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Abstract

Measles is an important infectious disease system both for its burden on public health
and as an opportunity for studying nonlinear spatio-temporal disease dynamics.
Traditional mechanistic models often struggle to fully capture the complex nonlinear
spatio-temporal dynamics inherent in measles outbreaks. In this paper, we first develop
a high-dimensional feed-forward neural network model with spatial features (SFNN) to
forecast endemic measles outbreaks and systematically compare its predictive power
with that of a classical mechanistic model (TSIR). We illustrate the utility of our model
using England and Wales measles data from 1944-1965. These data present multiple
modeling challenges due to the interplay between metapopulations, seasonal trends, and
nonlinear dynamics related to demographic changes. Our results show that, while the
TSIR model yields more accurate very short-term (1 to 2 biweeks ahead) forecasts for
highly populous cities, overall, our neural network model (SFNN) outperforms the TSIR
in other forecasting windows. Furthermore, we show that our spatial-feature neural
network model, without imposing mechanistic assumptions a priori , can uncover
gravity-model-like spatial hierarchy of measles spread in which major cities play an
important role in driving regional outbreaks. We then turn our attention to integrative
approaches that combine mechanistic and machine learning models. Specifically, we
investigate how the TSIR can be utilized to improve a state-of-the-art approach known
as Physics-Informed-Neural-Networks (PINN) which explicitly combines compartmental
models and neural networks. Our results show that the TSIR can facilitate the
reconstruction of latent susceptible dynamics, improving both forecasts and parameter
inference of measles dynamics within the PINN. In summary, our results show that
appropriately designed neural network-based models can outperform traditional
mechanistic models for short to long-term forecasts, while simultaneously providing
mechanistic interpretability. Our work also provides valuable insights into more
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effectively integrating machine learning models with mechanistic models to enhance
public health responses to measles and similar infectious disease systems.

Author summary

Mechanistic models have been foundational in developing an understanding of the
transmission dynamics of infectious diseases including measles. In contrast to their
mechanistic counterparts, machine learning techniques including neural networks have
primarily focused on improving forecasting accuracy without explicitly inferring
transmission dynamics. Effectively integrating these two modeling approaches remains a
central challenge. In this paper, we first develop a high-dimensional neural network
model to forecast spatiotemporal endemic measles outbreaks and systematically
compare its predictive power with that of a classical mechanistic model (TSIR). We
illustrate the utility of our model using a detailed dataset describing measles outbreaks
in England and Wales from 1944-1965, one of the best-documented and most-studied
nonlinear infectious disease systems. Our results show that, overall, our neural network
model outperforms the TSIR in all forecasting windows. Furthermore, we show that our
neural network model can uncover the mechanism of hierarchical spread of measles
where major cities drive regional outbreaks. We then develop an integrative approach
that explicitly and effectively combines mechanistic and machine learning models,
improving simultaneously both forecasting and inference. In summary, our work offers
valuable insights into the effective utilization of machine learning models, and
integration with mechanistic models, for enhancing outbreak responses to measles and
similar infectious disease systems.

Introduction 1

Following the COVID-19 pandemic, there has been a marked increase in machine 2

learning research focused on enhancing the forecasting of infectious diseases. This body 3

of work primarily sought to develop highly predictive models for real-time application 4

during the peak of the health crisis [1, 2]. A portion of these studies has endeavored to 5

meld classical mechanistic approaches to infectious disease with machine learning, either 6

through the post-hoc analysis of machine learning outputs in light of established disease 7

dynamics [3, 4], or by directly integrating mechanistic insights into the machine learning 8

models [5–7]. Our research advances these efforts by developing neural-network-based 9

models tailored to the complex spatiotemporal multi-year transmission dynamics of 10

endemic measles, leveraging a well-characterized infectious disease system and a rich 11

historical dataset describing outbreaks in pre-vaccination England and Wales. 12

Measles is one of the most highly transmissible and strongly immunizing pathogens. 13

Spatiotemporal patterns of pre- and post-vaccination measles incidence are among the 14

most well-documented, and well-studied, nonlinear infectious disease systems. Measles 15

exhibits complex spatiotemporal dynamics driven by the interplay between seasonal 16

forcing, susceptible recruitment due to births and spatial coupling between populations. 17

These dynamics range from regular multiannual infection patterns in large 18

populations [8] to coexisting attractors [9]. By contrast, measles dynamics in small 19

highly vaccinated populations dominated by chaotic patterns driven by stochastic 20

extinction [10]. For example, before widespread vaccination in the late 1960s, measles 21

epidemics in England and Wales were dominated by highly regular periodic (often 22

biennial) cycles in large cities whose populations are at, or above, the Critical 23

Community Size (CCS) − the population size required to maintain endemic 24

transmission − of approximately 300,000 individuals [11]. Following the widespread 25
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vaccination in the late 1960s, the epidemics shifted from highly regular cycles to largely 26

irregular dynamics [12]. Due to its simple natural history and long time series of data, 27

measles incidence in England and Wales has provided a fruitful testing ground for better 28

understanding spatiotemporal nonlinear epidemiological dynamics, and developing 29

semi-mechanistic statistical modeling approaches more broadly [13–18]. 30

A suite of previous analyses has demonstrated the utility of deterministic and 31

stochastic (semi-) mechanistic models, notably the time-series-SIR (TSIR) model [13], a 32

discrete approximation of the S-I-R model, and other successful inferential approaches 33

including particle filtering [19], in characterizing the dynamics in large urban 34

populations. However, in general, these models have not primarily focused on 35

generating long-term forecasting accuracy. While machine learning models, including a 36

recent work leveraging the Least Absolute Shrinkage and Selection Operator 37

(LASSO) [15], have shown improved forecasting skills for endemic measles dynamics, 38

they generally lack deep mechanistic interpretability. These models also do not 39

explicitly consider spatial interactions between locations which is a known driver for 40

measles transmission, particularly, between less populous locations (e.g., small towns) 41

and population centers (e.g., core cities) [16]. To this end, we first train a 42

high-dimensional neural network explicitly incorporating both spatial and temporal 43

features (SFNN) to forecast measles incidence over 1,452 cities and towns from 1944 to 44

1965 and assess forecast performance over a range of different forecast steps. We also 45

employ explainability (XAI) methods to shed light on how the neural network reveals 46

mechanistic relationships when making predictions. 47

Following this we turn our attention to integrative approaches that have the potential 48

to simultaneously provide high forecasting performance and mechanistic interpretabililty. 49

Specifically, we focus on the so-called physics-informed neural network (PINN) methods, 50

a class of integrative neural networks that incorporate physics differential equations into 51

the model fitting procedure [20,21]. PINN methods are able to preserve high predictive 52

performance while incorporating and inferring scientific parameters, and have only 53

recently been extended from physics differential equations to infectious disease 54

mechanistic equations [6, 22]. While previous pioneering work [6, 22–24] has 55

demonstrated the ability of PINN methods to improve disease incidence forecasts, the 56

applications have not focused on long-term prediction and inference of the transmission 57

dynamics in the context of endemic childhood infections. We build a PINN model which 58

integrates a machine learning model directly with a mechanistic S-I-R model, and is 59

able to address these shortcomings by augmenting the measles transmission dynamics 60

with reconstructed latent susceptible dynamics from the TSIR model. 61

Our results demonstrate that appropriately designed machine learning models can 62

outmatch more traditional mechanistic modeling approaches with respect to forecasting 63

accuracy while effectively uncovering mechanistic infectious disease dynamics, in both a 64

post-hoc and an integrative fashion. First, the high-dimensional neural network 65

(SFNN), overall, outperforms the TSIR model for all forecast windows and in the 66

majority of towns and cities in E&W, but with the most notable improvement for 67

long-term predictions. The explainability (XAI) methods applied to our SFNN uncover 68

the mechanism of hierarchical spread from large core cities to less populous towns 69

without imposing such a mechanism a priori . Specifically, our results suggest that the 70

relative role of spatial hierarchical spread increases as the population size of towns 71

decrease, which is consistent with previous findings leveraging gravity model 72

formulations [25]. Second, we compare the performance of a PINN model augmented 73

with TSIR-reconstructed latent susceptible dynamics (referred to as TSIR-PINN) to a 74

PINN model with naively constrained susceptible dynamics (referred to as Naive-PINN). 75

We demonstrate that inclusion of the TSIR-reconstructed susceptible dynamics (in the 76

TSIR-PINN model) improves the inference of disease parameters while simultaneously 77
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providing high forecasting accuracy. Together these findings illustrate the potential for 78

a new suite of methods to provide improved integration between mechanistic models 79

and machine learning approaches for infectious disease modeling, achieving high 80

predictive performance while simultaneously ensuring accurate scientific inference of the 81

spatiotemporal dynamics of measles and similar infectious disease systems. 82

Results 83

Neural network model (SFNN) outperforms TSIR model in 84

forecasting endemic measles dynamics. 85

The TSIR model estimates measles dynamics by leveraging incidence data and birth 86

data [13,18,26] (see Materials and Methods for full model specification). It provides a 87

computationally inexpensive and highly tractable alternative approach to the 88

continuous-time S-I-R model. It has been shown to excel in short-term forecasting for 89

measles incidence in large populous cities [17]. However, the TSIR model generally does 90

not perform well for long-term forecasts. Furthermore, incorporating spatial interaction 91

among multiple locations into the TSIR is a steep statistical challenge [27], which limits 92

its utility for characterizing and forecasting (typically less regular outbreaks) in less 93

populous towns whose population size less than the CCS. 94

With these deficiencies in mind we employ a neural network explicitly incorporating 95

spatial and temporal features (SFNN). Specifically, our SFNN considers not only 96

measles incidence lags as features, but also potentially important spatial features 97

including the measles incidence lags in, and distances to, the nearest (ten) towns/cities 98

and the (seven) highest population cities (see Materials and Methods for full model 99

specification). The seven highest population cities were chosen because these were 100

identified as having populations greater than that of the critical community size (CCS) 101

of 300,000, an empirical threshold at which chains of infections are locally sustained [28]. 102

Our results show that our spatiotemporally featured neural network (Figure 1) 103

generally outperforms the TSIR for both short- and long-term predictions, across 104

different population sizes (Figure 2). For very short-term predictions (e.g., when k = 1, 105

where k is the number of biweeks ahead of the targeted prediction), our neural network 106

model SFNN notably outperforms the TSIR in less populous towns where the TSIR 107

model traditionally has struggled with. As the population size of the prediction target 108

increases, the performance of SFNN gradually degrades (Figures 2B). As the forecasting 109

time window widens (e.g., k > 4), the added predictive accuracy of the SFNN, in 110

comparison with the TSIR, becomes more significant, but with an opposite trend: the 111

performance of the SFNN now improves with the population size. 112

We also test whether our SFNN can capture annual to biennial bifurcation of 113

measles epidemics in E&W caused by susceptible response to the late 1940s baby 114

boom [18]. While our results (Figure S1) suggest that our SFNN trained on the limited 115

data prior to 1948 has limited medium- and long-term predictive accuracy for the 116

outbreak size, it largely captures the bifurcation of the seasonal pattern for smaller 117

forecasting windows (k ≤ 4). 118

Neural network model (SFNN) can uncover mechanism of spatial 119

hierarchical spread. 120

Previous work has demonstrated the presence of gravity-like dynamics in measles 121

outbreaks [16,25,29]. For instance, dynamics in small towns are shown to be driven by 122

the mechanism of spatial hierarchical spread in which infections in large cities can serve 123

as reservoirs for seeding infections in less populous regions [25]. To assess if the neural 124
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Fig 1. SFNN architecture. The SFNN architecture with grouped input features
(grouped according to feature type), 2 hidden layers of dimension 962, and 1 output
layer of dimension 1 for incidence forecasts.

network is learning such a mechanism, we employ feature importance methods that 125

estimate how predictions rely on information from certain features and groups of 126

features. We specifically use SHAP values [30] to investigate the relative importance of 127

a core city to the measles spread in locations with different population sizes (see 128

Materials and Methods for more details). 129

Our results (Figure 3) show that the (lagged) incidence in large cities are relatively 130

more important for less populous cities/towns. This suggests that our neural network 131

model is able to reveal the mechanism of spatial hierarchical spread in the endemic 132

measles spatio-temporal dynamics. This is notable both for the indication that our 133

neural network SFNN is able to employ spatial features in a complex manner that 134

reveals mechanistic dynamics, without explicitly imposing spatial hierarchy in the 135

model a priori , and as an example of a post-hoc XAI method that reaffirms a theorized 136

dynamic in a disease system. 137

Latent susceptible dynamics reconstruction using TSIR improves 138

inference and forecasts of the integrative PINN framework. 139

Next we turn our attention to integrative approaches that combine mechanistic and 140

machine learning models. We consider the general conceptual framework of 141

Physics-Informed Neural Network (PINN), a class of integrative neural networks that 142

incorporate physics differential equations [20]. PINNs regularize a neural network by 143

including a loss term which matches differential equations with observed gradient 144

approximations garnered during the fitting process (typically using automatic 145

differentiation methods). They hold the promise of preserving the high predictive 146

capabilities and expressibility of neural networks while integrating scientific 147

relationships directly into the model. Though PINNs are classically employed as a 148
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Fig 2. SFNN vs. TSIR model performance measured by Root Mean Squared
Error (RMSE) of within-city-standardized log(incidence + 1). (A) Within-city
SFNN RMSE versus TSIR RMSE, colored by log(population), faceted by k-step ahead
forecast. (B) Difference between the within-city-standardized RMSE for TSIR and the
within-city-standardized RMSE for SFNN; loess regression curves are fitted.

surrogate model for computationally intensive differential equation solvers [20], they 149

also enable parameter inference and let (physics) dynamics partially drive predictions in 150

an integrative fashion. These latter aims have been the primary impetus of existing 151
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Fig 3. SHAP values uncover mechanism of spatial hierarchical spread. The
SHAP value measures the relative importance of the incidence of a core city (e.g.,
London) for making incidence prediction among cities/towns with different population
sizes, which can be heuristically treated as the relative importance to the local
transmission of measles in a particular city/town. Core city incidence lag features are
shown to be more important when predicting incidence for less populous cities/towns.
Specifically, the mean relative absolute SHAP value for each of the core city incidence
lag features has an inverse relationship with log population. Cities and towns are
categorized (on the x-axis) into 10 groups according to the quantiles of their population
sizes.

methods to extend PINNs to spread of infectious disease [22] and are also the motive for 152

us improving the PINN framework. 153

Here, we investigate the utility of a customized PINN model augmented by the 154

reconstruction of the latent susceptible dynamics leveraging the TSIR model, referred to 155

as TSIR-PINN (see Materials and Methods for full model specification). We compare 156

the added benefit of our approach to a naive PINN model without such augmentation of 157

the latent dynamics (referred to as Naive-PINN). We apply both models to London 158

measles incidence data, and assess a two-year-ahead forecast window. Figures 4 shows 159

that the Naive-PINN fails to make accurate predictions and parameter inference, while 160

our TSIR-PINN model utilizing TSIR-reconstructed susceptible dynamics are able to 161

capture and predict the transmission dynamics reasonably accurately. In particular, the 162

TSIR-PINN model estimates an R0 value (Figure 4) which is largely consistent with 163

previous estimates [18]. The TSIR-PINN model also outperforms the Naive-PINN with 164

respect to test-set Mean Absolute Error (MAE) and correlation (Table 1). 165

Our results suggest that including the TSIR-reconstructed (latent) susceptible 166

dynamics (in our TSIR-PINN) can improve parameter inference while maintaining the 167

predictive capabilities of a PINN modeling framework. These results provide important 168

insights into more rigorously incorporating partially observed epidemic data into a 169

PINN model, which may facilitate future developments and applications of PINN-based 170

epidemic models. 171
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Fig 4. Test-set 52-step-ahead incidence predictions over time (A) and
Inference of seasonal transmission rate (B) in London. (A) PINN test-set
52-step-ahead incidence predictions for TSIR-PINN and Naive-PINN models. (B) PINN
parameter values are notably different between TSIR-PINN and Naive-PINN models
over 10,000 epochs. The parameter v (black lines) correspond to the R0. Convergence is
rapidly achieved when fitting the TSIR-PINN model, while convergence is less clear for
the Naive-PINN model. More importantly, the TSIR-PINN model estimates an R0 of
26.9 which is broadly consistent with the literature, while the Naive-PINN estimates an
R0 of 3.0.

Table 1. Performance of TSIR-PINN and Naive-PINN measured by test-MAE and
test-correlation.

Model Test MAE(Î , I)(Î , I)(Î , I) Test Corr(Î , I)(Î , I)(Î , I)
Naive-PINN 676.78 0.38
TSIR-PINN 354.28 0.89
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Discussion 172

Measles is among one of the most well-documented infectious disease systems and is 173

known for its complex spatio-temporal dynamics. Spatiotemporal dynamics of measles 174

infection, driven by interplay between seasonal forcing and susceptible recruitment 175

dynamics [17], range from simple limit cycles to chaos, with the domination of 176

stochastic extinction in small, highly vaccinated populations [18,31,32]. As such, 177

measles serves as an excellent test bed for developing modeling techniques aimed at 178

understanding similar nonlinear infectious disease systems. 179

Flexible machine learning approaches hold much potential for forecasting measles 180

dynamics. However interpretation and inference is often difficult due to high 181

dimensional model parameterizations and lack of scientific knowledge integration. Two 182

broad classes of methods are suitable for improving mechanistic interpretability of 183

machine learning models for infectious disease dynamics: post-hoc explainability (XAI) 184

methods which conduct post-hoc analysis on model outputs to understand underlying 185

drivers of predictions, and direct integration of mechanistic models or other scientific 186

priors into machine learning models. Here we detail one example of each of these classes 187

and demonstrate their effectiveness in accurately characterizing measles spatio-temporal 188

dynamics while preserving high forecasting performance. 189

Our high-dimensional feed-forward SFNN overall performs well for all forecasting 190

windows and the majority of cities. More noteworthy is its ability to outperform TSIR 191

for the difficult forecasting scenarios of long forecast windows (ranging from six months 192

to two years) and less populous towns with sparse, less regular outbreaks. Neural 193

networks are known as a “black box” method, indicating that the way in which the 194

model uses specific covariates to arrive at a forecast is not readily apparent from 195

parameter inspection. This is the primary downside of employing such machine learning 196

methods when compared to mechanistic and semi-mechanistic methods such as the 197

TSIR, which provide ample opportunities for parameter inference and assessment in 198

relation to scientific knowledge and hypotheses. To surmount this limitation there are a 199

collection of post-hoc methods that allow methodical interrogation of machine learning 200

output. 201

Our application of one such method, the SHAP value XAI calculation [30], is able to 202

provide insights into how our SFNN predictions are being driven by a combination of 203

input variables that has scientifically meaningful interpretation. Specifically we show 204

that our SFNN uncovers the mechanism that outbreaks in large cities may influence 205

measles transmission in smaller towns/cities. This is consistent with previously 206

theorized mechanism which suggest a similar dynamic of hierarchical spread of 207

infections from large cities to smaller towns [14]. 208

While this post-hoc method is insightful and relatively straightforward to apply due 209

to its lack of interference with model-training, we push the neural-network inferential 210

capability further with a fully integrative PINN based model (TSIR-PINN) that 211

incorporates reconstructed latent susceptible dynamics from the seminal 212

semi-mechanistic TSIR model. By fusing mechanistic compartmental models with the 213

neural network during model training, we are able to inspect disease dynamic parameter 214

estimates while maintaining forecast performance. We show that by including the 215

reconstructed latent susceptible population in our TSIR-PINN, both forecasting 216

performance and parameter estimation are improved when compared to the 217

Naive-PINN model (which does not utilize the augmented latent susceptible dynamics 218

using TSIR). While PINN-based models have previously been applied to infectious 219

disease data, our work is a step forward in terms of more rigorous inference of and 220

integration with latent aspects of the transmission dynamics, which is crucial in 221

enabling long-term forecast windows and deep mechanistic interpretability. Our results 222

provide key insights into rigorously incorporating partially observed epidemic data into 223
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a PINN-based modeling framework, which may facilitate future developments and 224

applications of PINN-based epidemic models. 225

There are several potential future directions we can explore. The PINN formulation 226

introduced here provides solely point estimates of disease dynamic parameters, and one 227

area ripe for further development is the incorporation of rigorous statistical uncertainty 228

quantification into these methods that might enable probabilistic statements about both 229

model parameters and predictive output. There is also potential for this work to be 230

extended to other disease systems, incorporating mechanisms and assessing hypotheses 231

that are specific to these areas of study. Furthermore, we have only applied the 232

TSIR-PINN model to London measles incidence data, though there is potential to 233

extend the TSIR-PINN to multiple cities (or all cities, such as with the SFNN) by 234

explicitly incorporating gravity model mechanisms. Also, we have focused on comparing 235

the relative performance of the TSIR-PINN to the Naive-PINN, and thus there remains 236

room to further explore model formulations that may result in even higher prediction 237

accuracy, such as shared embeddings or explicitly spatial or temporal architectures such 238

Convolutional or Long Short-Term Memory Neural Networks (CNNs, LSTMs 239

respectively) [33,34]. Finally, there is potential for application of machine learning 240

methodology that instead of imposing compartmental model structures a priori and 241

inferring parameter values, focuses on hypothesis generation and model structure 242

discovery in the context of infectious disease [35–38]. This could automate some of the 243

fine-tuning of model structure required for these highly bespoke models and aid 244

modellers at earlier stages in their research. 245

In summary, our results show that appropriately designed neural network-based 246

models can outperform traditional mechanistic models in forecasting, while 247

simultaneously providing mechanistic interpretability. Our work also offers valuable 248

insights into the more effectively integrating machine learning models with mechanistic 249

models to enhance public health responses to measles and similar infectious disease 250

systems. 251

Materials and methods 252

Study Data 253

We train and assess our models on biweekly measles incidence counts across 1,452 254

cities/towns in England & Wales during the pre-vaccination period from 1944 to 1965 255

(Fig 5). Separate models are fitted for different k-step ahead forecasts, ranging from 1 256

to 52 biweekly time steps ahead. 257

Feed-Forward Spatial Feature Neural Network Model (SFFN). 258

For each k-step ahead we fit a separate feed-forward spatial feature neural network 259

(SFNN) with 2 hidden linear layers of dimension 962, linear input/output layers, and 260

ReLu [39] activation functions (Figure 1). 261

We include a range of features, including birth counts, population size, lagged 262

incidence counts and lagged incidence counts and distances for the seven cities with a 263

population higher than the critical community size of 300,000 which has previously been 264

identified as “core cities” that drive epidemics in connected cities/towns. [28]. We also 265

incorporate spatial features, including the lagged incidence counts of the nearest ten 266

cities and their distances. This potentially enables the neural network to learn spatial 267

dynamics that the TSIR model does not capture. Birth and population features are 268

from the nearest time step less than or equal to t− k while still sharing the same biweek 269

of the year. Lagged features range from t− k to t− 130, where t is the target time step. 270
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Fig 5. Measles cases in England and Wales. (A) Cities/towns colored by log
measles incidence on first biweek of 1961. (B) Seasonal measles trend apparent across
the four most populous cities from 1944 to 1965.

Neural networks are fitted in Pytorch [40] using the Adam [41] optimizer with Mean 271

Squared Error (MSE) loss, and are trained on incidence data ranging from 1949 to 1961 272

with incidence data ranging from 1961 to 1965 held out for testing. 273

Time-series SIR (TSIR) model. 274

We compare the neural networks to the TSIR (time-series 275

susceptible-infected-recovered) model, a popular semi-mechanistic technique that has 276

been shown to accurately capture the dynamics of measles outbreaks in major cities [13]. 277

TSIR provides a computationally inexpensive and highly tractable alternative to the 278

classic SIR compartmental model, and is described by the following equations: 279

E[It+1] = βt+1I
α
t St (1)

St+1 = Bt+1 + St − It+1 (2)

where St is reconstructed as St = Ŝ + Zt at each time step and with Ŝ the average 280

number of susceptible individuals in the population. Zt is estimated from equation 2 by 281

regressing the cumulative births against the cumulative incidence as follows, 282

t−1∑
i=0

Bi = Z0 +
t−1∑
i=0

Incidencei
ρ

+ Zt + ϵt, (3)

and the log-linearized equation 1. 283

For each k-step ahead, target time set t, and city, a separate TSIR model is fit on 284

time steps t− 130 to t− k. One-step ahead forecasts are then made recursively with 285

equations 1 and 2 until time t forecast is reached. We employ the tsiR R package for 286

TSIR model fitting, and refer the reader to the package documentation for details not 287

specified here [26]. 288

Neural network interpretability methods (SHAP). 289

We use the SHAP (SHapley Additive exPlanations) method [30] to assess neural 290

network feature importance, specifically relying on sampling-based approximation 291
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methods [42,43] from the Captum [44] Python library. SHAP values are estimated by 292

randomly permuting (input) feature groups, calculating the change in model output due 293

to a particular permutation and finally averaging across all permutations. Features are 294

grouped according to lag type; that is, incidence lags are grouped together, 295

high-population-city incidence lags are grouped together, etc. 296

In our analysis, we first estimate the normalized absolute SHAP value associated 297

with a particular feature group for each observation. We then, within a particular city 298

or town, calculate the average of all the normalized absolute SHAP values associated 299

with a particular feature group of interest, across all the observations of that city or 300

town. Together these provide a measure of the relative importance of a particular 301

feature group for the predictions made for a city/town. 302

Physics-Informed-Neural-Network model 303

The neural network architecture for the PINN models is different from the previously 304

described neural network, due to incorporation of compartmental S-I-R equations and 305

parameters in the model’s loss function. We start with a Feed-Forward Neural Network 306

with 2 hidden layers of dimension 128, linear input layer, and a 2 dimensional output 307

layer for the TSIR-reconstructed susceptible (STSIR) and observed incidence (I). 308

GeLU [45] activation functions are used on the hidden layers and a softplus activation 309

function is used on the output layer. Features include time, lagged incidence counts, 310

and lagged TSIR-reconstructed susceptibles, with the time feature transformed with 311

Gaussian Random Fourier feature mappings [46]. Neural networks are again fit in 312

PyTorch using the Adam optimizer with the same train/test as previously, though here 313

we employ a Mean Absolute Error (MAE) loss comprised of the following components: 314

MAEtotal = λFFMAEFF + λPINNMAEPINN (4)

(5)

where λFF and λPINN are tunable hyperparameters, and 315

MAEFF =
1

n

n∑
t=1

|STSIR
t − Ŝt|+

1

n

n∑
t=1

|It − Ît| (6)

MAEPINN =
1

n

n∑
t=1

|dS
dt

− d̂S

dt
|+ 1

n

n∑
t=1

|dI
dt

− d̂I

dt
| (7)

where Ŝt and Ît are the FF predictions at time t. 316

Here dS
dt and dI

dt are the output of the following compartmental SIR equations at 317

time t: 318

dS

dt
= Bt −

βtS
TSIR
t It
Nt

(8)

dI

dt
=

βtS
TSIR
t It
Nt

− γIt (9)

where Bt is the number of births at time t, βt is a seasonal transmission rate at time 319

t, γ is the recovery rate, Nt is the population at time t, and d̂S/dt and d̂I/dt are the 320

approximations of the relevant gradients, which are calculated at each epoch using 321

autograd in PyTorch [40]. 322
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We parameterize βt as follows: 323

βt = ν + α1 · sin(2π
t

26
) + α2 · cos(2π

t

26
) (10)

where eq. 10 implies a seasonal transmission rate with three free parameters: ν, α1, 324

and α2. ν is the baseline transmission rate, while α1 and α1 are seasonal parameters 325

controlling sinusoidal annual fluctuations. 326

We assume γ = 1 due to the measles recovery period being approximately equal to 327

the biweekly scale of the data [47], thus the parameters employed in βt are the sole 328

learnable parameters for this MAEPINN component of the loss. By matching 329

[dS/dt, dI/dt]′ to [d̂S/dt, d̂I/dt]′, we are providing an unsupervised soft constraint on the 330

neural network to adhere to compartmental equation dynamics and vice versa. 331

To assess the impact including the TSIR reconstructed susceptibles, we also fit 332

versions of the above models with naively constrained latent susceptibles, such that all 333

STSIR components are replaced with SNaive, and are fit as unconstrained parameters. 334
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Supporting Information 335

Fig S1. London SFNN bifurcation assessment. Our SFFN model trained on the
limited data prior to 1948 predicts change of seasonality (i.e., annual to biennial
bifurcation in late 1940s) in London, for steps-ahead ranging from 1-4. It is noted that,
due to the lack of training data in this case, our SFNN does not perform well in
capturing the magnitude of the incidence in general.
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