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Background and Significance: Positron Emission Tomography (PET) using 
fluorodeoxyglucose (FDG-PET) is a standard imaging modality for detecting areas of 
hypometabolism associated with the seizure onset zone (SOZ) in temporal lobe epilepsy 
(TLE). However, FDG-PET is costly and involves the use of a radioactive tracer. Arterial 
Spin Labeling (ASL) offers an MRI-based quantification of cerebral blood flow (CBF) that 
could also help localize the SOZ, but its performance in doing so, relative to FDG-PET, 
is limited. In this study, we seek to improve ASL’s diagnostic performance by developing 
a deep learning framework for synthesizing FDG-PET-like images from ASL and 
structural MRI inputs. 
 
Methods: We included 68 epilepsy patients, out of which 36 had well lateralized TLE. We 
compared the coupling between FDG-PET and ASL CBF values in different brain regions, 
as well as the asymmetry of these values across the brain. We additionally assessed 
each modality’s ability to lateralize the SOZ across brain regions. Using our paired PET-
ASL data, we developed FlowGAN, a generative adversarial neural network (GAN) that 
synthesizes PET-like images from ASL and T1-weighted MRI inputs. We tested our 
synthetic PET images against the actual PET images of subjects to assess their ability to 
reproduce clinically meaningful hypometabolism and asymmetries in TLE. 
 
Results: We found variable coupling between PET and ASL CBF values across brain 
regions. PET and ASL had high coupling in neocortical temporal and frontal brain regions 
(Spearman’s r > 0.30, p < 0.05) but low coupling in mesial temporal structures 
(Spearman’s r < 0.30, p > 0.05). Both whole brain PET and ASL CBF asymmetry values 
provided good separability between left and right TLE subjects, but PET (AUC = 0.96, 
95% CI: [0.88, 1.00]) outperformed ASL (AUC = 0.81; 95% CI: [0.65, 0.96]). FlowGAN-
generated images demonstrated high structural similarity to actual PET images (SSIM = 
0.85). Globally, asymmetry values were better correlated between synthetic PET and 
original PET than between ASL CBF and original PET, with a mean correlation increase 
of 0.15 (95% CI: [0.07, 0.24], p<0.001, Cohen’s d = 0.91). Furthermore, regions that had 
poor ASL-PET correlation (e.g. mesial temporal structures) showed the greatest 
improvement with synthetic PET images. 
 
Conclusions: FlowGAN improves ASL's diagnostic performance, generating synthetic 
PET images that closely mimic actual FDG-PET in depicting hypometabolism associated 
with TLE. This approach could improve non-invasive SOZ localization, offering a 
promising tool for epilepsy presurgical assessment. It potentially broadens the 
applicability of ASL in clinical practice and could reduce reliance on FDG-PET for epilepsy 
and other neurological disorders. 
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Introduction 

Temporal Lobe Epilepsy (TLE) is the most common type of epilepsy, presenting with 

seizures that can be localized to the temporal lobe via semiology and 

electroencephalogram (EEG) monitoring1. With nearly 1 in 3 patients with TLE having 

intractable seizures, surgical resection of the seizure-onset zone (SOZ) remains a 

common therapeutic intervention2,3. The success of surgical treatments, however, largely 

depends on accurate presurgical localization and lateralization of the SOZ. Neuroimaging 

techniques are essential during the presurgical assessment period. Current standard of 

care involves acquiring both MRI, to evaluate for causative structural lesions, and 

Positron Emission Tomography (PET) using fluorodeoxyglucose (FDG-PET), to detect 

areas of interictal hypometabolism associated with the SOZ4,5. However, despite its 

effectiveness, FDG-PET has limitations, including high cost and exposure to ionizing 

radiation, which may not be suitable for all patients6,7. 

 

Arterial Spin Labeling (ASL) MRI offers a non-invasive and accessible complement to 

PET. ASL measures regional cerebral blood flow (CBF), which is normally coupled to 

regional cerebral metabolism8. ASL MRI demonstrates hypoperfusion (or hyperperfusion 

in certain instances) in regions associated with the SOZ9–12. Prior studies have compared 

the effectiveness of ASL hypoperfusion to that of PET hypometabolism as a biomarker 

for neurological disorders13,14, including epilepsy15–18. While some studies demonstrate 

comparable performance between PET and ASL for SOZ localization15,16, others show 

that PET still outperforms ASL17. An ability to approximate FDG-PET’s diagnostic 
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performance using ASL, which can readily be acquired as part of a routine brain MRI 

protocol, would greatly extend the utility of MRI in the diagnosis and management of TLE.  

 

To begin to address this need, our study introduces FlowGAN, a novel deep learning 

framework designed to enhance the diagnostic utility of ASL imaging in TLE, using the 

framework we established with LowGAN19, a low to high-field image translation model. 

FlowGAN improves on prior MR-to-PET algorithms20,21 by leveraging both perfusion 

information (ASL CBF maps) and structural information (T1-weighted MRI) to synthesize 

images that closely resemble those obtained from FDG-PET. By translating ASL and T1w 

inputs into PET-like images, FlowGAN provides a framework that could improve the 

clinical utility of ASL. This approach combines the accessibility and safety of ASL with the 

diagnostic superiority of PET, offering a promising tool for non-invasive and cost-effective 

localization of the SOZ in TLE.  

 

In this study, we first validate the differences in regional coupling between metabolism 

and perfusion across brain regions and investigate how each can help lateralize the SOZ 

in epilepsy. We then introduce and test whether our image translation framework can 

successfully generate PET-like images from T1w and ASL inputs. Finally, we consider 

the feasibility of this image translation, and subsequently demonstrate the accuracy of 

FlowGAN-generated images in preserving and recovering critical hypometabolism 

asymmetries associated with TLE not originally apparent in the T1w and ASL inputs. 

 

Methods 
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Study Design and Subject Selection 

This study was designed as a retrospective analysis of imaging data from patients 

diagnosed with epilepsy from the Penn Epilepsy Center at the University of Pennsylvania. 

Inclusion criteria were: (1) a confirmed diagnosis of epilepsy, (2) availability of T1w and 

ASL MRI sequences, as well as FDG-PET, and (3) no history of neurological disorders 

other than epilepsy. The FDG-PET scans were acquired as part of the standard of care 

presurgical evaluation of each patient, whereas the ASL and T1w MRI sequences were 

from a research-specific protocol. We identified 68 subjects who fit these criteria with scan 

dates between June 2015 and January 2023. Demographic information is summarized in 

Table 1. Out of the 68 identified subjects, 36 were deemed to have lateralized TLE as per 

the surgical conference hypothesis. For the comparison of PET and ASL contrasts, only 

the 36 well lateralized TLE subjects were used. 19 of these well lateralized TLE subjects 

were selected as the test set for our deep learning architecture, FlowGAN, while the 

remaining 50 subjects of the entire epilepsy cohort were used as the training set. The 

Institutional Review Board of the University of Pennsylvania gave ethical approval for this 

work, and all subjects provided informed consent. 

 

Imaging Data Acquisition 

FDG-PET Imaging 

Participants received interictal [F-18]FDG-PET/CT imaging as part of their presurgical 

evaluation. Scanning was performed on American College of Radiology accredited 

PET/CT instruments in accordance with Society of Nuclear Medicine and Molecular 
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Imaging guideines22 (mean 10.3+/-0.7 mCi dose, mean uptake time 36.2 +/6.1 min, 10 

minutes scanning duration). 

 

MR Imaging 

Arterial Spin Labeling (ASL) imaging was performed using a 3T Siemens PrismaFit 

scanner. The ASL sequence employed was a balanced 3D Pseudo-Continuous ASL 

(PCASL) with the following parameters: labeling duration of 1.8 seconds, post-labeling 

delay (PLD) of 1.8 seconds, 90% background suppression, and a 1D-accelerated single-

shot stack-of-spirals readout with a nominal 3.75 mm isotropic resolution23. For 

quantitative analysis, the labeling efficiency was estimated at 0.72, and a separate M0 

scan was acquired as a control for cerebral blood flow (CBF) quantification. High-

resolution T1-weighted images, with a sagittal, 208-slice magnetization-prepared rapid 

gradient-echo (MP-RAGE) sequence, TE/TR = 2.24/2400 ms, with a 0.8 mm isotropic 

voxel size were also acquired in all subjects. 

 

Image Preprocessing 

A detailed overview of the image preprocessing pipeline is shown in Figure 1. FreeSurfer 

was used to extract each subject’s Desikan-Killiany-Tourville (DKT) brain parcellation 

using the T1w images as input24. ASL data were preprocessed using ASLprep25 

(Supplementary Methods), which performed motion correction, cerebral blood flow 

(CBF) estimation, and final registration to the native T1w images, which were also 

preprocessed with ASLprep. Computed CBF maps were then smoothed with a Gaussian 

kernel of σ=3 to enhance signal quality. For the FDG-PET data, we registered and 
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resliced PET images to the native T1w images of each subject using ANTs affine 

registration26,27. Both PET and ASL images were visually inspected for quality control.  

 

Regional PET SUVR and ASL CBF values 

Using the subject-specific DKT parcellations, we extracted standardized uptake values 

(SUV) and CBF values from FDG-PET and ASL CBF maps respectively, for each cortical 

and subcortical brain region in the atlas. To do so, the mean contrast within each ROI 

was calculated. We generated FDG-PET standardized uptake value ratios (SUVR) by 

normalizing the ROI values, using the putamen as the control region. When comparing 

raw SUVR with CBF values (e.g. not asymmetry), the CBF values were also normalized 

relative to the putamen (rCBF)14. 

 

Regional PET SUV and ASL CBF asymmetry 

In addition to raw SUVR and rCBF values, we also estimated the left-right asymmetries 

of these values, representing inter-hemispheric hypometabolism and hypoperfusion 

respectively, both of which are key biomarkers known to be associated with the SOZ. We 

estimated the asymmetry index (AI) between left and right brain regions as: AI = (left-

right)/(left+right). Therefore, under this notation, a negative asymmetry in SUV/CBF would 

correspond to left sided hypometabolism/hypoperfusion, and a positive asymmetry would 

correspond to right sided hypometabolism/hypoperfusion.  

 

FlowGAN Training and Validation 
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We recently developed LowGAN, a low-field to high-field image translation generative 

adversarial network (GAN)22, which successfully generated 3T-like brain MRI images 

from T1w, T2w, and FLAIR inputs acquired on a 64mT scanner. Using this network 

architecture as a basis, we developed FlowGAN (Figure 4), a GAN for PET image 

synthesis from ASL and T1w inputs. FlowGAN consists of 3 parallel 2D pix2pix 

networks23, each of which processes input images from a different imaging plane (i.e. 

axial, coronal, and sagittal). Each parallel layer has three input channels, which consist 

of the T1w images and ASL-derived CBF maps smoothed with a Gaussian kernel of σ=1, 

and σ=3. The lower σ kernel is included to preserve finer perfusion features that might be 

removed by the larger kernel. The 2D outputs of each parallel pix2pix network are stacked 

into a 3D volume. In the original LowGAN implementation, a 3D U-Net was subsequently 

used to combine the 3 output volumes. However, because PET images are inherently 

smoother than structural images, we opted for using averaging and smoothing instead. 

First, the 3 output volumes were combined into a single volume by performing a voxel-

wise averaging. Then, the final averaged image was smoothed using anisotropic diffusion 

with a conduction coefficient (kappa) of 80 and gamma of 0.124,25, generating the final 

synthetic PET. To ensure that the final synthetic image was in the same space as the 

T1w inputs, a final rigid registration was applied to the model outputs, as small shifts are 

introduced by the architecture due to cropping and reshaping during model inference. As 

with the original PET images, the SUVR and asymmetry values across DKT brain regions 

were estimated using the FreeSurfer parcellations from the T1w inputs in the FlowGAN 

outputs. 
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The network was trained for 100 epochs with a batch size of 2, using the same set of 

hyperparameters as LowGAN22, on a subset of 50 epilepsy subjects. The trained model 

was then validated on a left-out subset of 19 subjects with well lateralized TLE.  

 

Statistical Analysis 

Correlations were estimated with Spearman's rank correlation coefficients, and 

comparisons between two metrics for the same subset of subjects were performed using 

paired two-tailed t-tests unless otherwise specified. Effect sizes were estimated using 

Cohen’s d, and statistical significance was defined at p<0.05. For all analyses, we 

adjusted the p-values for multiple comparisons across brain regions using the Benjamini-

Hochberg False Discovery Rate (FDR) correction (pFDR). 

 

Comparison of PET hypometabolism and ASL hypoperfusion in temporal lobe epilepsy 

 

We analyzed the relationships between PET-derived SUVR, ASL-derived rCBF, and their 

asymmetries across various brain regions. To assess the coupling between metabolism 

and perfusion as measured with these two modalities, we calculated Spearman's rank 

correlation coefficients to determine the statistical dependencies (coupling) between PET 

SUVR and ASL rCBF within each parcel of the Desikan-Killiany-Tourville (DKT) atlas. 

Additionally, we quantified the asymmetry index for PET SUV and ASL CBF across left 

and right brain regions, and subsequently computed correlations between these indices.  
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We used the area under the ROC curve (ROC-AUC) to assess the capacity of PET SUV 

and ASL CBF asymmetries to lateralize TLE. Note that we did not create a classifier, but 

instead used the asymmetry values themselves as inputs to the ROC-AUC analysis. We 

calculated the ROC-AUC values for the brain regions in the DKT atlas, with higher values 

indicating enhanced discriminative ability between left and right TLE. Comparisons 

between ROC-AUC values, as well as estimation of their confidence interval, were done 

using DeLong’s test26. We also performed k-means clustering to classify patients based 

on regional asymmetry in PET SUV and ASL CBF across all brain regions combined, 

measuring the accuracy of features derived from each modality in distinguishing between 

left and right TLE. Finally, we conducted Principal Component Analysis (PCA) on the 

features from the k-means models, utilizing the first principal component for an additional 

ROC-AUC analysis to determine the separability of TLE types across all brain features. 

 

Assessment of FlowGAN outputs 

We employed the Structural Similarity Index (SSIM) to compare synthetic PET images 

generated by FlowGAN with actual PET images. Furthermore, we calculated the 

Spearman correlation between original and synthetic PET images, as well as between 

original PET and ASL CBF images, across DKT brain regions to evaluate the fidelity of 

FlowGAN in replicating PET image patterns. We also introduced a congruency metric to 

assess the matching of hypometabolism/hypoperfusion patterns between PET, synthetic 

PET and ASL modalities. This metric calculated the proportion of samples exhibiting 

matching asymmetry between the two modalities.  
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Results 

 

The coupling between PET SUVR and ASL CBF differs across brain regions 

Using the subject specific Desikan-Killiany-Tourville (DKT) atlas parcellations derived 

from FreeSurfer, we quantified the PET-derived SUVR and the ASL-derived rCBF (Figure 

1) for each subject. We found that the coupling between metabolism (SUVR) and 

perfusion (rCBF) across subjects in each DKT parcel was highly variable (Figure 2A, 

Supplementary Table 1). The highest coupling was found in the left superior parietal 

gyrus (Spearman’s r = 0.50, pFDR < 0.001), but most of the remaining regions of significant 

coupling were found in the right hemisphere, including the right inferior gyrus (Spearman’s 

r = 0.32, pFDR = 0.033) and the middle temporal gyrus (Spearman’s r = 0.32, pFDR = 0.033), 

as well as the right rostral gyrus (Spearman’s r = 0.45, pFDR = 0.003) and the caudal 

middle frontal gyrus (Spearman’s r = 0.41, pFDR = 0.006). Except for the right caudate and 

accumbens area, no other subcortical structure had a significant coupling between CBF 

and SUVR. Notably, the hippocampi (left hippocampus: Spearman’s r = -0.14, pFDR = 

0.380, right hippocampus: Spearman’s r = 0.08, pFDR = 0.610) and the amygdalae (left 

amygdala: Spearman’s r = -0.01, pFDR = 0.920, right amygdala: Spearman’s r = 0.04, pFDR 

= 0.817), key structures for the diagnosis of epilepsy, had very low coupling values. A 

sorted list of correlation values across brain structures is presented in Supplementary 

Table 1. These findings demonstrate a regionally dependent pattern of coupling between 

PET SUVR and ASL rCBF, with high coupling in frontoparietal and neocortical temporal 

lobe regions and notably low coupling in mesial temporal structures. 
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Asymmetry values are better coupled between PET and ASL 

We quantified the asymmetry index between left and right DKT parcels for both PET SUV 

and ASL CBF. We then determined the correlation between this asymmetry measured 

for each modality (Figure 2B; Supplementary Table 2). Overall, the asymmetry 

correlations across regions were larger than the correlations for SUVR and rCBF values 

(asymmetry correlations: 0.33±0.18, 95% CI: [0.27, 0.39]; SUVR and rCBF correlations: 

0.18±0.13, 95% CI: [0.15, 0.21]; p<0.001, Cohen’s d = 0.96), with the largest correlation 

in the lateral occipital gyrus (Spearman’s r = 0.64, pFDR <0.001) followed by the medial 

orbitofrontal cortex (Spearman’s r = 0.57, pFDR = 0.002), and the middle (Spearman’s r = 

0.57, pFDR = 0.002) and inferior temporal gyri (Spearman’s r = 0.57, pFDR = 0.002). The 

other significant correlations were located predominantly in the temporal and frontal 

lobes. For subcortical structures, the asymmetry correlation was higher than for raw 

SUVR and rCBF values, but the thalamus was the only subcortical structure with a 

significant correlation (Spearman’s r = 0.43, pFDR = 0.02). A sorted list of asymmetry 

correlation values is presented in Supplementary Table 2. These findings demonstrate 

a higher coupling between the left-right asymmetry of CBF and SUV asymmetry than 

between raw SUVR and rCBF values. This is relevant for lateralized epilepsy, as the 

asymmetry between left hemisphere and right hemisphere PET contrast is commonly 

used for non-invasively lateralizing the SOZ4,5,28–30, and these findings demonstrate that 

in certain brain regions, ASL-derived CBF can approximate this asymmetry. 

 

Both PET and ASL quantified asymmetries can lateralize TLE 
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We quantified whether SUV and CBF asymmetries could distinguish left and right TLE 

across brain regions. We used the area under the receiver operating characteristics curve 

(ROC-AUC) of the regional asymmetry as a measure of separability between left and right 

TLE, with larger ROC-AUC values corresponding to better separability. We found that 

asymmetries across brain regions have different abilities to lateralize TLE depending on 

whether PET or ASL is used. For PET SUV asymmetry, the top 2 performing regions were 

the inferior temporal gyrus (AUC = 0.97, 95% CI: [0.90, 1.00]), and the middle temporal 

gyrus (AUC = 0.95, 95% CI: [0.85, 1.00]), for which the ASL CBF asymmetry also had 

high AUCs (inferior temporal gyrus: AUC = 0.83, 95% CI: [0.67, 0.98]; inferior temporal 

gyrus: AUC = 0.96, 95% CI: [0.71, 0.99]) (Figure 3A). As for the mesial temporal 

structures, both the amygdala and hippocampus had high lateralizing ability for PET SUV 

asymmetries (amygdala: AUC = 0.87, 95% CI: [0.73, 1.00]; hippocampus: AUC = 0.93, 

95% CI: [0.82, 1.00]), but not for ASL CBF (amygdala: AUC = 0.55, 95% CI: [0.34, 0.74]; 

hippocampus: AUC = 0.70, 95% CI: [0.51, 0.88]). In fact, the largest difference in AUCs 

between modalities (Figure 3C) was in the amygdala (AUC difference = 0.33, DeLong’s 

test pFDR = 0.019). A list of TLE lateralization AUCs for PET and ASL derived asymmetries, 

as well as their difference, is presented in Supplementary Table 3. These findings 

demonstrate comparable lateralization performance in neocortical temporal regions 

between PET and ASL asymmetries, but this performance drops significantly for ASL in 

mesial temporal structures. 

 

We also clustered the subjects using the asymmetry across all brain regions as features 

in the same model. We created two k-means clustering models, one that clustered 
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patients based on ASL CBF regional asymmetry (Figure 3D) and one that clustered 

patients based on PET SUV regional asymmetry (Figure 3E). The accuracy of the ASL-

based asymmetry clustering was 66% and that of the PET-based asymmetry classifier 

was 86%. We then performed principal component analysis on the features of both 

classifiers and used the first principal component as an input to a ROC-AUC analysis and 

found that the separability of left and right TLE in the space of the first principal component 

was high for both the PET and the ASL features. Separability was higher for the PET 

features (AUC = 0.96, 95% CI: [0.88, 1.00]) than for the ASL features (AUC = 0.81; 95% 

CI: [0.65, 0.96]), but the difference between the two was not statistically significant (AUC 

difference = 0.15, DeLong’s test p = 0.067). Overall, PET provides a better avenue for 

lateralizing the SOZ than ASL does, however, ASL CBF hypoperfusion is still capable of 

lateralizing TLE.  

 

FlowGAN successfully generates PET-like images from ASL and T1w inputs 

The results describing FlowGAN outputs correspond to the model inference run on the 

held-out test-set of 19 subjects with well lateralized TLE. Visually, the resulting synthetic 

PET images are very similar to the actual PET images (Figure 4). As seen in Figure 5A 

and Figure 5B, the FlowGAN output reproduces the hypometabolism, even when the 

input T1w and CBF maps do not have clear visual abnormality. Quantitatively, the 

structural similarity (SSIM) between FlowGAN outputs and actual PET images for the test 

set was 0.85 (95% CI: [0.83, 0.87]), whereas between ASL CBF maps and actual PET 

images it was significantly lower at 0.26 (95% CI: [0.21, 0.31]), with a difference in SSIM 

of 0.59 (95% CI: [0.54, 0.64]; p < 0.001). We additionally quantified the regional 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2024. ; https://doi.org/10.1101/2024.05.28.24308027doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.28.24308027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

correlation between the raw synthetic PET SUVR and original PET SUVR contrasts and 

compared them to the correlation between the raw original PET SUVR and ASL rCBF 

contrasts (Figure 6A). The average Spearman correlation across DKT brain regions for 

all test set subjects between original and synthetic PET SUVR was 0.89 (95% CI: [0.86, 

0.92]), significantly higher than between original PET SUVR and ASL rCBF, where it was 

0.57 (95% CI: [0.50, 0.64]), with a correlation difference between the two of 0.32 (95% 

CI: [0.25, 0.38], p<0.001, Cohen’s d = 2.29). These findings demonstrate that FlowGAN 

generates outputs images that are PET-like, and that preserve the general patterns of 

PET contrast across the brain. 

 

FlowGAN recovers hypometabolism in regions with low PET-ASL coupling 

We hypothesized that FlowGAN could help recover asymmetries in metabolism in brain 

regions where ASL alone is not capable of detecting asymmetries compared to PET, as 

demonstrated in the previous sections. We compared the Spearman correlation of 

asymmetry indices across brain regions between original PET SUV and synthetic PET 

SUV, as well as between original PET SUV and ASL CBF (Figure 6B). As with raw 

contrast correlations, the regional asymmetry correlations between original and synthetic 

PET were significantly higher (0.39, 95% CI: [0.32, 0.46]), than between original PET and 

ASL (0.24, 95% CI: [0.16, 0.31]), with a mean correlation difference of 0.15 (95% CI: 

[0.07, 0.24], p<0.001, Cohen’s d = 0.91). Out of the 19 test set subjects, the correlation 

between original and synthetic PET was higher in 17. These findings are evidence that 

generally across brain regions, FlowGAN can improve the correlation between 

metabolism and perfusion left-right asymmetry originally present between PET and ASL. 
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Looking at the correlation in asymmetry across subjects for any given region, we can 

better understand the regions where FlowGAN provides the greatest benefit relative to 

ASL (Figure 6C). Comparing the asymmetry correlation across subjects each region, we 

find that FlowGAN has higher correlation (defined as a correlation higher than 1 standard 

deviation of the mean difference in correlations across all regions between original PET-

synthetic PET and original PET-ASL) in 14/37 regions, whereas ASL has higher 

correlation in 5/37 regions, with no improvement above 1 standard deviation for 18/37 

regions. Notably, several mesial temporal structures which we demonstrated had poor 

coupling between PET and ASL, now have significantly improved coupling. For example, 

the hippocampus (correlation improvement = 0.27), insula (correlation improvement = 

0.34) and parahippocampal gyrus (correlation improvement = 0.50), all had improved 

correlations. Among the few correlations that decreased in the synthetic PET relative to 

the ASL, we have the thalamus (correlation decrease = -0.74). A list of asymmetry 

correlation values between original PET and ASL, original and synthetic PET, and their 

difference, for the test set subjects is presented in Supplementary Table 4. 

 

In addition to comparing the asymmetry correlations, we also compared the matching of 

hypometabolism/hypoperfusion between modalities. For this analysis, if one modality had 

a positive asymmetry (left>right) and the other modality also had a positive asymmetry, 

that is considered a match between modalities for a given subject. Similarly for negative 

hypometabolism. We defined the congruency between the two modalities as the number 

of samples with matching positive or negative asymmetry, divided by the total number of 
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samples. This is different from comparing asymmetry correlations, as two brain regions 

can be correlated, but still have mismatches in asymmetry due to variance, and this 

comparison better approximates what is done in clinical practice. As an example (Figure 

6D), we show how the congruency increases in the hippocampus when synthetic PET is 

used, compared to when ASL is used, going from 42% congruency to 68% congruency 

with the original PET hypometabolism. This improvement in congruency, as with the 

correlation, was primarily in regions where the original ASL and PET images had poor 

correlation such as mesial temporal structures (Figure 6D; Supplementary Table 5).  

 

Discussion 

In this study we demonstrate that FDG-PET metabolism and ASL CBF have a distinct 

pattern of coupling across cortical and subcortical brain regions. This coupling, both of 

raw values as well as left-right asymmetries, appears stronger in the neocortical temporal 

and frontal regions, with a much lower coupling in subcortical structures, where FDG-PET 

exhibits strong hypometabolism ipsilateral to the SOZ. These differences in coupling 

across key epileptogenic regions, like the mesial temporal structures, limit the applicability 

of ASL hypoperfusion as a biomarker for localization of the SOZ. As a solution, we 

introduced FlowGAN, an image translation framework that generates PET-like images 

from T1w and ASL CBF maps. Our study demonstrates that in regions where ASL was 

previously incapable of recovering meaningful asymmetries (e.g. the hippocampus), 

FlowGAN outputs provide meaningful asymmetries that are consistent with the original 

PET images.  
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The differences between ASL and PET coupling across the brain could be attributed to 

several factors. First, it is possible that physiologic neurovascular coupling differences in 

these brain regions lead to increases in brain perfusion that are not matched by 

concordant increases in metabolism31. Second, this analysis was done in subjects with 

epilepsy, which might have aberrant neurovascular coupling in the first place32–34. Our 

population, which was biased towards left-sided TLE, mostly showed significant coupling 

in the right hemisphere, potentially suggesting a pathological decrease in neurovascular 

coupling in the left hemisphere and subcortical regions due to influence from the SOZ. It 

is possible that this decrease in neurovascular coupling can itself be a marker of 

epileptogenicity, and future work could emphasize studying this. A third and final reason 

for the low PET-ASL coupling could be due to limitations in the ASL acquisition protocol. 

In particular, the lengthy single-shot readout used to acquire the ASL images causes 

considerable blurring in the slice direction (superior-inferior axis) that reduces CBF 

accuracy in small regions. Additionally, the ASL protocol used balanced 

pseudocontinuous labeling, which is less robust to magnetic field inhomogeneities than 

the unbalanced approach35. 

 

Our results demonstrate that FlowGAN synthetic PET outputs not only accurately 

reproduce whole brain patterns of PET contrast, but also improve the hypometabolism 

correlation in regions where ASL had low coupling. It is possible that this improvement 

results from the T1w images providing additional structural information that ASL cannot 

resolve. Because metabolism is a function of the amount of neural tissue and blood flow, 

the addition of morphometric data may have allowed FlowGAN to more closely 
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approximate PET in areas with poorer ASL resolution. Importantly, FlowGAN was able to 

preserve the general patterns across the brain and our biomarker of interest through the 

image translation process. Our results have implications beyond epilepsy and could 

suggest utility in disorders such as Alzheimer’s disease and other forms of dementia13. 

Future work will assess whether transfer learning, by training FlowGAN with an epilepsy 

cohort and then testing on MCI and Alzheimer’s disease subjects (and vice-versa), allows 

preservation of the FDG-PET hypometabolism commonly seen in these neurological 

conditions. 

 

The results from this study also serve as validation of the generalizability of the image 

translation architecture proposed by our prior LowGAN work19. While the original 

architecture was developed for low-field to high-field brain MRI translation, the results of 

our FlowGAN implementation demonstrate successful image translation in a different 

domain (i.e. PET synthesis). This supports the notion that this image translation 

framework is readily adaptable for different medical imaging tasks.  

 

Our study has certain limitations. In this proof-of-concept work, we demonstrate that 

FlowGAN can recover disease-relevant hypometabolism from ASL and T1w inputs. 

However, this does not directly prove the clinical utility of our approach. Future work could 

compare traditional PET imaging and FlowGAN-enhanced ASL imaging during 

presurgical evaluation for TLE, ideally using an updated ASL protocol with unbalanced 

labeling and a multi-shot readout, with the goal of demonstrating that synthesized PET-
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like images can effectively localize the SOZ. Successful validation of the diagnostic 

potential of FlowGAN-enhanced ASL would provide an alternative modality to FDG-PET.  

 

Conclusion 

FlowGAN brings ASL closer to FDG-PET's diagnostic performance, generating synthetic 

PET images that mimic actual PET in depicting hypometabolism associated with TLE. 

This approach could improve the non-invasive localization of the SOZ, offering a 

promising tool for presurgical assessment of epilepsy patients and potentially broadening 

the applicability of ASL in clinical practice.  

 

Data Availability Statement 

Upon publication of our manuscript, we will release our GitHub repository with code to 

train FlowGAN, as well as the pre-trained weights used in this manuscript, such that other 

users can readily perform image translation from ASL and T1w to FDG-PET. We will also 

release the code used to generate the figures and the analysis described in this 

manuscript. 
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Table 1 – Subject Demographics: Demographic and clinical characteristics for the entire 
cohort and the lateralized temporal lobe epilepsy only cohort. Epilepsy location - Lobar 
location of the seizure-onset zone. MTS/HS – Subjects with mesial temporal 
sclerosis/hippocampal sclerosis. Laterality - Seizure-onset zone lateralization as 
determined by surgical conference. Surgical outcome – Engel seizure outcome score. 
TLE – Temporal lobe epilepsy. 
 

Subject Demographics 

Characteristic Group 

 All Epilepsy 
Lateralized 

TLE 

Number of Subjects 68 36 

Age 37±12 40±12 

Gender (female) 35 20 

   

Epilepsy location -  

Temporal 52 36 

Frontal 4 - 

Parietal 2 - 

Other/Unknown 10 - 

MTS/HS 19 12 

Laterality -  

Left 33 23 

Right 19 13 

Bilateral 10 - 

Unknown 5 - 
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Figures: 
 

 
 
Figure 1 – Image processing pipeline: Panel A. demonstrates the imaging pipeline 
used to pre-process the PET and ASL data for each subject. ASL data was preprocessed 
with ASLprep which performed cerebral blood flow (CBF) estimation and T1w MRI co-
registration of the resulting CBF map. FDG-PET images were co-registered to the T1w 
image of each subject as well. Using FreeSurfer, Desikan-Killiany-Tourville atlas 
parcellations were extracted from each subject’s T1w image, and the corresponding PET 
SUV and ASL CBF values within each of these parcels was estimated. Panel B. shows 
the PET SUV and ASL CBF (Gaussian smoothed with σ=3) maps for the same subject. 
Red arrow points to a region of congruent hypometabolism and hypoperfusion.  
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Figure 2 – SUVR and CBF raw and asymmetry regional correlations: Panel A. shows 
the Spearman rank correlation between PET SUVR and ASL CBF across subjects for 
each DKT brain region. Panel B. (left) shows the Spearman rank correlation between 
PET SUV and ASL CBF left-right asymmetry across subjects for each DKT brain region; 
(middle) shows the asymmetry scatterplot between PET and ASL asymmetry values for 
the inferior temporal gyrus parcel (high correlation between PET and ASL); (right) shows 
the asymmetry scatterplot between PET and ASL asymmetry values for the precuneus 
parcel (low correlation between PET and ASL). In the scatterplots, each dot represents a 
subject, and left TLE and right TLE subjects are shown in different colors. Dashed lines 
represent zero asymmetry. 
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Figure 3 – Comparison of SOZ lateralization between PET and ASL: Panel A. shows 
the asymmetry scatterplot between PET and ASL asymmetry values as well as the 
corresponding ROC for separating left TLE from right TLE using PET or ASL asymmetry 
in the (top) inferior temporal gyrus and (bottom) middle temporal gyrus. Panel B. shows 
the same but in the amygdala (top) and hippocampus (bottom). In the scatterplots, each 
dot represents a subject, and left TLE and right TLE subjects are shown in different colors. 
Dashed lines represent zero asymmetry. Panel C. shows the difference in the area under 
the ROC curve between PET and ASL asymmetry across brain regions. Panel D. shows 
a scatterplot of the first two principal components generated by the ASL CBF asymmetry 
values across all brain regions, with (top) each subject colored according to their cluster 
assignment after k-means clustering, and (middle) each subject colored according to their 
epilepsy laterality. The ROC curve at the bottom shows the separability between left and 
right TLE based on the values of the first principal component. Panel E. shows the same 
as D. but for the PET SUV asymmetry values. A.I. asymmetry index. 
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Figure 4 – FlowGAN overview and representative test subject output: Panel A. 
shows an overview of the FlowGAN architecture, with axial, sagittal, and coronal inputs 
into 3 parallel pix2pix networks that are eventually combined through averaging and 
diffusion smoothing. Panel B. shows the original PET as well as the corresponding 
synthetic PET across all three imaging planes for the same subject. 
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Figure 5 – FlowGAN outputs for left and right TLE example test set subjects: Three 
co-registered inputs to FlowGAN as well as the corresponding synthetic PET output, and 
the actual PET image for a left TLE (A.) and a right TLE (B.) subject. In both cases, there 
is a region of hypometabolism in the temporal lobe (red arrow) consistent with the 
lateralization of the SOZ in both the synthetic and actual PET images. Both subjects were 
left-out subjects not seen by the model during training. 
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Figure 6 – Relationship between FlowGAN outputs and original PET images across 
brain regions: Panel A. (left) shows a representative scatterplot between synthetic PET 
and original PET (green) values as well as original ASL CBF and original PET (orange) 
values for a single subject across brain regions. Each point represents one brain region, 
and the dashed line represents the unity line. The right side shows the boxplot comparing 
the correlations for all subjects across brain regions for original PET and synthetic PET 
for one boxplot, and original PET and original ASL for the other boxplot. The same 
subjects in each boxplot are connected by a line. Panel B. shows the same as A. but for 
asymmetry values across brain regions. Panel C. (left) shows the scatterplot between 
original PET - synthetic PET, and original PET – original ASL CBF asymmetry correlations 
across subjects for the different brain regions. Each dot represents a different brain 
region. Blue dots show an asymmetry correlation difference in favor of synthetic PET of 
more than 1 standard deviation, and red dots represent an asymmetry correlation 
difference in favor of ASL of more than 1 standard deviation. Gray dots are under the 1 
standard deviation threshold. The right side of C. shows the asymmetry correlation 
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difference between the two approaches across brain regions. Panel D. shows the 
scatterplot between (left) original ASL CBF and PET asymmetry values and (middle) 
synthetic PET and original PET asymmetry values across subjects in the hippocampus. 
In both cases, subjects that have the same direction of asymmetry (i.e. both positive, or 
both negative) between the two compared modalities (i.e. subjects with congruent 
measurements) are shown as blue Xs, whereas subjects with incongruent measurements 
are shown as red Xs. The right side shows the congruency difference between the two 
approaches across brain regions. 
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