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ABSTRACT 
 
Background 

There is a growing demand for advanced methods to improve the understanding and 
prediction of illnesses. This study focuses on Sepsis, a critical response to infection, aiming 
to enhance early detection and mortality prediction for Sepsis-3 patients to improve hospital 
resource allocation. 

 
Methods 

In this study, we developed a Machine Learning (ML) framework to predict the 30-day 
mortality rate of ICU patients with Sepsis-3 using the MIMIC-III database. Advanced big 
data extraction tools like Snowflake were used to identify eligible patients. Decision tree 
models and Entropy Analyses helped refine feature selection, resulting in 30 relevant features 
curated with clinical experts. We employed the Light Gradient Boosting Machine 
(LightGBM) model for its efficiency and predictive power.  

 
Results 
 
The study comprised a cohort of 9118 Sepsis-3 patients. Our preprocessing techniques 
significantly improved both the AUC and accuracy metrics. The LightGBM model achieved 
an impressive AUC of 0.983 (95% CI: [0.980-0.990]), an accuracy of 0.966, and an F1-score 
of 0.910. Notably, LightGBM showed a substantial 6% improvement over our best baseline 
model and a 14% enhancement over the best existing literature. These advancements are 
attributed to (I) the inclusion of the novel and pivotal feature Hospital Length of Stay 
(HOSP_LOS), absent in previous studies, and (II) LightGBM's gradient boosting 
architecture, enabling robust predictions with high-dimensional data while maintaining 
computational efficiency, as demonstrated by its learning curve. 
 
Conclusions 

Our preprocessing methodology reduced the number of relevant features and identified a 
crucial feature overlooked in previous studies. The proposed model demonstrated high 
predictive power and generalization capability, highlighting the potential of ML in ICU 
settings. This model can streamline ICU resource allocation and provide tailored 
interventions for Sepsis-3 patients. 

 
Keywords: Sepsis-3 prediction, Machine Learning, Entropy Analysis, Gradient 
Boosting Machine Model 

 
BACKGROUND 
 
Sepsis [1], a life-threatening condition triggered by infection, often leads to organ failure and 
exhibits rapid, unpredictable progression [2]. In the United States alone, Sepsis affects 
approximately 1.7 million adults annually, resulting in around 270,000 deaths. Notably, 
recent research involving over 110,000 hospital admissions underscored a significant 
association between prolonged hospital stays and diminished survival rates, particularly for 
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stays exceeding nine days. Globally, Sepsis accounted for nearly a fifth of all reported 
fatalities in 2017, with an estimated 11 million deaths out of nearly 49 million reported cases 
[3]. Given the severity of Sepsis's impact, understanding the factors contributing to elevated 
mortality rates among patients is imperative. 
 
The understanding of Sepsis has evolved notably with the introduction of Sepsis-3 by the 
Third International Consensus Definitions for Sepsis and Septic Shock in 2016 [4]. This new 
paradigm, emphasizing a clearer correlation between infection and subsequent organ failure, 
calls for fresh avenues of research. It not only reshapes diagnostic and treatment approaches 
but also provides clinicians and researchers with a refined framework for identifying and 
analyzing Sepsis cases accurately. Familiarity with this contemporary approach is 
indispensable for the development of effective diagnostic and therapeutic strategies, 
empowering healthcare professionals to confront this formidable medical challenge more 
effectively. 
 
Previously, methods for assessing Sepsis severity and mortality risk relied heavily on tools 
like the Simplified Acute Physiology Score-II (SAPS-II) [5], a severity-of-disease 
classification system primarily based on physiological data collected within the first 24 hours 
of ICU admission. However, the limitations of SAPS-II, particularly its susceptibility to 
missing data and rapid changes in patient condition post-admission, pose challenges in the 
dynamic ICU setting. Other methods, such as calculating a Sequential Organ Failure 
Assessment (SOFA) score [6], may suffer from subjectivity and interrater variability, leading 
to inconsistent results. 
 
In addition to traditional scoring methods, conventional statistical models like Logistic 
Regression [7] have been widely used for outcome prediction in Sepsis. However, these 
models often struggle to capture the intricate, non-linear relationships inherent in medical 
data. Moreover, they rely on assumptions about data distribution that are rarely met in 
medical contexts, leading to suboptimal predictions. The inadequacy of these models 
underscores the need for more advanced analytical techniques. 
 
Machine learning (ML) models have shown great promise in capturing complex patterns. [8-
10]. In recent years, ML models have emerged as effective alternatives, particularly for 
handling high-dimensional and unnormalized data [11-16]. Due to its unique characteristics, 
such as efficiency, accuracy, and the ability to handle large datasets, LightGBM [17] stands 
out. Leveraging those ensemble learning techniques, LightGBM sequentially builds decision 
trees to correct errors and improve predictive performance. Despite the increasing use of ML 
algorithms to predict mortality in ICU patients with Sepsis [18,19], none have yielded 
satisfactory results, potentially due to poor feature selection methodologies and inadequate 
parameter tuning. 
 
To address these challenges, our proposed model incorporates a novel decision tree-based 
Entropy Analysis [20] for feature selection, identifying significant factors for mortality 
prediction. This approach enhances computational efficiency and identifies hidden 
relationships in complex datasets, offering a more nuanced and precise approach to medical 
prediction.  
 
Our study aims to demonstrate the clinical applicability of this feature engineering process 
and evaluate the predictive performance of proposed model in mortality prediction for Sepsis-
3 patients. Additionally, the learning curve of our proposed model is plotted to validate its 
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generalization and predictive accuracy. Our prediction model complies with the standards of 
the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) initiative, guaranteeing thorough and transparent reporting [21,22]. The 
graphical abstract of this research is described in Figure 1. 
 
 

 
Figure 1: A graphical abstract of this study 

METHODS 
 
Data Availability 
 
The Medical Information Mart for Intensive Care III (MIMIC-III) is a comprehensive dataset, 
available to the public via https://physionet.org/content/mimiciii/1.4/, which includes de-
identified health information from more than 40,000 ICU admissions at the Beth Israel 
Deaconess Medical Center from 2001 to 2012 [23]. Created by the MIT Lab for 
Computational Physiology, MIMIC-III encompasses diverse data categories such as 
demographics, vital signs, laboratory test results, medications, and mortality outcomes. This 
extensive dataset enables multifaceted research in clinical informatics. 
 
Patient Selection 
 
We initially included patients who were classified as “Sepsis,” “severe Sepsis,” and “septic 
shock.” To exclude incomplete and repeated data, we have further narrowed data, as illustrate 
in Figure 1, adhering to specific inclusion criteria: (I) patients aged 18 years or older; (II) 
patients with complete demographic and lab test results and with fewer than 20% of features 
missing; (III) patients with SOFA scores.  

Patients with more than 20% of features missing were excluded by calculating the percentage 
of missing values for each patient and removing those who exceeded this threshold. For the 
remaining patients, missing values were addressed using random sampling imputation, where 
missing values were replaced with random values drawn from the existing non-missing 
values in the same column. This technique helps preserve the data distribution and maintain 
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variability within the dataset, mitigating biases and minimizing information loss inherent in 
incomplete datasets [24]. Moreover, this approach is particularly effective when the 
proportion of missing data is relatively low, as it helps ensure the imputed values are 
representative of the observed values. Sensitivity analyses were conducted to evaluate the 
impact of this imputation method, confirming that it did not introduce significant bias and 
maintained the robustness and predictive power of our models. Additionally, this method 
generates additional samples for model training, enhancing the model's robustness and 
predictive power. Duplicate records were identified and removed based on unique patient 
identifiers. For patients with multiple admissions, only the first admission record was retained 
to avoid redundancy and potential bias. 

 

 
Figure 1: It illustrates the process of patient selection 

  
 
Feature Selection and Pre-processing 
 
The feature selection process of the research unfolds in two distinct stages. Firstly, Entropy 
Analysis was applied using importance scores derived from decision trees, which measure 
each feature's contribution to reducing uncertainty (entropy) in the prediction model. Features 
with higher information gain scores were prioritized as they indicated greater predictive 
power. To set a threshold, we conducted an initial grid search to determine the approximate 
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ranges of information gain values. We decided to include features that provided at least 13% 
of the maximum importance score (approximately 0.01), which resulted in retaining the top 
30 features. This threshold was selected to balance predictive power and model complexity. 
The effectiveness of this threshold was validated through experimental results and cross-
validation, ensuring that the retained features offered the most predictive power while 
maintaining manageable model complexity. Secondly, clinical experts specializing in critical 
care reviewed and refined our selected features, ensuring their practical relevance and 
significance in the ICU setting. Their input was instrumental in adding certain features based 
on their medical knowledge and experience, while also recommending the removal of less 
significant features.  
 
Initially, drawing from existing literature and expert insights, demographic data including 
age, gender, ethnicity, weight, height, and body mass index (BMI), along with hospital and 
ICU lengths of stay and in-hospital mortality status, were extracted from initial ICU 
admission records. Vital signs such as heart rate (HR), mean arterial pressure (MAP), 
temperature (TEMP), respiratory rate (RR), and oxyhemoglobin saturation (SpO2) were 
recorded from the first 24 hours of ICU admission. Additionally, laboratory values 
encompassing blood routine examination, liver and kidney function, blood glucose, and 
arterial blood gas (ABG) measurements were abstracted. Given the high sampling frequency, 
maximum, minimum, and mean values were utilized to incorporate vital signs and related 
laboratory indicators effectively. 
 
Subsequently, employing Entropy Analysis based on Decision Trees with a threshold of 30, 
we refined the feature set, resulting in 30 features selected for further analysis as shown in 
Table 1. Furthermore, owing to the constraints posed by the relatively modest final sample 
size (4,559), we implemented bootstrapping [25], a statistically robust resampling technique 
aimed at augmenting the volume and diversity of the original patient population. 
Bootstrapping creates a larger dataset by repeatedly sampling with replacement, enhancing 
statistical power and model robustness. However, this technique has limitations, such as the 
risk of overfitting, where models perform well on training data but poorly on unseen data, 
and increased model variance, which affects prediction stability. To mitigate these issues, we 
recommend combining bootstrapping with other data augmentation techniques and cross-
validation methods, and validating models on external datasets to ensure robustness and 
generalizability. 
 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004


 
Table 1: A summary of numerical and categorical features. 

 
The Min-Max Scaler was employed to rescale numerical features, thereby normalizing them 
to a range of 0 to 1. This technique was chosen because it preserves the relationships between 
the original data points and is effective when the data does not follow a Gaussian distribution. 
This procedure plays a crucial role in ensuring that all numerical features contribute equally 
to the analysis, thereby mitigating biases resulting from features with larger scales. 
Categorical features underwent transformation using Label Encoder, which involves 
converting categorical labels into numerical codes, thereby enabling their integration into 
regression and ML models. This method was selected for its simplicity and efficiency, 
particularly suitable for tree-based models and manageable numbers of unique categories. 
These preprocessing techniques serve to standardize the dataset, a fundamental prerequisite 
for efficient model training and evaluation. Furthermore, they ensure that analyses accurately 
reflect the original measurements and categories present in the dataset. In conclusion, the 
complete process is demonstrated in Figure 2.  
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Figure 2: It presents the work flow of data preprocessing 

 
Model Development and Optimization 
 
Our final dataset encompasses 9,118 patients with 30 features. A train-test split is executed 
with an 80/20 ratio to facilitate model evaluation. To mitigate overfitting, we utilize Grid 
Search CV to identify the optimal combination of hyperparameters. In the GridSearchCV, the 
LGBMClassifier was tuned using several key parameters: num_leaves, which controls the 
complexity of the tree and thus influences the model's ability to capture features and avoid 
overfitting; learning_rate, which determines the step size at each iteration while moving 
towards a minimum of the loss function; feature_fraction, representing the fraction of 
features used for training each tree; bagging_fraction, indicating the fraction of data used for 
each iteration of bagging; and bagging_freq, defining how frequently bagging is performed. 
The cross-validation (cv) value was set to 5, meaning that the data was split into five subsets, 
with each subset used as a validation set once while the others were used for training. This 
ensures that the model is evaluated on different data portions, improving its generalization 
ability. Due to time constraints, we initially conducted a coarse GridSearch to determine the 
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approximate ranges for these parameters. The final parameter ranges were set as follows: 
num_leaves [31, 50, 100], learning_rate [0.05, 0.1, 0.3], feature_fraction [0.8, 0.9, 1.0], 
bagging_fraction [0.7, 0.8, 0.9], and bagging_freq [3, 5, 7]. After running GridSearchCV, the 
optimal parameters identified were num_leaves at 100, learning_rate at 0.3, feature_fraction 
at 0.8, bagging_fraction at 0.8, and bagging_freq at 3. These parameters collectively enhance 
the model's performance by balancing complexity, learning pace, and robustness through 
feature and data fraction adjustments. 
 
 
 We construct various ML algorithms, including Logistic Regression, LightGBM, CatBoost 
[26], Random Forest [27], K-Nearest Neighbors (KNN) [28], Support Vector Machine 
(SVM) [29], and Extra Gradient Boosting (XGBoost) [30]. The training process of these 
models included a grid search of model parameters. This search process aimed to find the 
best model which was determined based on the Area Under the Receiver Operating 
Characteristic (AUROC) scores of the cross-validation cohort. Accuracy and F1 scores are 
also computed for comparative analysis of model performance. Given the widespread 
adoption of AUC as an evaluation metric in existing literature, the selection of the proposed 
model is based on AUC on the cross-validation. LightGBM emerges as the top performer, 
consistent with our expectations of its superior performance compared to other models. 
LightGBM includes Gradient-based One-Side Sampling (GOSS), which improves 
computational efficiency by focusing on the most significant instances, and Exclusive Feature 
Bundling (EFB), which reduces feature dimensionality by bundling mutually exclusive 
features. Additionally, LightGBM is known for its speed and efficiency, with fast training 
times and low memory usage, making it ideal for large datasets. It also efficiently handles 
sparse data, which is common in real-world datasets. These features make LightGBM 
particularly effective for handling large-scale data and complex feature interactions. Since we 
observed a notably high importance score for the feature ho HOSP_LOS during Entropy 
Analysis, we calculated the AUC scores of the proposed model with and without this feature. 
An overview of the methodologies employed is illustrated in Figure 3. 
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Figure 3: It elaborates our novel feature engineering methodologies and model construction 

process. 

 
Statistical Analysis of Models 
 
To validate the statistical robustness of our model results, we employed comprehensive 
statistical tests, utilizing diverse criteria to evaluate overall performance. 
 
To ascertain whether these AUC scores were statistically different, we conducted the Mann-
Whitney U Test (Wilcoxon Rank-Sum Test) [31]. Unlike the Student's t-test, the Mann-
Whitney U Test does not require assumptions about the underlying dataset distribution, 
making it more suitable for our analysis. This non-parametric test is preferred over other non-
parametric tests like the Kruskal-Wallis test because it is specifically designed to compare 
two independent samples, making it ideal for comparing AUC scores. The null hypothesis 
posits that the AUC scores with and without HOSP_LOS are not statistically different, while 
the alternative hypothesis suggests AUC scores are significantly different. 
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Lastly, we conducted a statistical analysis on our train/validation dataset to compare their 
cumulative distributions. Utilizing the Kolmogorov-Smirnov test for its non-parametric 
nature, we made no assumptions about the specific distribution of the data [32]. This test was 
chosen over parametric tests like the Chi-Square test because it compares the entire 
distributions of two samples and is sensitive to differences in both location and shape of the 
empirical cumulative distribution functions. This is particularly important as some features in 
our dataset may not adhere to a normal distribution. With a predetermined significance level 
of 0.05, our null hypothesis assumes no statistically significant difference between the test 
and validation sets. 
 
Feature Impacts 
 
To deepen our analysis, we utilized SHapley Additive exPlanations (SHAP) [33] analysis to 
evaluate feature importance and elucidate the decision-making mechanisms of the predictive 
models, particularly within the framework of random forests. This advanced technique 
quantifies the influence of each feature on the model's predictions, offering valuable insights 
into the reasoning behind specific predictions. SHAP values were calculated by computing 
the average marginal contribution of a feature value across all possible combinations of 
features. This provides a unified measure of feature importance, reflecting the impact each 
feature has on the model's output. 
 
 
RESULTS 
 
Cohort Characteristics Model Completion 
 
Following our approach for feature selection and data augmentation for ICU patients with 
Sepsis-3 discussed before in this paper, our final dataset contained 9118 patients from 
MIMIC-III database. The selected cohort was then split into train/test cohorts randomly with 
a ratio of 80/20, which yielded a result of 7294 patients for the train and 1824 patients for the 
test cohorts. In addition to mortality rates, we analyzed demographic details such as age, 
gender, and ethnicity, and clinical characteristics including comorbidities, vital signs, and 
laboratory test results. The average age of the cohort was 65.13 years, with a standard 
deviation of 17.67 years. The gender distribution was 56.6% male and 43.4% female. 
Ethnicity was diverse, with the majority being White (70.9%), followed by Black/African 
American (7.3%), and other ethnicities (21.8%). Clinical characteristics included comorbid 
conditions such as diabetes (28.0%). Vital signs recorded included mean arterial pressure 
(min: 54.74, max: 106.11, mean: 76.17), heart rate (min: 73.09, max: 107.55, mean: 88.44), 
and respiratory rate (min: 12.82, max: 28.20, mean: 19.92), while laboratory tests included 
measurements of white blood cell count (min: 10.89, max: 15.41, mean: 13.14), hemoglobin 
(min: 10.00, max: 11.94), and creatinine levels (min: 1.36, max: 1.73).  

The training cohort was used to train the model, with Grid Search CV and K-fold cross-
validation identifying optimal parameters and validating the model. The testing cohort 
evaluated model performance. The best model was chosen based on AUC performance on the 
test set. Mortality rates were 19.5% for the training cohort (1422 out of 7294) and 20% for 
the testing cohort (365 out of 1824). The Mann-Whitney U Test for AUC results of 
LightGBM with and without HOSP_LOS yielded a P-value of 9.182598395744396e-89, 
indicating significantly different AUC scores. The Kolmogorov-Smirnov test compared 
training and test data distributions, with a predetermined significance level of 0.05. The P-
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value for HOSP_LOS was 0.1062, indicating no significant differences between cohorts. For 
the Logistic Organ Dysfunction System (LODS), the P-value was 0.1648, also showing no 
significant differences. However, P-values for age and average white blood cell counts 
(WBC_mean) were below the 0.05 threshold, indicating statistically significant differences in 
distribution between the training and test cohorts. 

The statistically significant differences in age and WBC_mean between cohorts indicate 
potential variations in the patient populations, affecting model generalizability. Age 
differences imply influence on mortality predictions, given age's critical role in Sepsis-3 
outcomes. Variations in WBC_mean highlight different inflammatory responses, impacting 
predictions. These findings suggest stratifying data by age and WBC_mean or using 
techniques like propensity score matching to balance these covariates, ensuring robust model 
performance across diverse populations. Details are illustrated in Table 2, which indicates no 
statistically differences between cohorts, except for age and WBC_mean. This ensures robust 
model generalization and performance across datasets.  
 

 
Table 2: It illustrates the P-values of train/test cumulative distributions for all the significant 

features. 

 
Evaluation Metrics, Proposed and Baseline Models Performance 
 
The summary of the results for both proposed and baseline models are shown in Table 3. The 
proposed approach resulted in the following metrics, AUC = 0.983, 95% CI = [0.980-0.990] 
as shown in Figure 4, accuracy score = 0.966, F1 score = 0.910, underscoring not only its 
accuracy but also its robustness in minimizing both Type I and Type II errors, thereby 
affirming its suitability for our predictive modeling tasks. 
 
In addition to the AUC score, we also evaluated the LightGBM model using precision, recall, 
and the confusion matrix to offer a more comprehensive evaluation of model performance. 
For the LightGBM model, the precision is 0.9618, indicating that 96.18% of the instances 
predicted as positive were indeed positive. The recall is 0.8195, meaning that 81.95% of the 
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actual positive instances were correctly identified by the model. The F1 score, which 
balances precision and recall, is 0.8850, reflecting a strong overall performance. The 
confusion matrix further details the model's predictions, with 1475 true negatives, 277 true 
positives, 11 false positives, and 61 false negatives. This indicates that the model has a low 
false positive rate and a relatively low false negative rate, contributing to its high precision 
and recall values. Finally, the R-squared value for the LightGBM model is 0.7385, suggesting 
that approximately 73.85% of the variance in the dependent variable is explained by the 
model. These additional metrics collectively demonstrate the robust performance of the 
LightGBM model across various evaluation criteria. 
 

 
Table 3: A summary of various evaluation metrics for the models 

 
Figure 4: A comparison of the ROC AUCs for all Models 

On the other hand, the baseline model development utilizing the MIMIC-III database, 
Random Forest proved to be the best baseline model. Random Forest resulted in the 
following metrics, AUC = 0.926, 95% CI = [0.910,0.940], accuracy score = 0.968, F1 score = 
0.915. It can be observed that the results of the proposed approach are far better than the 
results of the best baseline model. 
 
Shapley Value Analysis 
 
Figure 5 illustrates the SHAP value results. Based on this figure, HOSP_LOS had the most 
significant impact on the prediction of mortality for ICU patients with Sepsis-3, followed by 
ICU Length of Stay (ICU_LOS) and age. Intriguingly, the relationship between HOSP_LOS 
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and mortality appears to be negative, suggesting that extended hospital stays may correlate 
with lower mortality rates among ICU patients with Sepsis-3. Furthermore, the analysis 
indicates a positive contribution of ICU_LOS to mortality prediction, as evidenced by the 
proliferation of red dots towards the right. This implies that prolonged ICU stays may elevate 
mortality risks for ICU patients with Sepsis-3. Moreover, age and the Elixhauser Comorbidity 
Index (ELIXHAUSER_HOSPITAL) exhibit positive associations with prediction accuracy. 
This aligns with intuition, as advanced age and greater comorbidity burden typically elevate 
patient vulnerability and subsequent mortality risks. Whereas Minimum of Lactate Level 
(LACTATE_MIN) and Average Blood Urea Nitrogen level (BUN_MEAN) were the least 
important features for the prediction of mortality. The relative importance of features as 
indicated by SHAP values helped us refine our model by focusing on the most impactful 
variables. For instance, recognizing the significance of HOSP_LOS and ICU_LOS enabled 
us to ensure these variables were accurately represented and considered in our model tuning 
process. By leveraging SHAP insights, we could also identify less important features, 
allowing for potential dimensionality reduction and further optimization of the model's 
performance. This approach not only improved the interpretability of our model but also its 
predictive power by concentrating on the features that matter most. 

This study underscores the critical role of Hospital Length of Stay (HOSP_LOS) in mortality 
prediction. HOSP_LOS emerged as the most statistically significant factor, with the Mann-
Whitney U Test confirming that its absence results in significantly different AUC scores. 
Unlike ICU Length of Stay (ICU_LOS) and age, which are positively correlated with 
mortality, HOSP_LOS showed a negative correlation, suggesting that longer hospital stays 
allow for more effective treatment and management, thus improving survival rates. 

Incorporating HOSP_LOS into our model notably enhanced the AUC metric and provided 
deeper insights into Sepsis-3 patient outcomes. Unlike static indicators like ICU_LOS and 
age, HOSP_LOS is a dynamic variable that reflects treatment effectiveness, thereby 
enhancing the model's accuracy and flexibility. This feature complements other significant 
variables, making the predictive model more comprehensive and reliable. 
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Figure 5: It illustrates the contribution of each feature to the model's prediction for a specific 

instance. 

LIME Analysis 

In addition to SHAP, we employed Local Interpretable Model-agnostic Explanations (LIME) 
to provide interpretability at the individual prediction level [34]. LIME explains individual 
predictions by approximating the black-box model with an interpretable local model around 
the prediction of interest. 

For example, in one of the predictions, four features significantly contributed towards 
predicting Class 0. These features included age, urineoutput, lods, and resprate_mean, with 
specific values of 0.30, 0.04, 5.00, and 0.35 respectively. Each of these features influenced 
the prediction towards one of the classes. (see Figure 6). 

Additionally, spo2_min at 0.90 and wbc_min at 0.04, exactly on the threshold, contributed 
towards Class 1. While age being 0.30, which is less than 0.50, contributed towards Class 0; 
wbc_min at 0.04, above the threshold, contributed towards Class 0; urineoutput within the 
range of 0.03 to 0.04 further contributed towards Class 0; lods at the upper boundary of the 
3.00 to 5.00 range added to the likelihood of Class 0; and resprate_mean at 0.35, which is 
above 0.31, provided additional support towards Class 0. Aniongap_min at 0.18, below the 
threshold of 0.21, also contributed towards Class 0. These feature values collectively led to a 
strong prediction of Class 0, illustrating their significant roles in the model's decision-making 
process for this instance. 

Using LIME, we could explain and visualize how specific features influenced individual 
predictions, adding another layer of interpretability to our model. The combination of SHAP 
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and LIME provides a comprehensive understanding of both global feature importance and 
local prediction dynamics, enhancing the overall transparency and trustworthiness of the 
model. 

 

Figure 6: LIME explanation of feature contributions for an individual prediction. 

 
LightGBM’s Learning Curve Analysis 
 
Additionally, to evaluate LightBGM’s ability to handle unseen data, its learning curve has 
been plotted by software Python. Binary error, the proportion of incorrectly classified 
instances in the dataset, is decreasing as boosting rounds, sequential training of individual 
decision trees, rises, which is implying model’s classification accuracy. The convergence of 
both the training and testing curves has been observed. As depicted in Figure 7, a decreasing 
training error accompanied by a decreasing testing error indicates that LightGBM is learning 
effectively without overfitting. 
 

 
Figure 7: Error curve for training and validation data as tested on the LightGBM model. 

 
 
DISCUSSION 
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Existing Model Compilation Summary 
 
Several methods have been developed to predict mortality for ICU patients with Sepsis 
[16,19]. However, only one study focuses on Sepsis-3 using the MIMIC-III database [18], 
proposing XGBoost with an AUC of 0.857 (95% CI [0.839-0.876]). 
 
In our study, novel data preprocessing techniques have been utilized. Bootstrapping, a 
statistical resampling method, is applied to augment the limited sample size, doubling our 
dataset's size to 9118 samples.  
 
Our novel feature selection approach, Entropy Analysis using Decision-Tree, has allowed our 
proposed model to produce more accurate and robust results. Our approach has resulted in an 
almost 15% Improvements of AUC metric. Our proposed model, LightGBM, has distinct 
features such as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB), enabling it to be more computationally efficient.  
 
In addition, our approach has also enabled us to find the most statistically significant factor in 
prediction of mortality, which is HOSP_LOS. Mann-Whitney U Test is also performed to 
prove that the absence of HOSP_LOS results in statistically different AUC score, and this 
feature is not included in the best existing literature [18].  
 
Although the existing proposed methodology in the literature was successful in predicting 30-
day mortality for ICU patients of Sepsis-3, it possessed several drawbacks. First, they have 
failed to consider more efficient feature engineering techniques such as Entropy Analysis, 
thus it ignored the most significant feature in predicting mortality which is HOSP_LOS. 
Secondly, the existing literature has a wide confidence internal for its AUC metric. A wide 
confidence interval can be a consequence of an inadequate sample size used for evaluation. 
To provide a clearer comparison, we have summarized the differences in methodologies and 
results between our study and the best existing literature  in Table 4. 
 
Our proposed approach offers several advantages over prior research: (a) Novel 
preprocessing and feature engineering techniques significantly enhanced model performance, 
achieving substantial improvements over existing literature. (b) Identification of a crucial 
feature, HOSP_LOS, which was overlooked by other studies but is statistically significant in 
predicting mortality. (c) Utilization of LightGBM and Grid Search CV, which are more 
effective for handling large-scale, high-dimensional datasets with better computational 
efficiency. These advancements resulted in nearly a 10% improvement over existing models, 
highlighting the efficacy of our methods in enhancing predictive performance and advancing 
mortality prediction in the medical domain. 
 

  Hou et al. (2020) Our Study 

Proposed Model XGBoost LightGBM 

AUC 0.857 0.983 

95% CI for AUC 0.839-0.876 0.980-0.990 

Feature Engineering 
Techniques 

Stepwise Analysis Entropy Analysis using Decision 
Tree 

Top 5 Significant Features Urine output, Lactate min, Bun 
mean, sysbp min, inr max 

hosp_los, icu_los, Age, 
Elixhauser hospital, Urine output 

Table 4: Comparative Analysis Between Our Study and the Best Existing Study 
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Practical Applications 

Our research has several practical applications. Accurate prediction of 30-day mortality for 
Sepsis-3 patients allows hospitals to better allocate ICU resources, directing critical care to 
those at higher risk. This can lead to more personalized and timely interventions, improving 
patient outcomes and reducing mortality rates. The inclusion of features like Hospital Length 
of Stay (HOSP_LOS) enhances the model's predictive power, aiding clinicians in making 
informed decisions about patient care. Additionally, the streamlined preprocessing 
methodology reduces the number of relevant features, making the model more efficient and 
less resource intensive. Furthermore, our methods can be adapted to predict outcomes for 
other critical conditions in ICU settings, broadening the research's impact across various 
medical scenarios. 

 

Study Limitation 
 
Our study has several main limitations. Firstly, the lack of external datasets like MIMIC-III 
restricts our ability to validate the model's effectiveness. Future research should aim for 
external validation with comprehensive and contemporary data from multiple institutions, 
ensuring robustness across diverse healthcare environments. The MIMIC-III database is over 
10 years old and lacks historical information, introducing potential biases. Utilizing newer 
databases reflecting current clinical practices and technologies will enhance model accuracy 
and applicability. 
 
Despite using robust entropy-based feature selection, relevant features might still be missed. 
Continuous collaboration with clinical experts is essential to ensure comprehensive feature 
consideration. Additionally, the MIMIC-III database originates from a single medical center, 
which may introduce biases due to variations in patient demographics and treatment protocols 
across different institutions. 
 
Model overfitting remains a concern, as high performance on training data may not fully 
translate to real-world settings. Extensive external validation and potential model retraining 
are necessary to confirm generalizability. Furthermore, the temporal changes in clinical 
practices, treatment protocols, and healthcare technology, given the MIMIC-III dataset spans 
from 2001 to 2012, could affect the model's applicability to current patient populations. 
 
Data imputation, while necessary, can introduce biases. Future studies should explore 
alternative imputation methods and their impacts to ensure robustness. Although 
bootstrapping increased the sample size, the final cohort of 9118 patients may still be 
relatively small for certain sub-analyses. Larger datasets could improve the model's accuracy 
and reliability. 
 
Addressing these threats in future research will enhance the robustness and applicability of 
our predictive model for ICU patients with Sepsis-3. While the current study advances the 
prediction of 30-day mortality for Sepsis-3 patients, acknowledging and addressing these 
limitations is crucial. Future research should focus on external validation and incorporating 
more recent and diverse datasets to improve the generalizability and reliability of the 
predictive model. 
 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004


 

 
 
CONCLUSION 
 
Utilizing bootstrapping, Entropy Analysis via Decision-Tree algorithms, data imputation 
strategies, and model optimization techniques not only enhances predictive model accuracy 
and robustness but also improves generalization to unseen data. This is evident from notable 
improvements in AUC and Accuracy metrics, outperforming existing methodologies. These 
advancements underscore the importance of feature selection for computational efficiency 
and highlight the potential of ML as a valuable tool in the dynamic ICU environment, where 
precise predictive models are crucial. 
 
In future studies, the proposed approach could be validated using datasets from other 
healthcare systems to ensure its applicability and robustness across different populations and 
settings. Moreover, incorporating the comprehensive information available in the MIMIC-III 
dataset, such as clinical notes and images, as inputs for models holds promise for further 
research and exploration. These rich data sources could provide additional context and 
features, potentially leading to even more accurate and reliable predictive models. By 
leveraging diverse data types and sources, we aim to develop models that not only perform 
well in controlled settings but also demonstrate strong generalizability and reliability in real-
world clinical environments. 
 
Ultimately, through ongoing research efforts and the integration of varied datasets and 
advanced data types, we anticipate further enhancing the model's generalizability and 
performance. This continuous improvement is essential to developing reliable tools that can 
aid clinicians in making informed decisions, thereby improving patient outcomes in intensive 
care units and beyond. 
 
ABBREVIATIONS 
 
ML: Machine Learning; ICU: Intensive Care Unit; SAPS-II: Simplified Acute Physiology 
Score-II; SOFA: Sequential Organ Failure Assessment; AUROC: Average Area Under the 
Receiver Operating Characteristic Curve; LIME: Local Interpretable Model-agnostic 
Explanations 
 
 
 
Acknowledgments 
 
The authors extend their gratitude to the developers of MIMIC-III for offering a detailed and 
comprehensive public EHR dataset. 
 
Funding    
 
No funding was involved in this research.  
 
Author information 
 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004


Authors and Affiliations 
 
Department of Industrial and Systems Engineering, University of Southern California (USC), 
Andrus Gerontology Center, 3715 McClintock Ave GER 240, Los Angeles, CA 90089 
Yu Z, Ashrafi N, Li H, Pishgar M 
 
Department of Health Science, California State University, Long Beach (CSULB), 1250 
Bellflower Blvd, Long Beach, CA 90840, United States of America 
Alaei K 
 
Authors' contributions 
 
Z.Y., M.P.: Involved in all aspects of this study. N.A., H.L.: Major revision of the 
manuscript. Expert insights were provided by K.A. 
 
Declaration 
 
Availability of data and materials  
 
The MIMIC-III database which was used during the current study is publicly available. The 
Medical Information Mart for Intensive Care III (MIMIC-III) is a comprehensive dataset, 
available to the public via https://physionet.org/content/mimiciii/1.4/  
 
Ethics approval and consent to participate 
 
The dataset used to support the conclusions of this article is sourced from the Medical 
Information Mart for Intensive Care version III (MIMIC-III). As this database is public and 
de-identified, informed consent and Institutional Review Board approval were not required. 
All procedures followed the relevant guidelines and regulations. 
 
Consent for publication 
 
Not applicable. 
 
Competing interests 
 
The authors declare that they have no competing interests. 
 
 
 
 
 
 
 
 
 
 
 
 
 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004


 
 
REFERENCES 
 
[1]  Fleischmann-Struzek C, Rudd K. Challenges of assessing the burden of sepsis. Med 
Klin Intensivmed Notfmed. 2023 Dec;118(Suppl 2):68-74. doi: 10.1007/s00063-023-01088-
7. 
[2]  Evans T. Diagnosis and management of sepsis. Clin Med (Lond). 2018 
Mar;18(2):146-149. doi: 10.7861/clinmedicine.18-2-146. PMID: 29626019; PMCID: 
PMC6303466. 
[3]  Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara 
DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, 
Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, 
Angus DC, Murray CJL, Naghavi M. Global, regional, and national sepsis incidence and 
mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020 Jan 
18;395(10219):200-211. doi: 10.1016/S0140-6736(19)32989-7.  
[4]  Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, 
Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall 
JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third 
International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 
23;315(8):801-10. doi: 10.1001/jama.2016.0287. PMID: 26903338; PMCID: PMC4968574. 
[5]  Kajdacsy-Balla Amaral AC, Andrade FM, Moreno R, Artigas A, Cantraine F, Vincent 
JL. Use of the sequential organ failure assessment score as a severity score. Intensive Care 
Med. 2005 Feb;31(2):243-9. doi: 10.1007/s00134-004-2528-6. Epub 2005 Jan 25. PMID: 
15668764. 
[6]  Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart 
CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to 
describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related 
Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996 
Jul;22(7):707-10. doi: 10.1007/BF01709751. PMID: 8844239.  
[7]  Ambrish G, Bharathi Ganesh, Anitha Ganesh, Chetana Srinivas,  Dhanraj, Kiran 
Mensinkal, Logistic regression technique for prediction of cardiovascular disease, 
Global Transitions Proceedings, Volume 3, Issue 1, 2022, Pages 127-130, ISSN 2666-285X, 
https://doi.org/10.1016/j.gltp.2022.04.008. 
[8] A. Palkar, C. C. Dias, K. Chadaga, and N. Sampathila. Empowering Glioma 
Prognosis With Transparent Machine Learning and Interpretative Insights Using Explainable 
AI. IEEE Access. 2024; 12:31697-31718. doi:10.1109/ACCESS.2024.3370238. 
[9] K. Chadaga, S. Prabhu, N. Sampathila, et al. Explainable artificial intelligence 
approaches for COVID-19 prognosis prediction using clinical markers. Scientific Reports. 
2024; 14:1783. doi:10.1038/s41598-024-52428-2. 
[10] V. V. Khanna, K. Chadaga, N. Sampathila, S. Prabhu, R. C. P. Varada. A machine 
learning and explainable artificial intelligence triage-prediction system for COVID-19. 
Decision Analytics Journal. 2023; 7:100246. doi:10.1016/j.dajour.2023.100246. 
[11]  Pishgar M, Theis J, Del Rios M, Ardati A, Anahideh H, Darabi H. Prediction of 
unplanned 30-day readmission for ICU patients with heart failure. BMC Med Inform Decis 
Mak. 2022 May 2;22(1):117. doi: 10.1186/s12911-022-01857-y. PMID: 35501789; PMCID: 
PMC9063206. 
[12]  Doumari S, Amiri K, Berahmand K, Ebadi MJ. Early and High�Accuracy Diagnosis 
of Parkinson’s Disease: Outcomes of a New Model. Comput Math Methods Med. 
2023;2023:1493676. doi: 10.1155/2023/1493676. 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004


[13]  Ashrafi N, Liu Y, Xu X, Wang Y, Zhao Z, Pishgar M. Deep Learning Model 
Utilization for Mortality Prediction in Mechanically Ventilated Icu Patients. 2024 Mar 22; 
doi:10.1101/2024.03.20.24304653. 
[14]  Bashiri H, Naderi H. LexiSNTAGMM: an unsupervised framework for sentiment 
classification in data from distinct domains, synergistically integrating dictionary-based and 
machine learning approaches. Soc Netw Anal Min. 2024;14(1):102. 
[15]  Pishgar M, Harford S, Theis J, Galanter W, Rodríguez-Fernández JM, Chaisson LH, 
Zhang Y, Trotter A, Kochendorfer KM, Boppana A, Darabi H. A process mining- deep 
learning approach to predict survival in a cohort of hospitalized COVID-19 patients. BMC 
Med Inform Decis Mak. 2022 Jul 25;22(1):194. doi: 10.1186/s12911-022-01934-2. PMID: 
35879715; PMCID: PMC9309593. 
[16]  Gao J, Lu Y, Ashrafi N, Domingo I, Alaei K, Pishgar M. Prediction of Sepsis 
Mortality in ICU Patients Using Machine Learning Methods. medRxiv. 2024 Mar 14; doi: 
10.1101/2024.03.14.24304184. 
[17]  Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A Highly 
Efficient Gradient Boosting Decision Tree. Neural Information Processing Systems 
[Internet]. 2017 Dec 4; Available from: 
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b7
6fa-Paper.pdf. 
[18]  Hou N, Li M, He L, Xie B, Wang L, Zhang R, Yu Y, Sun X, Pan Z, Wang K. 
Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning 
approach using XGboost. J Transl Med. 2020 Dec 7;18(1):462. doi: 10.1186/s12967-020-
02620-5. PMID: 33287854; PMCID: PMC7720497. 
[19]  Su Y, Guo C, Zhou S, Li C, Ding N. Early predicting 30-day mortality in sepsis in 
MIMIC-III by an artificial neural networks model. Eur J Med Res. 2022 Dec 17;27(1):294. 
doi: 10.1186/s40001-022-00925-3. PMID: 36528689; PMCID: PMC9758460. 
[20]  Lee MY, Yang CS. Entropy-based feature extraction and decision tree induction for 
breast cancer diagnosis with standardized thermograph images. Comput Methods Programs 
Biomed. 2010 Dec;100(3):269-82. doi: 10.1016/j.cmpb.2010.04.014. PMID: 20537756. 
[21]  Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, 
Vickers AJ, Ransohoff DF, Collins GS. Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann 
Intern Med. 2015 Jan 6;162(1):W1-73. doi: 10.7326/M14-0698. PMID: 25560730. 
[22]  Amritphale A, Chatterjee R, Chatterjee S, Amritphale N, Rahnavard A, Awan GM, 
Omar B, Fonarow GC. Predictors of 30-Day Unplanned Readmission After Carotid Artery 
Stenting Using Artificial Intelligence. Adv Ther. 2021 Jun;38(6):2954-2972. doi: 
10.1007/s12325-021-01709-7. Epub 2021 Apr 9. PMID: 33834355; PMCID: PMC8190015. 
[23]  Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, 
Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci 
Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35. PMID: 27219127; PMCID: 
PMC4878278. 
[24]  Kaiser J. Dealing with missing values in data. Journal of Systems Integration. 
2014;42–51. doi:10.20470/jsi.v5i1.178. 
[25]  Taleb I, Kassabi HT, Serhani MA, Dssouli R, Bouhaddioui C. Big Data Quality: A 
quality dimensions evaluation. 2016 Intl IEEE Conferences on Ubiquitous Intelligence & 
Computing, Advanced and Trusted Computing, Scalable Computing and Communications, 
Cloud and Big Data Computing, Internet of People, and Smart World Congress 
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). 2016 Jul; doi:10.1109/uic-atc-scalcom-
cbdcom-iop-smartworld.2016.0122. 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004


[26]  Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased 
boosting with categorical features. Neural Information Processing Systems [Internet]. 2017 
Jun 28; Available from: 
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285
549-Paper.pdf. 
[27]  Breiman L. Machine Learning. 2001;45(1):5–32. doi:10.1023/a:1010933404324. 
[28]  Kramer O. K-Nearest Neighbors. Dimensionality Reduction with Unsupervised 
Nearest Neighbors. 2013;13–23. doi:10.1007/978-3-642-38652-7_2. 
[29]  Adankon MM, Cheriet M. Support Vector Machine. Encyclopedia of Biometrics. 
2015;1504–11. doi:10.1007/978-1-4899-7488-4_299. 
[30]  Chen T, Guestrin C. XGBoost. Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. 2016 Aug 13; 
doi:10.1145/2939672.2939785. 
[31]  McKnight PE, Najab J. Mann – Whitney U Test. The Corsini Encyclopedia of 
Psychology. 2010 Jan 30; 1-1. Doi:10.1002/9780470479216.corpsy0524. 
[32]  Musakkir NA, Sunusi N, Thamrin SA. Stochastic model of the annual maximum 
rainfall series using probability distributions. Malaysian Journal of Fundamental and Applied 
Sciences. 2023 Oct 19;19(5):827–39. doi:10.11113/mjfas.v19n5.2945. 
[33]  Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions. Neural 
Information Processing Systems. 2017 May 22. 
[34]  Garreau D, Luxburg U. Explaining the explainer: A first theoretical analysis of LIME. 
Int Conf Artif Intell Stat. 2020 Jun;1287-1296. PMLR. 
 
 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004

