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Background: Spontaneous intracranial hemorrhages are life-threatening conditions that 

require fast and accurate diagnosis. We hypothesized that deep learning (DL) could be utilized 

to detect these hemorrhages with a high accuracy.  

Methods: We developed a DL solution for detecting spontaneous intracerebral (ICH), 

intraventricular (IVH) and subarachnoid hemorrhages (SAH) from head non-contrast CT 

(NCCT) scans. The solution included four convolutional neural network (CNN) base models 

for different hemorrhage types and a CNN metamodel that was trained on top of the base 

models. We validated the performance of the solution by using a retrospective real-world 

dataset of consecutive emergency head NCCTs imaged during a 3-month period in 10 different 

hospitals. The head NCCTs with hemorrhages were stratified into groups by delay from 

symptom onset to NCCT imaging to better evaluate the suitability of the solution for 

emergency use. 

Results: The real-world validation dataset included 7797 emergency head NCCTs that were 

imaged between October 1st and December 31st 2021. Of these, 118 were reported to show 

spontaneous intracranial hemorrhages by on-call radiologists, and 7679 were reported negative 

for hemorrhages. The developed solution detected all reported 78 (sensitivity 100%) 

spontaneous intracranial hemorrhages if the head NCCT was presumably or confirmedly taken 

within 12 hours of symptom onset. When assessed for hemorrhages imaged 12 to 24 hours after 

symptom onset (13 cases), the sensitivity was 76.5 %. Overall sensitivity for detecting 

spontaneous intracranial hemorrhages on head NCCTs that were imaged with any delay from 

symptom onset was 89.8 %, and specificity was 89.5 %. The solution also detected five cases 

that were missed by on-call radiologists. 

Conclusions: The DL solution showed high sensitivity for detecting spontaneous ICHs, IVHs 

and SAHs within the same time window in which also modern CT scanners work best for 

detecting acute blood on head NCCTs. 
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Non-standard Abbreviations and Acronyms 

DL = Deep learning 

ICH = Intracerebral hemorrhage 

IVH = Intraventricular hemorrhage 

SAH = Subarachnoid hemorrhage 

NCCT = Non-contrast CT 

CNN = Convolutional neural network 

HUH = Helsinki University Hospital 

HU = Hounsfield unit 

2D = Two-dimensional 

GPU = Graphics processing unit 

TTA = Test time augmentation 
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Introduction 
Spontaneous intracerebral (ICH) and subarachnoid hemorrhage (SAH) account for 

approximately one-third of all strokes1. Both ICH and SAH are associated with high 

morbidity and mortality rates 2,3.  Due to the high disease burden of ICH and SAH, prompt 

and accurate diagnosis as well as quickly initiated therapeutic actions are important4,5. For 

example, spontaneous ICH and SAH have a high risk of rebleed and hematoma expansion, 

which further worsen the prognosis6,7. Non-contrast head computed tomography (NCCT) has 

a high sensitivity for detecting acute intracranial blood within 12 hours from symptom onset, 

and therefore the diagnosis of acute intracranial hemorrhages is based on emergent NCCTs 

8,9.  

The number of medical imaging studies is increasing globally 10–12. At the same time, there 

are increasing concerns regarding fatigue of radiologists and its effect on diagnostic 

accuracy13,14. Therefore, new technological solutions assisting clinicians and radiologists in 

interpreting imaging studies rapidly and accurately could alleviate this issue. Based on these 

premises, we aimed to develop a novel solution of multiple deep learning (DL) algorithms 

that would detect spontaneous intracranial hemorrhages, namely ICH, SAH and 

intraventricular hemorrhage (IVH), with a high accuracy. Given the inherent diagnostic 

limitation of modern head CT scanners in identifying subacute blood (accuracy highest in 

early imaging) 8,15, we tried to train the solution to give optimal results when applied to cases 

imaged within 12 hours from symptom onset.  

 

Methods 

Ethical considerations 

The local institutional review board of Helsinki University Hospital (HUH) approved the 

retrospective data collection and study design and granted a waiver for acquiring informed 

consents (HUS/365/2017; HUS/163/2019; HUS/190/2021). According to the Finnish 
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legislation, no ethics committee approval is needed for retrospective studies that utilize registry 

or archive data. We gathered all imaging data for algorithm training from the HUH, which 

consists of 23 separate hospitals. All five Finnish university hospitals, including the HUH, are 

publicly funded non-profit organizations that provide tertiary health care services for all people 

living in Finland, regardless of socioeconomic status, insurance status, or race/ethnicity. 

Therefore, we believe that the collected HUH imaging data for algorithm training and 

validation is not inherently biased or deliberately discriminative. We conducted the study in 

line with the Declaration of Helsinki. The proofreading of the text was conducted using Chat 

GPT 4.0. STARD checklist for this study can be found as an online supplement.  

 

Data availability 

Finnish healthcare data for secondary use can be obtained through FINDATA (Social and 

Health Data Permit Authority according to the Secondary Data Act). The used healthcare data 

cannot be shared openly. Our solution included four base U-Nets for detecting types of 

spontaneous intracranial hemorrhages and a metamodel, which was trained on the top of the 

base U-Nets. We trained independent U-Nets to detect ICH, SAH and IVH (one ICH U-Net, 

one IVH U-Net and two SAH U-Nets). The training and performance metrics of one of the 

two SAH U-Nets have been described before 16. 

 

Training data 

Training dataset of the three new U-Nets consisted of 63, 50 and 67 head NCCT MPR-

reformates (with 512 x 512 dimensions) for ICH, IVH, and SAH, respectively. All patients 

were imaged and treated at HUH. Segmentations were done using Philips IntelliSpace 

Discovery 17 and 3D Slicer 18. Image data and segmentation files were saved and used in 
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NIfTI file format. We used Hounsfield unit (HU) threshold-based method to decrease human 

error and to increase reproducibility. We determined an acute blood threshold value for each 

bleeding type; 60-90 HUs for ICH and SAH and 50-90 HUs for IVH. We only segmented the 

bleeding type of interest for the base model training. To make a final agreement of the 

segmentation mask, all the segmented scans were reviewed by a cerebrovascular 

neurosurgeon and/or radiologist. After the review, segmentation masks were saved in a 

binary format, 0 meaning “no blood” and 1 meaning “blood”. We randomly chose 55 NCCT 

scans from the base model training NCCTs for the meta-model training dataset. For these 55 

NCCTs we segmented all three bleeding types using the same HU thresholds mentioned 

above. The review process after segmentations remained the same. Eventually, the 

segmentation masks were saved also in a binary format and each segmentation in its own 

channel. The final segmentation files for the metamodel training included three channels (one 

for each bleeding type).  

 

Model architectures and training 

The trained three U-Nets were two-dimensional (2D) and had five convolution blocks with 

residual connections both in the encoder and decoder parts. Dropout and batch normalization 

layers were also used. Down sampling was done using a 2D convolutional layer with a kernel 

size of (2,2) and stride of (2,2). Dice loss was used as training loss for ICH and SAH U-Nets. 

For the IVH U-Net, we used a custom loss function where focal loss and dice loss were 

combined. Image data for ICH and SAH U-Nets were first clipped between -500 and 500 

HUs and then normalized between 0 and 1. Image data for IVH U-Net was clipped between 0 

and 200 HUs and then normalized between 0 and 1. Image data and segmentation masks were 

rotated 90, 180 and 270 degrees as an augmentation method during the training. Before 

training, each of the datasets were randomly split into training and validation set using 80:20 
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split ratio with 20% of the data reserved for validation purposes during training process. 

Training was done in Microsoft Azure using NVIDIA Tesla V100 graphics processing unit 

(GPU) with a batch size of 64, kernel size of (3,3) and dropout rate of 0.2. We used an Adam 

optimizer with a learning rate of 0,001. The training was set to last 200 epochs and the U-Net 

with the lowest validation loss value was selected for the final use.  

We trained the metamodel after training the base U-Nets. The metamodel included a batch 

normalization layer and two 2D convolutional layers. The input of the metamodel is a 2D 

image with 5 channels (original CT slice and predictions from the four base U-Nets). The 

image channel was clipped between –500 and 500 HUs and normalized between 0 and 1.  

During the training, image data and corresponding segmentation masks were rotated 90, 180 

and 270 degrees as an augmentation method. Similar 80:20 split ratio was used for the 

metamodel training dataset. Training was done in Microsoft Azure using V100 GPU with 

batch size of 64, kernel size of 3. The training was set to last 100 epochs. Learning rate of 

0.003 and Adam optimizer were used. We used Dice loss as a loss function, and the model 

with the lowest validation loss was selected for the final use. The model outputs semantic 

segmentation, i.e. pixel-wise probability of the presence of a hemorrhage in a single NCCT 

slice. 

For the inference pipeline, the combined U-Net solution included a reshaping of image data if 

the pixel data differed from 512 x 512. After resizing the image, the data was first sent to the 

base U-Nets with the corresponding normalizations. The base U-Net predictions were saved 

for later post processing steps. The predictions from the base U-Nets and the original imaging 

data (with clipping between -500 and 500 HU and normalization) were then directed to the 

metamodel for the final prediction. We used TensorFlow 2.2.0 to build and train the U-Nets 

and the metamodel.   

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.28.24308084doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.28.24308084


 7 

Adaptive post-processing steps  

To reduce the number of falsely predicted positive findings, we implemented post processing 

steps. First, we included only predictions in which segmented pixels (i.e. predicted blood) 

formed a cluster of a minimum 10 pixels in a single slice.  A voting support from the base U-

Nets was used to direct the slice further for a test time augmentation (TTA) step, or to push 

the slice forward without TTA. In the voting phase, all predictions from the base U-Nets were 

summed and compared against the metamodel predictions. If there was an overlap between 

the metamodel prediction and majority of the base U-Net predictions, the slice was classified 

as a strong positive. TTA was applied as a post processing step only if the slice was positive, 

but the prediction was not classified as a strong positive, as described above.  By default, the 

solution made the predictions for input image data without any augmentations. In the TTA 

step, the image data was flipped both horizontally and vertically. The augmented images 

were then analyzed, and the predictions were then spatially reversed to match the predictions 

of the original data. All predictions were then summed and divided by 4. A removal of pixel 

clusters smaller than 10 pixels was also done after the TTA step. In the final step of the post 

processing, the positive prediction clusters were combined with the predictions of the base U-

Nets, and if the combined cluster size exceeded 125 pixels, the segmentation was classified as 

a positive prediction. Of note, one 512 x 512 head NCCT slice contains 262 144 pixels.  

Examples of DL solution’s output is presented in figure 1. 

 

Real-world validation dataset  

To simulate a real-world emergency imaging setting, we collected a retrospective dataset 

from 10 different hospitals in the HUH catchment area. These hospitals offer various levels 

of emergency care, ranging from primary care without neurosurgical services to tertiary care 

with such services. Together these 10 hospitals cover a catchment area of over 1,700,000 
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inhabitants in Southern Finland. The validation dataset consisted of all consecutive 

emergency head NCCTs imaged between October 1st and December 31st  2021 and 

corresponding on-call radiology reports. In more detail, if NCCT scan of adult patients (18 

years or older) was performed either with emergent or immediate priority, it was included in 

the validation dataset. We also collected patient reports of the corresponding emergency 

room visits and ambulance reports, when available. In addition to these, we gathered 

information about patient demographics (age, sex, date of birth).  

The on-call radiology reports were considered as ground truths, and every report was 

scrutinized to identify whether on-call radiologists had reported a primary spontaneous 

intracranial hemorrhage in the scan or not. Primary spontaneous intracranial hemorrhages 

included non-traumatic aneurysmal and non-aneurysmal SAHs, non-traumatic deep and lobar 

ICHs, and non-traumatic IVHs.  Secondary spontaneous intracranial hemorrhages included 

SAHs, ICHs or IVHs related to ischemic strokes and tumors, and were excluded from the 

analysis. Also scans with reported poor quality, wrong imaging protocols (for example 

contrast-enhanced imaging and angiographies), and wrong reformatting (for example no axial 

series) were excluded from the dataset. We also excluded NCCT scans with inconclusive 

reporting of the presence of intracranial hemorrhages, and all follow-up scans. The dataset 

selection process is presented in figure 2. The dataset did not include head NCCTs from 

patients who were already admitted to a hospital ward before the NCCT was imaged. Also, if 

a single patient was imaged multiple times during different emergency clinic visits in the 3 

months period, all first scans (excluding follow up scans) were included in the dataset. 

The time of the symptom onset and the etiology of hemorrhages were evaluated on the basis 

of the patient and ambulance reports. If the etiology (traumatic vs. non-traumatic) of the 

hemorrhage could not be determined, it was classified uncertain. NCCTs with primary 

spontaneous intracranial hemorrhages were divided into five groups based on the time delay 
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from symptom onset to imaging: 1) the exact time of symptom onset was mentioned in the 

patient or ambulance report, or in the imaging study referral, and the imaging was carried out 

within 12 hours from symptom onset, 2) the exact time of symptom onset was not clearly 

mentioned in the reports, but the imaging was done most likely within 12 hours from 

symptom onset, and 3) the exact time of symptom onset was not mentioned in the reports, but 

the imaging was performed most likely within 12- 24 hours from symptom onset or the exact 

time of symptom onset was mentioned, and imaging was carried out within 12 to 24 hours 

from symptom onset, 4) the symptom onset was between 24 hours to 7 days before the 

imaging or 5) the symptom onset was over 7 days before the imaging or the symptom onset 

remained unclear based on the available reports.  

The head NCCT scans in which the on-call radiologist had reported hemorrhage were 

independently annotated on a slice-level by two study authors (JT and KV) for the presence 

of hemorrhage. Slices which included 5% or more missing image area (technical shortcoming 

related to head CT scanners) due to image reformatting were automatically considered 

negative for hemorrhages. The senior study authors solved any conflicts between the 

annotators either by removing annotations from the slice or accepting the slice annotations. 

All imaging studies in the test dataset were in the DICOM format. Nvidia Tesla V100 GPU 

was also used for running the inference task in Microsoft Azure Machine learning studio.  

 

Statistical analyses 

We calculated the patient- and slice-level metrics by using the ground truth radiology reports 

and Python scripts tailored for these tasks. These reported metrics included sensitivity, 

specificity, false positive rate, negative predictive value and accuracy. We performed all 

statistical analyses with the Python package NumPy. We plotted the article figures using 

Matplotlib Python package.   
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Results  

Technical performance  

Figure 3 depicts the time range taken for analyzing all slices in one head NCCT scan (median 

number of slices 53). The median time of analyzing all slices in a single axial 3 mm NCCT 

scan was 6.7 seconds (range from 4.2 to 33.1 seconds). The analyzing procedure consisted of 

multiple steps, such as reading the DICOM files, processing the imaging data, predicting the 

presence of a hemorrhage, post processing step, and saving the predictions in a NIfTI file. 

Validation dataset  

The final validation dataset included 118 NCCTs in which on-call radiologists reported 

spontaneous intracranial hemorrhage and 7679 NCCTs which were reported negative for 

hemorrhage by the on-call radiologist. The dataset included 4069 NCCTs of women and 3707 

NCCTs of men (supplementary material – table 1). The median age of imaged patients was 

71 years (range from 18 to 102 years) (supplementary material – table 1). The 7797 NCCTs 

were imaged using 12 different CT scanners from four vendors (supplementary material – 

table 2). 

Of these, 59 were imaged within 12 hours, 19 presumably within 12 hours and 17 within 24 

hours from symptom onset (Table 1). Fourteen intracranial hemorrhages were imaged 

between 24 hours and 7 days (Table 1). Nine intracranial hemorrhages had a delay more than 

7 days, or the symptom onset was unclear (Table 1). Of the 59 early-imaged (within 12 

hours) spontaneous intracranial hemorrhages, 32 contained only one type of hemorrhage, 22 

two types and 6 three types. Overall, of 118 images in which on-call radiologists reported 

hemorrhage, 49 included only one type of hemorrhage, 38 included two hemorrhage types 

and 10 images included three types (supplementary material – table 3). The most common 
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type was ICH (supplementary material – table 3). The dataset also included one acute 

subdural hemorrhage without known head trauma. 

Case-level performance 

The developed solution detected hemorrhages in 59 out of 59 patients (sensitivity 100.0 %) 

who were imaged within 12 hours from symptom onset (Table 1). The post processing step 

did not rule out any true positive cases. For 19 patients imaged most likely (not 100% certain) 

within 12 hours from symptom onset, the solution’s sensitivity was also 100 % (Table 1). 

Additional 18 patients were imaged 12 to 24 hours from the symptom onset. The sensitivity 

of identifying acute hemorrhages among this group was 77.8% [95% confidence interval 

(CI), 56.3 - 96.6 %] (Table I). The four missed cases included two small ICHs (one in right 

internal capsule with maximum diameter of 6 mm and one in right pontine region with 

maximum diameter of 10 mm) and two local SAHs (supplementary material – figures 1.1-

1.4). For patients imaged between 24 hours to 7 days, the sensitivity of the solution was 

71.4% [95% CI, 47.8 - 95.1 %]. The missed hemorrhage cases included one ICH (left sided 

thalamic with maximum diameter of 6 mm) and three local SAHs (supplementary material – 

figures 1.5-1.8). The sensitivity for hemorrhages that were imaged after 7 days from 

symptom onset or had unclear symptom onset time was 55.6% [95% CI, 23.1 - 88.0 %]. The 

missed hemorrhage cases included three ICHs (one resorbing left sided ICH near falx with 

maximum diameter of 5 mm hyperdense remnant remaining, one left sided frontal ICH with 

maximum diameter of 19 mm, and one right sided ICH in temporal region with maximum 

diameter of 29 mm) and one local SAH (supplementary material – figures 1.9-1.12). The 

sensitivity for all 118 cases of spontaneous primary intracranial hemorrhages was 89.8% 

[95% CI, 84.4 - 95.3 %].  

 

Cases missed clinically but identified by solution 
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The solution identified five spontaneous intracranial hemorrhages that were not reported in 

the initial on-call reports. Of these five cases, one was ICH, two were SAHs, and one was 

IVH. In one imaging study, the on-call radiologist initially reported that the head NCCT 

showed a meningioma. Later the report was revised and stated that the finding had 

hyperdense regions which suggested that the finding was an intracranial bleeding instead of a 

meningioma. In other cases, the presence of hemorrhage was afterwards reported in 

additional reports by senior radiologists, or the diagnosis was done by the emergency room 

clinicians. All identified hemorrhages are presented in the supplementary material 

(supplementary material – figures 2.1 - 2.5) 

 

Slice-level performance 

The overall slice-level sensitivity was 69.3 % [95% CI, 67.3 - 71.3 %] and slice-level 

specificity 99.6 % [95% CI, 99.6 - 99.6 %]. The slice-level false positive rate for all images 

in the dataset was 0.4 % [95% CI, 0.4 - 0.4 %]. In more detail, of the 7679 NCCTs reported 

negative for hemorrhage by the on-call radiologists, the solution predicted falsely positive 

1594 slices out of the 408 426 slices (Table 2). Most of the false positive pixel clusters 

pointed out blood in normal and highly vascularized anatomical structures, e.g. sagittal sinus, 

cerebellar tentorium, straight sinus, and falx cerebri (supplementary material – figures 3 and 

4). 

 

Discussion 

 

Our study presents a novel deep learning solution that can detect three different spontaneous 

intracranial hemorrhages with a relatively high sensitivity, low false positive rate, and a low 

processing time per an individual NCCT scan. The solution alarms about an intracranial 
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hemorrhage falsely in approximately every 10th true negative head NCCTs. Most of these 

false positive findings were present only in few slices and in same anatomical locations. 

Therefore, these small false positive pixel clusters could be relatively easily assessed as false 

positive findings by on-call radiologists or clinicians. Structures containing high vascularity 

or low pressure (slow flowing) blood, such as the choroid plexuses and intracranial sinuses, 

makes achieving a zero false positive rate a challenging task if a high sensitivity (not missing 

true acute hemorrhages) is a priority.  Most importantly, solutions that have been intended to 

assist on-call radiologists and clinicians in clinical diagnostics should be less than 100% 

accurate, as otherwise these solutions can be easily utilized as stand-alone solutions. This was 

not the aim of our study. When the accuracy drops due to false positive cases, not false 

negatives, the solution cannot impair the diagnostic accuracy, if used in a clinical setting.  

 

In the previous study 16  , we described a deep learning algorithm for detecting SAH from 

head NCCTs. Despite the algorithm having a high sensitivity for detecting intracranial blood, 

there was a relatively high number of false positive findings. These false positives were often 

other intracranial hemorrhage types and various other intracranial pathologies, such as 

tumors. In brief, even though the sensitivity in detecting blood in head NCCTs was high, the 

performance of the algorithm in detecting other hemorrhage types was limited and not 

validated. Due to these facts, algorithm ‘s clinical usability was considered poor, and 

therefore this new solution for all spontaneous intracranial hemorrhages was developed.  

The sensitivity of acute intracranial hemorrhage detection of our solution is essentially 

similar to the reported performance metrics of commercially available solutions 19–22. 

However, reliable comparisons between different solutions are difficult to conduct due to the 

lack of standardized comparison protocols and datasets. Although emergency head NCCTs 

have a high sensitivity for acute blood 8,9, misidentification of acute intracranial hemorrhage 
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still occurs in clinical settings. Due to potentially life-threating consequences, the false 

negative interpretations should be minimized.  Our solution successfully detected two cases 

of acute SAHs that were not reported in on-call reports. The missed cases, which were 

flagged correctly by our solution, further suggest that DL-based solutions could function as 

peer-readers in parallel with on-call radiologists, improve the diagnostic accuracy in clinical 

practice, and even save human lives. 

Our study has certain acknowledged limitations. First, the final number of true hemorrhage 

cases in the validation dataset can be considered low. However, the dataset represents a true 

consecutive patient cohort imaged during a 3-month long period in 10 different hospitals with 

a catchment area of around 1.7 million inhabitants. Second, the dataset was collected 

retrospectively and included hospitals from which the original training data was collected. 

However, we collected all training data prior to October 2021. Since the consecutive 

validation dataset was collected between October and December 2021, a direct data leak from 

training dataset to the validation dataset was not possible. Third, the validation dataset was 

collected from 10 different hospitals, but the validation was still internal. Therefore, the 

solution’s results cannot be generalized outside the study country. Currently, it is still 

challenging to perform external validations abroad, as very few hospitals have comprehensive 

datasets simulating real-world scenarios and patient cohorts. Moreover, very few hospitals 

have capabilities and required research permissions to conduct such validation studies. This is 

one of the major shortcomings in the field. Fourth, we did not have a possibility to assess our 

solution’s usefulness in the clinical workflow, as the solution is not an officially approved 

medical device. Fifth, as our aim was not to achieve 100% accuracy, which would increase 

the likelihood that human experts become replaced by autonomous stand-alone solutions in 

diagnostic settings, the solution’s performance metrics can perhaps be considered 

satisfactory. Despite the shortcomings, our study may also have a few strengths. U-Nets are 
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widely used for image segmentation tasks, and due to relatively low computational costs of 

the 2-dimensional U-Net architecture, the solution could be run in a local set up without 

requiring costly high-end GPUs or central processing units. In this sense, the solution would 

be scalable also for hospitals with limited internet connections or without access to modern 

cloud-computing services. Moreover, our study suggests that meta learning can be utilized in 

combining multiple models without increasing false positive rate. We are not aware of any 

similar solutions designed for clinical imaging diagnostics.  

 

Conclusions  

The presented novel solution detects acute (imaging delay <12 hours) spontaneous ICHs, 

IVHs and SAHs on head NCCTs with a high sensitivity. The described metamodel approach 

can ease the developing of similar combined solutions with multiple convolutional neural 

networks. If the results could at some point be externally validated, this solution might be 

helpful for on-call radiologists and clinicians particularly in ruling out potentially fatal 

intracranial hemorrhages in emergency setting. Even though the solution is not yet a proved 

medical device, it could already be used for research purposes and retrospective quality 

assessments.  
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Tables 

Table 1 - Case-Level Performance  

 TP TN FP FN Sensitivity % [95% CI] Specificity % [95% CI] FPR % [95% CI] NPV % [95% CI] PPV % [95% CI] 

All Scans 106 6873 806 12 89.8 % [ 84.4 - 95.3 %] 89.5 % [88.8 - 90.2 %] 10.5 % [9.8 - 11.2 %] 99.8 % [99.7 - 99.9 %] 11.6 % [9.5 - 13.7 %] 

Bleed confirmed < 12 hours 59   0 100 % [ 100 - 100 %]  N/A N/A N/A N/A 

Bleed presumably < 12 h 19   0 100 % [ 100 - 100 %] N/A N/A N/A N/A 

Bleed presumably <24 hours or 

confirmed 12- 24h 

13   4 76.5 % [ 56.3 - 96.6 %] N/A N/A N/A N/A 

Bleed 24 h - 7 days 10   4 71.4 % [ 47.8 - 95.1 %] N/A N/A N/A N/A 

Bleed > 7 days or onset time 

unclear 

5   4 55.6 % [ 23.1 - 88.0 %] N/A N/A N/A N/A 

Negative scans  6873 806  N/A 89.5 % [88.8 - 90.2 %] 10.5 % [9.8 - 11.2 %] 99.8 % [99.7 - 99.9 %] 11.6 % [9.5 - 13.7 %] 

 

TP = true positive, TN = true negative, FP = false positive, FN = false negative, FPR = false positive rate, NPV = negative predictive value, PPV 

= positive predictive value, N/A = not applicable 
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Table 2 - Slice-Level Performance  

 

 

TP = true positive, TN = true negative, FP = false positive, FN = false negative, FPR = false positive rate, NPV = negative predictive value, PPV 

= positive predictive value, N/A = not applicable 

 

  

 Slices TP TN FP FN Sensitivity % [95% CI] Specificity % [95% CI] FPR % [95% CI] NPV % [95% CI] PPV % [95% CI] Accuracy % [95% CI] 

Bleed confirmed < 12 hours 3068 788 1961 38 281 73.7 % [71.1 - 76.4 %] 98.1 % [97.5 - 98.7 %] 1.9 % [1.3 - 2.5 %] 87.5 % [86.1 - 88.8 %] 95.4 % [94.0 - 96.8 %] 89.6 % [88.5 - 90.7 %] 

Bleed presumably < 12 hours 1053 336 571 11 135 71.3 % [67.3 - 75.4 %] 98.1 % [97.0 - 99.2 %] 1.9 % [0.8 - 3.0 %] 80.9 % [78.0 - 83.8 %] 96.8 % [95.0 - 98.7 %] 86.1 % [84.0 - 88.2 %] 

Bleed presumably <24 hours 

or Confirmed 12- 24h 
872 134 673 1 64 67.7 % [61.2 - 74.2 %] 99.9 % [99.6 - 100.0 %] 0.1 % [0.0 - 0.4 %] 91.3 % [89.3 - 93.3 %] 99.3 % [97.8 - 100.0 %] 92.5 % [90.8 - 94.3 %] 

Bleed 24h - 7 days 739 98 549 10 82 54.4 % [47.2 - 61.7 %] 98.2 % [97.1 - 99.3 %] 1.8 % [0.7 - 2.9 %] 87.0 % [84.4 - 89.6 %] 90.7 % [85.3 - 96.2 %] 87.6 % [85.2 - 89.9 %] 

Bleed > 7 days or onset time 

unclear 
470 39 375 0 56 41.1 % [31.2 - 50.9 %] 100.0 % [100.0 - 100.0 %] 0.0 % [0.0 - 0.0 %] 87.0 % [83.8 - 90.2 %] 100.0 % [100.0 - 100.0 %] 88.1 % [85.2 - 91.0 %] 

False Positive  
43752 0 42158 1594 0 N/A 96.4 % [96.2 - 96.5 %] 3.6 % [3.5 - 3.8 %] N/A N/A 96.4 % [96.2 - 96.5 %] 

True Negative  

366268 0 366268 0 0 N/A 100.0 % [100.0 - 100.0 %] 0.0 % [0.0 - 0.0 %] N/A N/A 100.0 % [100.0 - 100.0 %] 

All 416222 1395 412555 1654 618 69.3 % [67.3 - 71.3 %] 99.6 % [99.6 - 99.6 %] 0.4 % [0.4 - 0.4 %] 99.9 % [99.8 - 99.9 %] 45.8 % [44.0 - 47.5 %] 99.5 % [99.4 - 99.5 %] 
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Figures and Figure Legends 

Figure 1 – True Positive Detections of Hemorrhage and 

Segmentations 

True positive detections and corresponding segmentations of A) ICH, B) IVH and C) SAH. 

The left sided image in each panel shows the original CT scan slice and right sided image 

displays the DL solution’s detection of hemorrhage in the slice (purple color showing 

detected hemorrhage).  
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Figure 2 – Dataset Selection Flow Chart 

We Reviewed all 8494 on-call report for the NCCTs. The final dataset included 118 NCCTs 

with spontaneous hemorrhage and 7679 NCCTs which were reported negative for 

hemorrhage in the on-call report. 
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Figure 3 – Deep Learning Solution’s Run Times 

Histogram of inference times for scans. Median run time for single scan was 6.7 seconds, 95 

% of the scans could be analyzed within 10.6 seconds. The run time included processing of 

all slices in 3 mm axial reformat scan. 
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Figure 4 – Deep Learning Solution’s Sensitivity 

Sensitivity of the deep learning solution for detecting hemorrhages at different time point 

groups. The shaded are area in the plot represents the 95 % confidence interval. 
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