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Abstract—The loss of bilateral hand function is a debilitating challenge for millions of individuals that suffered a motor-
complete spinal cord injury (SCI). We have recently demonstrated in eight tetraplegic individuals the presence of highly
functional spared spinal motor neurons in the extrinsic muscles of the hand that are still capable of generating proportional
flexion and extension signals. In this work, we hypothesized that an artificial intelligence (AI) system could automatically
learn the spared electromyographic (EMG) patterns that encode the attempted movements of the paralyzed digits. We
constrained the AI to continuously output the attempted movements in the form of a digital hand so that this signal could be
used to control any assistive system (e.g., exoskeletons, electrical stimulation). We trained a convolutional neural network
using data from 13 uninjured (control) participants and 8 motor-complete tetraplegic participants to study the latent space
learned by the AI. Our model can automatically differentiate between eight different hand movements, including individual
finger flexions, grasps, and pinches, achieving a mean accuracy of 98.3% within the SCI group. Moreover, the model could
distinguish with 100% accuracy whether a participant had an injury or not, and it could also facilitate proportional control
of certain movements after the injury. Analysis of the latent space of the model revealed that proportionally controllable
movements exhibited an elliptical path, while movements lacking proportional control followed a chaotic trajectory. We found
that proportional control of a movement can only be correctly estimated if the latent space embedding of the movement
follows an elliptical path (correlation = 0.73; p < 0.001). These findings emphasize the reliability of the proposed system for
closed-loop applications that require an accurate estimate of the spinal cord motor output.

Index Terms—SCI, Rehabilitation, EMG, AI

1 INTRODUCTION

LOSING hand motor functions is the tragic reality of
10.85 million (133 out of 100,000) people with cervical

spinal cord injury (SCI) worldwide [1]. In the spinal cord, α-
motoneurons serve as connections between the central and
peripheral nervous system with a diverse array of skele-
tal muscles. Motor-complete SCI is typically characterized
by profound paralysis and a lack of discernible volitional
control in all limbs below the area of injury [2]. Recently,
we have used surface electromyography (sEMG), a non-
invasive neural interface [3], to investigate muscle activity
below the injury level in individuals who have been clin-
ically labeled as having a cervical motor-complete SCI [2].
We found that these individuals can precisely control the
activity of several spared motor units (MU) during inten-
tionally attempted hand digit movements [4], [5]. Although
the presence of EMG activity in individuals with motor-
complete SCI was demonstrated already several years ago
[6], only recently were we able to demonstrate that this
activity can be controlled in real-time and at the level of
individual MUs. We showed that eight individuals with
chronic SCI could proportionally modulate the activity of
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motor neurons that control the movements of paralyzed
digits [5].

Previous research has effectively classified various
movements among individuals with SCI who maintained
partial control of the hand [7], [8]. However, for those with
motor-complete SCI, efforts have focused mainly on broader
arm movements such as elbow flexion and extension [9]. De-
spite these advances, the precise classification or continuous
prediction of intricate finger movements that are crucial for
daily tasks remains a problem to be solved [10].

In this work (Fig. 1), we hypothesize that an artifi-
cial intelligence (AI) system could automatically map and
decode individual finger movements from spared EMG
signals of 8 motor-complete participants with SCI. The
potential of having an AI system that automatically learns
the EMG activation patterns generating specific movements
has numerous applications for the recovery of the hand
function, considering the large number of motor dimen-
sions embedded in the hand. For this, we adapted our
previously published deep learning model capable of real-
time, accurate and proportional hand kinematics prediction
for healthy participants [11] and tested it on 13 uninjured
(control group) and 8 individuals suffering from a motor-
complete SCI (SCI group).

We demonstrate that our system can proportionally pre-
dict all attempted movements in the control group and that
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Fig. 1: We collected surface electromyography (sEMG) data from a group of 8 individuals with cervical motor-complete
spinal cord injuries (SCI) and 13 uninjured individuals (control). During the data collection process, participants were
asked to attempt pre-recorded hand movements displayed on a screen. Using the data collected, we trained participant-
specific deep learning models for the proportional prediction of the hand positions in a 3D space. Successively, we applied a
dimensionality reduction technique called UMAP to transform the latent space into a 2D representation. The 2D projections
were then used to distinguish between different hand movements for the same participant and whether the participant
had an SCI or not. This analysis has the potential to offer people living with SCI the ability to control and perform multiple
different movements with assistive systems. Moreover, the analysis of the latent space of the model revealed a preserved
neural representation of the movement of the hand digits between healthy and injured participants.

some hand movements can also be proportionally predicted
in individuals with motor-complete SCI. Furthermore, our
objective was to understand the control signals generated
by the neural network. We projected the high-dimensional
latent space of the neural network using UMAP [12], a
dimensionality reduction technique that preserves the in-
trinsic manifold of the data, into human-readable 2D. Using
2D projections, we were able to classify the 8 attempted
movements with an accuracy greater than 93% in partic-
ipants with SCI, and with 100% accuracy in participants
without SCI only based on EMG signals. Comparison of
the latent space between the control and SCI groups also
highlights the potential of some movements to be fully
regained by spinal cord injured participants (Fig. 1). This
is of particular interest because, although there are spared
MUs after injury, it is not known if there are sufficient
agonist and antagonist MUs that allow proportional control.
Interestingly, the AI model mapped proportionality with
circularity. Movements that were proportionally predicted
were mapped with a continuous circular trajectory for both
the control and the SCI group. For some movements of the
SCI group, the trajectories appeared to be chaotic, probably
due to these movements lacking sufficient neural activity
for proportional control. We show that the deviation error
of a circular path in the projection of the latent space is
negatively and significantly correlated with the accuracy of
the proportional prediction (-0.73, p < 0.001). The proposed
method could provide numerous advantages in clinical set-
tings. For example, by analyzing the projection of the latent
space of the neural network, it is possible to characterize
how many motor dimensions are present in the EMG signal
after the injury.

2 METHODS

2.1 Datasets

Two datasets were used to investigate the potential use of
the proposed AI system to automatically detect the spared
motor dimensions that are still present in the high-density
EMG of participants with SCI.

The first dataset served as the control group and consists
of 13 young, uninjured adult participants (age 25.9 ± 2.8
years) (data also used in [13]–[15]).

The test group consists of 8 individuals with motor-
complete SCI (the same dataset was also used in [5]). Table
1 shows the individual patient characteristics; however, in
summary, all injuries occurred in the cervical area (C5-C6),
4 subjects have an AIS [2] grade of B (S1-3, 8), 3 of A (S4-6),
and 1 of C (S7).

TABLE 1: Characteristics of the spinal cord injured partici-
pants. AIS = ASIA Injury Scale [2], Time Since Injury = The
amount of time a subject has lived with an SCI at the time
of recording, Sensory Level = The lowest spinal cord section
that still has normal sensory function, MAS = Modified
Ashworth Scale; R = Right, L = Left; spasticity was assessed
for elbow flexion. More details in Souza de Oliveira et al. [5].

Subject Age range
(years) Gender Injury

Level AIS Time Since
Injury (years)

Sensory
Level

Spasticity in
Upper Limb

(MAS)

1 36-40 M C6 B 18.8 S5 0
2 31-35 M C5 B 9.1 C5 0
3 41-45 F C6 B 24.2 C6 0
4 36-40 F C5 A 24.2 C5 0
5 31-35 M C6 A 22.2 C6 0
6 56-60 M C5 A 6.9 T3 R: 2, L: 0
7 41-45 M C6 C 18.2 C6 R: 2, L: 0
8 36-40 F C5 B 5.0 T1 1
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All subjects were instructed to perform a series of grasps
and individual digit movements, starting and ending each
cycle in a specified position, or, in the case of individuals
with motor-complete SCI, to attempt these movements. The
starting position is defined as the natural resting position
of the hand, and the end position is defined as the fully
flexed position. The series consisted of individual digits
flexion and extension, grasping, and two- and three-finger
pinches (Fig. 2A). These movements were displayed in front
of the subjects in the form of a virtual hand performing pre-
recorded movements at a frequency of 0.5 Hz (Fig. 2A & B).
The virtual hand was a digital rendering of one representa-
tive hand from an uninjured participant. During movement,
monopolar EMG signals were recorded from the forearm of
the subjects at 2048 Hz. For the recordings we used three
8 by 8 electrode grids with 10 mm interelectrode distance
(IED) (GR10MM0808, OT Bioelettronica, Turin, Italy) and
two 13 by 5 grids with 8 mm IED (GR08MM1305, OT
Bioelettronica, Turin, Italy), for a total of 320 electrodes. The
8 by 8 grids were applied around the upper forearm area
below the elbow, while the 13 by 5 grids were placed above
the wrist around the arm covering the dorsal and the ventral
part of the forearm (Fig. 2B).

Each movement was recorded for 40 s, resulting in a
total data collection time of 5 min 20 s per subject. The
recorded EMG data were saved as 2D matrices, the two
dimensions representing the 320 electrodes and the recorded
time. Successively, we split the data into multiple 100 ms
(192 samples) windows with a shift of 31.25 ms (64 samples).
The EMG window shift of 64 samples was set because
this was the fastest real-time output setting of the EMG
recording device (EMG Quattrocento, OT Bioelettronica,
Turin, Italy) used in our experiments. The size of the EMG
window was chosen as three times the shift. The middle
30% (12 s) of the data for each movement is designated as
the test set, while the remaining 70% (28 s) is allocated for
the training set. Within the test set for each movement, the
first 10% (1.2 s) is further reserved for the validation set.
This results in 3 min 44 s training, 1 min 26 s testing, and 9.6
s validation data per participant.

To increase the training data size, we employed three
augmentation techniques described in Tsinganos et al. [16]:

• Gaussian noise: Gaussian noise was added to the
original EMG data with a signal-to-noise ratio of 5
dB.

• EMG magnitude warping: To mimic the effect of
movement drifts of the electrode grids, we applied a
randomly generated cubic spline to the EMG signals.
This introduces non-linear warps to the signal.

• Wavelet decomposition and reconstruction: To fur-
ther increase the amount of data, we decomposed the
EMG signal using wavelets. Before reconstructing
the signal, we multiplied the decomposed factors by
a constant, ensuring that the reconstructed signal is
a novel yet representative (correlated) to the original
EMG signal.

The augmentations offered a three-fold increase in training
data, resulting in a total per subject of 18 min and 56 s.

2.2 Ethical approval
All participants gave their written informed consent to
participate in the study. The study was carried out in
accordance with the Declaration of Helsinki, except for
registration in a database. All procedures and experiments
were approved by the ethics committee of the Friedrich-
Alexander-Universität (applications 22-138-Bm and 21-150-
B).

2.3 Model
Using the EMG data collected, which were synced with
the digitally displayed hand kinematics, we trained our
previously published model [11], which is capable of ac-
curately and continuously predicting hand kinematics in
real-time for each individual participant. The model was
implemented in Python using PyTorch (version 2.1.0+cu121)
and PyTorch-Lightning (version 2.1.0).

The deep learning model first divided each 100ms EMG
window into five individual grids, resulting in five matrices
instead of one large one. The model was made out of two
parts: a convolutional network and a multi-layer percep-
tron. We have previously shown [18] that the convolutional
network extracts the motor information and projects it into
a high-dimensional latent space. The multi-layered percep-
tron mapped the high-dimensional space into the desired
3D kinematics output.

2.4 Latent Space Projection
The latent space of the models (Fig. 2C) are each 2256 di-
mensional vectors, which, for human comprehension, were
projected into only 2 (Fig. 2D). To achieve this, we used the
dimensionality reduction technique known as uniform man-
ifold approximation and projection (UMAP) [12]. UMAP
was chosen because it is capable of preserving both local
and, to some extent, global non-linear structures in the
data. This is accomplished by constructing a graph based
on similarities among data points, where the similarity
is computed using a user-selected metric, such as cosine
similarity in our case. The graph is then optimized to
reduce its dimensionality while retaining as many local and
global relationships as possible. However, the optimization
process is inherently stochastic, which can result in different
spatial rotations of the data for each subject. To ensure
consistent interpretability across subjects, we aligned the 2D
embeddings during the optimization process to minimize
orientation variations.

The parameters (Fig. 2E & F, Fig. 6B-I, and Fig. 7B)
extracted from the manifolds (Fig. 2D) were computed as
follows:

• For the temporal behavior analysis (Eq. 1, Fig. 6B
& C), the angle (α) between an embedding point
(p) and the centroid (c) of the task manifold was
computed using the formula:

α = arctan

(
py − cy
px − cx

)
(1)

Here, the subscripts x and y refer to the respective
components along the x- and y-axes of the points (p)
and the centroid (c). The angles between the centroid

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.28.24307964doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.28.24307964
http://creativecommons.org/licenses/by/4.0/


Fig. 2: A. The various hand tasks performed in this study by the control (thirteen healthy uninjured participants) and eight
participants with motor-complete SCI. The movements were executed at 0.5 Hz. B. Experimental setup is shown on both
an uninjured and an injured participant. We used five electrode grids. Three 8 by 8 grids were placed on the proximal part
of the forearm and two 13 by 5s above the wrist. C. Schematic overview of the deep learning model. Convolutional layers
scan EMG signals in spatial and temporal dimension, detecting motor unit and muscle fiber action potential ensembles
indicative of specific movement phases. Subsequent layers compress and integrate these overlaps, considering both intra-
grid and inter-grid information. The output of the convolutional layers is a high-dimensional latent space that separates
and preserves the information of each movement. For each 100 ms EMG window, the convolutional network produces an
n-dimensional vector that contains compressed information about the movement. The last part of the model is a multilayer
perceptron that maps the high-dimensional latent space into the desired 3D coordinates. A detailed explanation can be
found in Sı̂mpetru et al. [11]. D. Using UMAP, a non-linear dimensionality reduction technique that preserves the local
and global information, we project the latent space vectors into human understandable 2D. The manifolds are color-coded
according to the individual movements. For the projection metric, we computed the cosine distance to cluster similar
vectors irrespective of their amplitude. Interestingly, the movement clusters are positioned in the same way as the fingers
of the human hand. In addition, the grasping action is enclosed by the flexion and extension of all individual fingers. E.
For each manifold, we fit an inner and outer ellipse using the algorithm described by Halir et al. [17]. F. The points outside
either the inner or outer ellipse are considered outliers. The percentage of outliers is displayed on top of the ellipse.

and each point on the task manifold are then phase
unwrapped. For perfect circularity, this results in a
straight line (Fig. 6B), whereas imperfect circularity
leads to a discontinuous line. The measure of fitness
(R2) was computed between the phase unwrapped
angles and a linear fit for each task and for each
subject (Fig. 6C).

• Each manifold (Fig. 2D) was fitted with an ellipse
using the algorithm described in Halir et al. [17]. To
enclose the manifold within an ellipse, the fitted axes
(semi-minor and semi-major) were multiplied by a
factor of 2 (Fig. 2E, Fig. 6D). To further delineate
the anticipated shape of the actual manifold, we
used a secondary ellipse measuring 0.5 times the
dimensions of the fitted ellipse. This smaller ellipse,
in conjunction with the larger one, formed a 2D band
- an ellipsoidal annulus - that represented our hy-
pothesized manifold shape (Fig. 2E). Using this band
structure created by the larger and smaller ellipses,
we computed the number of outliers (Fig. 2F). The
number of outliers was divided into two groups
depending on whether they were encased by the
band or outside of it (Fig. 5). To assess how well
the manifold adheres to the 2D ellipsoidal band, we

computed the closest distance from each point on
the manifold to the band. The sum of these squared
distances is small when the band is closely followed
and increases as the spatial arrangement of the latent
space becomes more chaotic (Fig. 7B).

• Sparsity (s, Eq. 2, Fig. 6F & G) was defined as

s = 1−
∑

OA∑
A

(2)

1 minus the division between the sum of all overlap
areas (OA) and the sum of the total areas (A). This
measure yields a value of 1 in cases where there are
no overlaps, while a value of 0 indicates that all areas
overlap and that tasks cannot be distinguished from
each other.

• The number of motor dimensions (Fig. 6H & I) was
set to 8 at the start, which corresponds to the total
number of tasks. For each overlap found between
two tasks, the amount of motor dimensions was
reduced by 1, because the merged tasks were still
separable from the rest of the tasks.
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2.5 Conformal Prediction

Conformal prediction [19] is a framework for machine learn-
ing that provides calibrated prediction sets that, in turn,
can be used as a proxy for uncertainty quantification. We
used Regularized Adaptive Prediction Sets (RAPS) [20], as it
showed visually reliable prediction regions that adapt well
to the underlying data.

The fundamental concept behind RAPS is to construct
prediction sets around individual predictions made by a
model. These sets are designed to capture the true target
value with a certain probability. Unlike point predictions,
these prediction sets provide a range of possible values
and quantify the uncertainty associated with the model’s
predictions. In this study, we used prediction sets with a
95% probability of containing the true class within the mea-
sured data. This approach allowed us to quantify whether
a prediction is considered certain — indicated by a single
prediction within the set — or uncertain, denoting multiple
predictions within the set (Fig. 4C & 5B).

2.6 Comparison Models

We compared our model with two standard machine learn-
ing approaches, a linear discriminant analysis model to
separate movement tasks and a ridge regressor to predict
proportional movement. Both models were trained with the
following features computed for each 100ms EMG window:

• mean absolute value
• root mean square value per electrode
• slope sign change
• waveform length
• zero crossings

This resulted in 324 features for each EMG window. The fea-
tures were standardized using the statistics obtained from
the training set. During testing, the same scaling parameters
derived from the training set were applied.

2.7 Statistical Measures

The statistical analysis (Fig. 3C, 4D, 6C, 6G, and 6I) was per-
formed using Welch’s t-test because the normal distribution
assumption of the data could not be guaranteed. A p-value
of below 0.05 was considered significant.

3 RESULTS

We collected EMG data from two groups. The control group
consisted of 13 uninjured participants while the SCI group
consisted of 8 people with motor-complete SCI (C3-C6),
classified as AIS grades A to C [2]. Participants were asked
to attempt various hand movements displayed on a screen,
such as grasping, pinching, and flexing each individual
finger while recording their EMG signals from the forearm.
Each movement was displayed through a virtual hand.
Using the EMG and synchronized hand kinematics data, we
trained our previously published AI model [11] capable of
real-time kinematics prediction for each participant individ-
ually to assess whether proportional control can be used in
individuals with SCI and if so for which movements.

3.1 Hand Kinematics Prediction

We evaluated the prediction of the kinematics using the
Euclidean distance between the expected and estimated
hand kinematics (Fig. 3A). Fig. 3B shows the prediction for
two representative participants (the 2nd control participant
and the 8th participant with SCI). The colored hands, shown
at the top, illustrate the active participation of the index
finger in the executed movement. For instance, tasks such
as grasping and pinching activate the index finger, while
tasks such as flexion of the thumb do not. For an assessment
of relative predictive capacity, we show the index fingertip
prediction versus the expected values throughout the test
set, encompassing all executed movements (Fig. 3B). The
aggregated Euclidean distance across all subjects is depicted
in Fig. 3C. The mean distance for the control participants
was 13.6 ± 15.4 mm, while for the SCI participants it was
23.9 ± 23.2 mm. Each subject contributed 5,762 datapoints,
resulting in a total of 120,980 for the entire dataset (74,884
from the control group and 46,096 from the SCI group). The
means were found to be significantly different (p < 0.001,
Welch’s t-test).

In the representative example depicted in Fig. 3B, it is ev-
ident that the spinal cord injured participant demonstrated
proportional control over both pinching and, to some extent,
the action of closing and opening the fist. This indicates their
ability to generate voluntary and task-modulated signals
despite having a motor-complete SCI. Despite some noise,
the AI successfully interpreted this activity and generated
the intended hand kinematics, underscoring the viability of
proportional control in individuals with SCI.

3.2 Latent Space Analysis

After examining the prediction of the AI model (that is, the
correlation between estimated and expected kinematics), we
examined the internal representation learned by the AI from
the EMG signals, which corresponds to the latent space of
the model (Fig. 4, 5, 6, and 7). Because the latent space of
the model contains a human-incomprehensible amount of
dimensions, we projected the latent space using UMAP into
2 dimensions. Briefly, this method enables the visualization
of high-dimensional nonlinear data into a discernible low-
dimensional output (see Methods for details). The UMAP
output was analyzed for both the control and SCI groups.
We compared the spread of the clusters for each digit that
was learned by the AI, their overlaps, and the shape of
the continuous prediction relative to time and space. We
observe a lack of overlap between the clusters of the control
group compared to the SCI group. Participants with SCI
showed overlaps between related tasks (e.g., ring and pinky
fingers are anatomically close together) (Fig. 4B), which may
indicate that at the neural level there is a low number of
spared motor units encoding that specific task. In addition,
the clusters of the control group are arranged in circular
shapes, whereas in the SCI group they generally appear
more chaotic, which indicates that sinusoidal movements
(e.g., continuous change in index flexion and extension
position) are not discernible as well as for uninjured par-
ticipants.
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Fig. 3: A. The predictions derived from the test dataset are compared against the camera recorded kinematics of a
repersentative uninjured participant by utilizing the Euclidean distance of the predicted and measured individual fingertip
trajectories. B. Comparison of predicted and expected index fingertip positions (y-axis) for an uninjured (n. 2) and an SCI
afflicted participant (n. 8) in the test set. The colored and grayed-out indications at the top denote whether the index finger
is active or not during a task. C. Mean Euclidean distance for all subjects in mm. Control group participants show an error
of 13.6 ± 15.4 mm, while the participants with SCI demonstrate an error of 23.9 ± 23.2 mm. Statistical significance has
been confirmed (p < 0.001) using a Welch’s t-test with a total of 120,980 data points with 5,762 per participant (74,884 from
control group and 46,096 from SCI group).
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Fig. 4: A. The latent spaces of the trained networks are projected into 2D using UMAP [12], a non-linear dimensionality
reduction technique that preserves local and global information. A support vector classifier is used to separate the clusters
in the 2D projection. We observed that for some participants with SCI the tasks could not be entirely separated and appear
to be intertwined. To account for this uncertainty in classification, we applied conformal prediction to get prediction sets
instead of only one prediction per data point. The prediction sets are 95% probable to contain the correct class inside. If
a prediction set is uncertain (i.e., it contains more than one class), we can solve the uncertainty by looking at previous
predictions that have been certain and thus making an informed estimate of the class. B. Example 2D projections showing
the 2nd uninjured (control) and 8th spinal cord injured participant. Datapoints are colored according to each movement. C.
Visualization of prediction uncertainty for the example latent space projections from B. The colorbar indicates the number
of classes within the prediction set. A set is considered certain if it contains only one class. A prediction set with more than
one class represents uncertainty in the model. D. Accuracy over all participants. Control participants achieved 99.8% while
those with a SCI 98.3% accuracy. The points from the SCI group are denoted by an ”S” followed by the participant id. No
statistical significance (p = 0.06) has been found using Welch’s t-test.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.28.24307964doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.28.24307964
http://creativecommons.org/licenses/by/4.0/


Fig. 5: A. The high-dimensional latent space was projected into 2D using UMAP [12]. Each task manifold was fitted with
a 2D band representing our hypothesized optimal shape (see Methods). The number of outliers outside the band and
those enclosed by it was computed and averaged for each subject. B. Using the outlier data obtained as described in A, a
support vector classifier was trained to separate the participants based on the two features. Uncertainty was gauged using
conformal prediction (see Methods). The numbers denote the participant ID. C. For interpretability, one certain and one
uncertain example is shown for the control and SCI group. The participant IDs are indicated in the upper right corners.

3.2.1 Classification Between Tasks

The 2D projected latent space was clearly separable (Fig. 4)
into the different task clusters. The organization of the
latent space into sparse task clusters represents a logical and
intrinsic initial stage for the AI model during training. With-
out this step, the model would lack the ability to perform
targeted searches for patterns indicative of spatial positions,
thereby hindering its capacity for movement-specific anal-
ysis. To classify the movements, we used a support vector
classifier with conformal prediction to assess the uncertainty
level in the separation learned by the network. Conformal

prediction (refer to Section 2.5) allows us to discern in-
stances where the model lacks confidence in its separation,
thus showing up as overlaps of clusters in the latent space
(Fig. 4A). For consistency, we selected the same participants
(2nd control and 8th SCI) to illustrate the projections of the
2D latent space both before (Fig. 4B) and after applying
conformal prediction (Fig. 4C). A prediction set containing
more than one class was considered uncertain, while a set
comprising only one prediction was deemed certain. The
aggregated separation accuracy is presented in Fig. 4D.
The uninjured participants had a mean separation accuracy
of 99.8%, while for those with an SCI it was 98.3%. No
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Fig. 6: A. The 2D projection of the latent space (example shown for the 8th SCI subject) was analyzed for both temporal
(B & C) and spatial (D-H) behaviour. B. The angle of each point of the manifold of the task relative to the centroid of
the manifold was computed using Eq. 1. The resulting angles have then been phase-unwrapped, which, in case of being
the result of a circular path, would result in a straight line. This assumption was used to calculate the R2-Score of the
angles in a linear regression fit. C. Analysis described in B was performed on all participants. The differences between
uninjured participants and those affected by an SCI were found to be significant (p < 0.001) using Welch’s t-test. D. For the
spatial behaviour analysis, we fitted ellipses around each task manifold and computed the intersections between them. E.
Confusion matrices for the 2nd control and the 8th SCI participants. Movement tasks are denoted by a simplified notation
(T - Thumb, I - Index, M - Middle, R - Ring, P - Pinky, G - Grasp, 2F - 2 Finger Pinch, and 3F - 3 Finger Pinch). F. Using
Eq. 2 we calculated the amount of overlaps divided by the total area of the manifold (see Methods for more details). G.
Sparsity analysis described in F was carried out on all participants. The differences between uninjured and participants
with SCI were not found to be significant (p = 0.24) using Welch’s t-test. H. The amount of separable motor dimensions
was considered the maximum of tasks executed (8). If there is overlap between two tasks, the amount is reduced by 1. I.
Motor dimension analysis described in H was carried out for all subjects. Differences between control and SCI participants
were not found to be significant (p = 0.17) using Welch’s t-test.
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Fig. 7: A. Correlation between the sum of squared residuals (distance from each point to 2D ellipsoidal band) and the
R2-Scores computed for predicted versus expected fingertip positions across the test set. The y-axis represents the average
prediction R2-Score, while the x-axis shows the sum of squared residuals. B. Correlation scatter plot with a superimposed
line of best fit, showing the relationship between the two measures. Additionally, the density of the points is shown by a
2D kernel density estimation (KDE). Marginal KDEs are also displayed for each axis. The correlation coefficient was -0.73,
indicating a significant negative relationship between the amount of deviation of the latent space from the 2D band (sum
of squared residuals) and the prediction of kinematics (p-value < 0.001). C. Comparison between our model and a ridge
regressor model, where each point on the graph represents the R2-Score of a task’s proportional prediction. The connecting
line links the corresponding task scores between the ridge regressor and our model. Statistical analysis revealed significant
differences between models for both SCI and control participants, with p-values less than 0.001, as determined by Welch’s
t-test. D. Comparison between our model and a linear discriminant analysis model (LDA), where each point on the graph
represents the accuracy of the movement task separation of a participant. The connecting line links the corresponding
scores between the LDA and our model. Statistical analysis revealed no significant differences between the models for both
SCI and control participants, with p-values greater than 0.05, determined by Welch’s t-test.

significant differences were observed between the uninjured
and the spinal cord injured participants (p = 0.06, Welch’s
t-test).

3.2.2 Classification Between Control and SCI
Latent space projection could be further used to distinguish
between uninjured and spinal cord injured participants with
100% accuracy (Fig. 5) despite the networks not receiving
any input data regarding the groups (e.g., if a specific
participant suffered a SCI or not). For each task cluster,
we computed a 2D idealized path in the shape of a band
(Section 2.4, Fig. 5A). Outliers situated both outside and
within the 2D path were used to determine the classification
of participants as either suffering from a SCI or not (Fig. 5A).
A support vector classifier was used in conjunction with

conformal prediction (Section 2.5) to separate SCI from
control participants based only on the amounts of internal
and external outliers from each task clusters (Fig. 5B). To
facilitate the understanding about the uncertain regions,
which correspond to movements that were not easily sepa-
rated by the AI model, we provide latent spaces for ”highly
certain” and ”highly uncertain” participants from both the
control and SCI groups in Fig. 5C.

Although the network has not been trained to distin-
guish between participants with and without SCI, the latent
space effectively encodes this information from its shape
alone. This is not surprising considering that the amount
of spared MU activity in SCI is significantly smaller than in
healthy [5].
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3.2.3 Manifold Parameters
We first examined the temporal behaviour of the task man-
ifolds (Fig. 6A & B). We wanted to understand whether the
appearing circular shapes have been constructed randomly
or if there is an underlying rotational path due to physio-
logical dynamics present in the EMG signals. To test this,
we computed the phase unwrapped angles of each point
forming the circular shape and calculated the coefficient of
determination (R2-Score) to see how similar the result is to a
straight fitted line (see Section 2.4 for details). The averaged
results for both participant groups are displayed in Fig. 6C)
and have been found to be statistically significant (p < 0.001,
Welch’s t-test).

The other two parameters extracted are concerned with
the spatial behaviour of the latent spaces. For each task
manifold, we computed an ellipse that best fitted the latent
space projection (Section 2.4, Fig. 6D) and calculated the in-
tersection area between the ellipses. The separation accuracy
for the 2 representative subjects (2nd control - 100% and 8th
SCI - 93.6%) can be seen in Fig. 6E. Using the intersections
and the overall area of the ellipse, we computed the sparsity
measure (Fig. 6F) which we displayed averaged over all
participants in Fig. 6G. The difference in separation accuracy
between the control and SCI group was not found to be
statistically significant (p = 0.24, Welch’s t-test).

Given the presence of overlaps, we computed the num-
ber of separable motor dimensions for each participant by
initially assuming that each participant has as many motor
dimensions as the number of tasks performed (total of 8
tasks) and subtracting 1 each time an overlap was detected
(Fig. 6H). The average results for both groups are displayed
in Fig. 6I and are not statistically significant (p = 0.17,
Welch’s t-test).

This demonstrates that the network has successfully
learned to distinguish individual movement tasks from
each other for the entire control group and the majority of
participants with SCI.

3.3 Correlation Between Prediction and Temporal Be-
haviour

Based on the prevalence of a predominant circular arrange-
ment of the movement task manifolds in the control group
compared to the SCI group (Fig. 6C), we evaluated the cor-
relation between the amount of deviation (sum of squared
residuals) of the latent space from a 2D fitted ellipsoidal
band and the prediction accuracy of the hand kinematics
(Fig. 7A & B). We computed the average R2-Score between
the predicted and expected fingertip positions for all move-
ments in the test set and correlated it against the sum
of squared residuals (Fig. 7A). In Fig. 7B, we display the
correlation scatter plot with the best fit line superimposed
on it. For a better understanding of the density of the points,
we also computed the kernel density estimation (KDE) and
displayed both the 2D KDE and the marginal KDE for each
respective axis. The correlation achieved was -0.73 (p <
0.001).

We note that movements that do not follow a circu-
lar path (the sum of squared residuals is high) exhibit a
negative correlation with their proportional controllability.
This correlation suggests the potential utility of employing

such analysis for the detection of proportionally recoverable
movements which can be used for targeted neurorehabilita-
tion.

3.4 Comparison With Standard Models
The last test performed was to compare our model with
two standard models. A ridge regressor to proportionally
predict all hand joints (Fig. 5C) and a linear discriminant
analysis model to classify individual hand movements from
each other (Fig. 5D). For regression, we present the mean
R2-Score for each movement task, which yields a total of 96
data points for the control participants and 64 data points
for participants with SCI. In the case of classification, we
report accuracy for each participant, resulting in 13 and 8
data points for control and spinal cord injured participants
respectively.

Our model demonstrates significantly better regression
performance (p < 0.001, Welch’s t-test), while showing no
significant difference from linear discriminant analysis in
classification (p = 0.80 or 0.22, Welch’s t-test).

4 DISCUSSION

We analyzed the feasibility of decoding proportional control
of hand movements for individuals with a chronic motor-
complete SCI, using a convolutional neural network. Our
system only requires EMG data recorded while attempting
different hand movements. The output of our AI model
can provide insight into which motor dimensions (hand
movements) are spared and proportionally controllable after
SCI. The results from the SCI group were compared with a
cohort of uninjured control participants.

We found that the prediction of hand kinematics for
certain movements attempted by individuals with SCI was
similar to that of uninjured participants (Fig. 3). Moreover,
by analyzing the latent space of the prediction models, we
observed that such movements describe distinctive circular
manifolds. We show that the deviation of a task manifold
from an ellipsoidal path is negatively correlated (-0.73, Fig.
7B) with the accuracy of the prediction. Our system can
thus produce a measure of how well a movement can be
proportionally predicted (Fig. 6 & 7).

4.1 Circular Latent Space Projections Correlate with
Proportional Prediction
Given that all participants in the SCI group have been
unable to use their hands for at least several years, we
anticipated that the error (mean Euclidean distance) be-
tween the estimated and expected hand kinematics would
be statistically higher for them compared to the control
group (Fig. 3). The network’s ability to proportionally de-
code some movements in the SCI group (Fig. 3) is consistent
with our previous findings, where we demonstrated similar
capabilities in a smaller subset of movements [4], [5].

Although not all movements attempted by participants
with SCI could be proportionally decoded, we found that
the majority of movement tasks were distinguishable from
each other using the latent space of the neural network
(Fig. 4 and Fig. 6G & I). The separation accuracy remained
consistent between the uninjured individuals and those
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with SCI, with no significant statistical differences observed
between the two groups (Fig. 6G & I). Our findings suggest
that participants with motor-complete chronic SCI were able
to produce signals varied enough to differentiate between
multiple movements. Our previous study [5], in which we
performed a real-time decomposition of sEMG signals dur-
ing movements analogous to those examined in this work,
found that most tasks shared a limited number of MUs. The
sparsity findings (Fig. 6G & I) in this study also support
this notion. It is easier to separate signals with less overlap
(fewer MUs) than those with a higher level of overlap, as
expected from uninjured participants.

Despite not training the hand kinematics decoder mod-
els to distinguish between individuals with and without
SCI, we demonstrate that the latent space encodes this in-
formation with 100% accuracy (Fig. 5). Not only do we find
the latent space to be structured, but we could also extract
different physiological parameters from it. We showed that
individual movement manifolds are temporally arranged in
a circular path, reflecting the cyclical nature of attempted
movements (Fig. 6B & C). Furthermore, we observed that
the separation of tasks is sparse, with no significant differ-
ences between the two groups (Fig. 6D-I).

A circle, however, is characterized not only by having
its constituting points follow a temporally circular path,
but also by the points being spatially equidistant from the
center. We demonstrate that the deviation from an elliptical
band fitted to an individual movement task manifold is
negatively correlated (-0.73) with the accuracy of movement
proportional decoding. This observation implies that as the
chaotic nature of a manifold increases, there is a correspond-
ing rise in the error rate of its proportional prediction (Fig.
7A & B).

4.2 Necessity of Deep Learning

We recorded the forearm muscles of participants with and
without SCI using 320 electrodes. Our previous research has
shown that decoding hand movements is enhanced with a
larger number of electrodes [21], as it eliminates the need
to precisely define the recording area, which is particularly
advantageous when dealing with the territories of unknown
spared MUs in participants with SCI. Having this large
amount of data warrants the question of the necessity of
a deep learning model, as a machine learning variant might
be just as effective and easier to implement in practice.

Indeed, we observed that our deep learning network
performs similarly to its machine learning counterpart in
movement classification (Fig. 7D). However, the machine
learning model struggles to proportionally predict move-
ments in both the injured and uninjured groups, a task at
which our deep learning network excels (Fig. 7C).

The success of the algorithms utilized for classifying
various hand movements (Fig. 7D) implies that they au-
tonomously acquired the ability to filter out non-movement
relevant MU signals while retaining those encoding motor
intent. This notion is further substantiated by the sparsity
measure (Fig.6G) and the quantification of separable motor
dimensions (Fig.6I).

4.3 Potential Clinical Application
Due to a negative correlation of -0.73 (p < 0.001, Fig. 7B)
observed between the deviation from circularity of the latent
space embeddings and the accuracy of the proportional
prediction, we propose that our system could serve as a test
to identify potential movements that can be fully restored
through an assistive system and direct monitoring of the
spared neural pathways during rehabilitation.

The proposed test would involve patients trying to repli-
cate the movements detailed in this study, while a model
predicts their kinematics based on recorded sEMG signals.
Subsequently, the UMAP projection of the latent space
could help identify circular manifolds. This identification
process could be performed by medical professionals or by
using algorithms, as described in Section 2.4. Implementing
such a test could help medical professionals in planning
and monitoring rehabilitation plans that specifically target
movements with the potential for proportional control by
the patient.

Another significant clinical application is that even when
a movement is not proportionally controllable, our system
demonstrates reliable classification accuracy (> 93%, Fig. 4).
Consequently, it can be at best used to proportionally de-
code a movement and at worst classify it as being different
from the other movements learned. This can be used as
the control input to an assistive device that has substantial
potential to enable patients to be independent in daily living
tasks and significantly reduce dependence on caregivers.

However, most importantly, our results emphasize the
need to assess whether a patient who cannot move without
assistance can produce volitional motor signals that are
detectable by EMG. This aspect is currently not part of the
standard SCI assessment procedure [2], despite the potential
presence of proportionally controllable EMG signals post-
injury. Such signals can inform assistive devices, such as an
exoskeleton or orthoses, on which movement to generate.
This distinction would not only significantly impact the
psychological well-being of patients by informing them that
they can regain movement with an assistive device, but it
would also benefit physicians. Doctors can design and plan
more effective rehabilitation treatments that target specific
movements that the patient can control. Furthermore, this
distinction would benefit researchers by eliminating the
time-consuming examination of each potential study candi-
date that would be necessary without such an assessment.
Therefore, we suggest that the motor-complete diagnosis
of SCI also assesses the ability to generate EMG signals.
If a patient can produce intentional EMG signals, they are
considered EMG incomplete; otherwise, they are classified
as EMG complete. The need for a more refined classification
of patients with motor-complete SCI has also been proposed
by Sangari et al. [22], who found a correlation between the
presence of spasticity and subsequent improvement in the
assigned grade of injury for the patient. Spasticity, indicative
of spared MUs post-injury, can be evaluated through non-
invasive methods such as EMG.

5 CONCLUSION

Our system demonstrated the ability to predict certain
movements proportionally in participants suffering from a
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motor-complete chronic SCI (Fig. 3) and achieved a classifi-
cation accuracy above 93% for the 8 attempted movements
(Fig. 4). Analysis of the latent space using UMAP revealed
that the internal representation learned by the model can
perfectly differentiate between participants with or with-
out SCI (Fig. 5). Furthermore, examination of the latent
space indicated that movement encoding occurs in sparse
manifolds, displaying a circular pattern specifically when
movement could be decoded proportionally (Fig. 6 & 7).

Our proposed model holds promise as a motor intent
decoder for individuals with motor-complete SCI. It consis-
tently classifies described motions and, in some cases, even
provides a proportional regression signal that can be used
for an assistive device.

Moreover, considering the correlation between the circu-
lar path of the latent space task manifold and the accuracy
in proportional control, we suggest that this correlation
could serve as a test to identify motor dimensions amenable
to proportional control. Implementing such a test could
help medical professionals develop more targeted and cus-
tomized rehabilitation plans to better assist patients.
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