mean weekly 

minutes of physical activity, which was captured using a tri-axial accelerometer worn 

by the participants. [22] measured physical activity level through the duration of 

exercise until exhaustion, timed with a stopwatch. [12] measured compliance with a 

prescribed exercise regime by monitoring participants' adherence to target heart rate 

zones during a cycling session. 

• Affective valence: [52] measured affective valence using the Feeling Scale (FS). The 

FS is based on Russell's circumplex model of affect [14,33]. The FS assesses affective 

valence (how positive or negative someone feels). [22,34] used the Multidimensional 

Mood Questionnaire (MDMQ) [32] to study the effects of PIMS on mood during 

acute bouts of physical exercise. The MDMQ includes subscales for “good vs. bad 

mood," "calmness vs. agitation," and "alertness vs. tiredness." While the MDMQ’s 

three subscales generally correspond to the circumplex model of affect [14,33] only 

the "good vs. bad mood" subscale was used, as it specifically aligns with the pleasure-

displeasure (affective valence) dimension of affect. [12] examined the effect of PIMS 

on intrinsic motivation using an “interest/enjoyment” subscale of the Intrinsic 

Motivation Inventory (IMI) [62] during acute bouts of physical exercise. While not a 

direct measurement of affect, this subscale reflects positive valence and enjoyment, 

aligning broadly with the pleasure (affective valence) dimension of affect [63].  

• RPE: All three studies that assessed Rating of Perceived Exertion (RPE) used the 

Borg CR-10 scale to capture participants' subjective experience of exercise intensity. 

[22,52] both employed the scale, with [52] collecting RPE ratings at specific time 

intervals during the exercise, while [22] opted for more frequent measurements every 

90 seconds and at the conclusion of the exercise. [12] also utilised the Borg CR-10 
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scale, though the precise timing of their measurements is not detailed. 

 

 

• Physical Exertion:[52] measured heart rate as a physiological measure of exertion 

using a Polar Verity Sense upper-arm heart-rate measurement device based on 

photoplethysmography (PPG). [54] measured pace by calculating Swings Per Minute 

(SWPM) using data from the accelerometer on a smartphone. [12] measured heart rate 

via a Polar T61 heart rate belt. 
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S1 Table. Descriptions and outcomes of the PIMS used in the nine experimental studies. 
 

Reference PIMS Used PIMS Description Outcomes 

[50] Music audio-
playlists 

Personalised music audio-playlists to 
improve adherence to physical activity 
among cardiovascular disease patients 
participating in a structured exercise 
program. 

Control (No Music), 370.2 minutes, p < .001a 
 
Music Playlists, 475.6 minutes, p < .001a 
 
Music Playlists with RAS, 631.3 minutes 

[53] Music Assisted Run 
Trainer (MART) 

A smartphone application, to assist 
jogging activity by adapting music 
tempo based on the user’s step 
frequency or heart rate. 

 
Aligning music tempo with step frequency – targeting optimal heart 
rate for cardiovascular training. 

[48] Music 
Recommendation 
System 

A music recommendation system to 
motivate individuals to exercise more 
effectively by incorporating user 
profiling and reinforcement learning. 

Improved satisfaction with playlists, reduced number of rejections 
needed to finalise a playlist. 

[34] Jymmin® Exercise with musical feedback Significant main effect of the "jymmin" condition on mood 
enhancement vs. passive listening, with a reported F(1, 43) = 10.67, 
p < .05 

[56] SoundBike 
A stationary bicycle system designed 
to enhance cyclists' spontaneous 
synchronisation with external music 
through musical sonification 

Sonification using a beep at the point of maximum pedal pressure 
significantly increased cyclists' synchronisation strength with 
external music compared to no sonification (p < .05) and improved 
pedal cadence stability (p < .05). The beep condition resulted in a 
medium to large effect size for synchronisation and stability 
compared to other conditions. 

[59] D-Jogger An adaptive music player designed to 
align music with the user’s walking or 
running pace. 

Alignment Strategy 1 – Minor increase in steps synchronised with 
beat. 
Alignment Strategy 2 – Minor increase in steps synchronised with 
beat. 
Alignment Strategy 3 –Tempo adjusts to match runner’s pace 
throughout. Increase in synchronised steps; high phase-lock 
stability. 
Alignment Strategy 4 – Adjusts phase and tempo during song to 
match each beat to footfall. Increase in synchronised steps; highest 
phase-lock stability. 

[22] Jymmin® Exercise with musical feedback Participants exercised significantly longer with Jymmin® 
(Jymmin® workout 248.75 seconds vs. Conventional workout 
182.73 seconds) 

[60] Flow Platform 
(Smart Cushion) 

A flow platform (a smart cushion) 
which used interactive music to cue 
office workers to reduce their 
sedentary time. 

Both interactive and continuous music were similarly effective in 
motivating posture changes and reducing sedentary behaviour. 

[12] MoBeat 
Intensity-based coaching during 
exercise by giving real-time feedback 
on training pace and intensity through 
interactive music. 

The moBeat system was found to have a significant positive effect 
on intrinsic motivation (p < .001) and attentional focus (p < .001) 
during exercise. The moBeat system did not significantly reduce 
perceived exertion (p = .266) compared to the reference system. 

a = p-value compares music playlists vs. a control group with no music. The p-value for the RAS-enhanced group compared to the others is not 
specified here but indicated as significant in the study. 
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S2 Table. Descriptions and outcomes of the PIMS used in the nine Proof of Concept and 
User Testing Studies. 
 

Reference PIMS Used PIMS Description Outcomes 

 
[47] 

 
The DJ Running System 

 
The system dynamically adapts music using sensor data from 
physical movements or exercise equipment. 

 
N/A  

 
[51] 

 
Music Feedback Exercise 
(MFE) 

 
The study integrates MFE into Soundjack, using sensors to modulate 
music playback based on exercise intensity. 

 
Positive feedback on system 
responsiveness and music integration. 

 
[52] 

 
Music-Assisted Internet 
of Things (IoT) Exercise 
System 

 
The system adapts music tempo in real-time to the runner's heart 
rate. 

 
N/A 

 
[54] 

 
Runner’s Jukebox (RJ) 

 
RJ uses a pace recognition algorithm enabling the music player to 
play songs matched with the user pace and adjust playback speed 
dynamically to follow the user’s pace changes. 

 
Fixed BPM and pace matching gave 
better exercise effect (SWPM) vs. no 
music and vs. randomly selected music 

 
[55] 

 
A Stationary bike 
augmented in an audio 
reality environment. 

 
The use of sensors to monitor the user's pace and heart rate while 
exercising on a stationary bike. Audio feedback and cues are 
manipulated based on the user's performance.  

 

N/A 

 

[58] 

 

DJogger 

 
A music interface to leverage body movement in order to select 
music and adapt its tempo to the user’s pace, focusing on 
entrainment – synchronisation between music and walking.  

 
The majority of subjects synchronised 
to the beats, no matter what the users’ 
pace. 
 
If the music tempo is close enough to 
the user’s pace, the user tends to 
synchronise his/her steps with the beats. 

 
[57] 

 
Sonification of 
accelerometry data 
(recordings of physical 
activity) 

 
This system transforms daily physical activity data recorded by 
wearable devices into musical pieces. 

 
The majority of participants correctly 
identified the musical sonification 
associated with physical activity.  

 
[49] 

 
Context-Aware Music 
Recommender System 
(CAMRS) 

 
The system classified physical activities by analysing data from the 
smartphone's accelerometer, allowing it to predict the user's activity. 
It recommends music with a Beats Per Minute (BPM) value to 
match the intensity of the detected physical activity. 

 
When using the system, rates of 
perceived effort decreased in the 
majority of cases, and mood improved 
in the majority of cases. 

 

[61] 

 

Interactive Music System 
for Alzheimer’s patients 

 
This music system for Alzheimer's patients, focuses on how 
dynamically adapting musical beats and rhythms can stimulate and 
motivate physical activity. The system adapts the tempo of music to 
match the pace of repetitive bodily movements. 

 
The interactive music system produces 
an entraining effect on participants. 
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