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ABSTRACT 
 
Background 
 
There has emerged an increasing demand for advanced methodologies aimed at augmenting 
our comprehension and prognostication of illnesses. This study is distinctly centered on 
tackling the complexity of Sepsis, an immediate bodily reaction to infection. Our objective is 
to refine the early identification and mortality forecasting for patients diagnosed under the 
Sepsis-3 criteria, with the overarching aim of enhancing the allocation of hospital resources. 
 
Methods 
 
In this study, we introduced a Machine Learning (ML) framework aimed at predicting the 30-
day mortality rate among Intensive Care Unit (ICU) patients diagnosed with Sepsis-3. 
Leveraging the Medical Information Mart for Intensive Care III (MIMIC-III) database, we 
systematically identified eligible patients using advanced big data extraction tools such as 
Snowflake. Additionally, we employed decision tree models to ascertain the importance of 
various features and conducted entropy analyses across decision nodes to refine feature 
selection. Collaborating with esteemed clinical experts, we curated a list of 30 relevant 
features. Moreover, we used the Light Gradient Boosting Machine (LightGBM) model due to 
its gradient boosting architecture and computational efficiency. 
 
Results 
 
The study comprised a cohort of 9118 patients diagnosed with Sepsis-3. Through our 
meticulous preprocessing techniques, we observed a marked enhancement in both the Area 
Under the Curve (AUC) and accuracy metrics. The LightGBM model yielded an impressive 
AUC of 0.983, with a 95% confidence interval [0.980-0.990]. Moreover, it exhibited a 
commendable accuracy of 0.966 and an F1-score of 0.910. Notably, LightGBM showcased a 
substantial 6% enhancement over our best baseline model and a significant 14% enhancement 
over the best existing literature. These noteworthy advancements can be attributed to several 
factors: (I) the incorporation of a novel and pivotal feature in our model, Hospital Length of 
Stay (HOSP_LOS), which has not been included in previous literature; (II) the inherent 
strengths of LightGBM's gradient boosting architecture, enabling robust predictions even 
with high-dimensional data, while maintaining computational efficiency, as evidenced by its 
learning curve. 
 
Conclusions 
 
The introduced preprocessing methodology not only led to a substantial reduction in the 
number of relevant features compared to the best existing literature, thereby alleviating 
computational complexities, but also enabled the identification of a crucial feature previously 
ignored in existing literature. Through the integration of these pivotal features and meticulous 
parameter tuning, our proposed model achieved remarkable predictive power, with its 
learning curve demonstrating its capacity for generalization to unseen data. This underscores 
the potential of ML as indispensable tools in the dynamic environment of the ICU. 
Employing our model stands to streamline resource allocation within ICUs, offering 
clinicians greater efficiency and tailored interventions for patients afflicted with Sepsis-3. 
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BACKGROUND 
 
Sepsis [1], a life-threatening condition triggered by infection, often leads to organ failure and 
exhibits rapid, unpredictable progression [2]. In the United States alone, Sepsis affects 
approximately 1.7 million adults annually, resulting in around 270,000 deaths. Notably, 
recent research involving over 110,000 hospital admissions underscored a significant 
association between prolonged hospital stays and diminished survival rates, particularly for 
stays exceeding nine days. Globally, Sepsis accounted for nearly a fifth of all reported 
fatalities in 2017, with an estimated 11 million deaths out of nearly 49 million reported cases 
[3]. Given the severity of Sepsis's impact, understanding the factors contributing to elevated 
mortality rates among patients is imperative. 
 
The understanding of Sepsis has evolved notably with the introduction of Sepsis-3 by the 
Third International Consensus Definitions for Sepsis and Septic Shock in 2016 [4]. This new 
paradigm, emphasizing a clearer correlation between infection and subsequent organ failure, 
calls for fresh avenues of research. It not only reshapes diagnostic and treatment approaches 
but also provides clinicians and researchers with a refined framework for identifying and 
analyzing Sepsis cases accurately. Familiarity with this contemporary approach is 
indispensable for the development of effective diagnostic and therapeutic strategies, 
empowering healthcare professionals to confront this formidable medical challenge more 
effectively. 
 
Previously, methods for assessing Sepsis severity and mortality risk relied heavily on tools 
like the Simplified Acute Physiology Score-II (SAPS-II) [5], a severity-of-disease 
classification system primarily based on physiological data collected within the first 24 hours 
of ICU admission. However, the limitations of SAPS-II, particularly its susceptibility to 
missing data and rapid changes in patient condition post-admission, pose challenges in the 
dynamic ICU setting. Other methods, such as calculating a Sequential Organ Failure 
Assessment (SOFA) score [6], may suffer from subjectivity and interrater variability, leading 
to inconsistent results. 
 
In addition to traditional scoring methods, conventional statistical models like Logistic 
Regression [7] have been widely used for outcome prediction in Sepsis. However, these 
models often struggle to capture the intricate, non-linear relationships inherent in medical 
data. Moreover, they rely on assumptions about data distribution that are rarely met in 
medical contexts, leading to suboptimal predictions. The inadequacy of these models 
underscores the need for more advanced analytical techniques. 
 
In recent years, ML models have emerged as promising alternatives, particularly for handling 
high-dimensional and unnormalized data [8-13]. Due to its unique characteristics such as 
efficiency, accuracy, and the ability to handle large datasets, LightGBM [14] stands out. 
Leveraging those ensemble learning techniques, LightGBM sequentially builds decision trees 
to correct errors and improve predictive performance. Despite the increasing use of ML 
algorithms to predict mortality in ICU patients with Sepsis [15,16], none have yielded 
satisfactory results, potentially due to poor feature selection methodologies and inadequate 
parameter tuning. 
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To address these challenges, our proposed model incorporates a novel decision tree-based 
entropy analysis [17] for feature selection, identifying significant factors for mortality 
prediction. This approach enhances computational efficiency and identifies hidden 
relationships in complex datasets, offering a more nuanced and precise approach to medical 
prediction.  
 
Our study aims to demonstrate the clinical applicability of this feature engineering process 
and evaluate the predictive performance of proposed model in mortality prediction for Sepsis-
3 patients. Additionally, the learning curve of our proposed model is plotted to validate its 
generalization and predictive accuracy. Our prediction model complies with the standards of 
the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) initiative, guaranteeing thorough and transparent reporting [18,19]. 
 
METHODS 
 
Data Availability 

 
The Medical Information Mart for Intensive Care III (MIMIC-III) is a comprehensive dataset, 
available to the public via https://physionet.org/content/mimiciii/1.4/, which includes de-
identified health information from more than 40,000 ICU admissions at the Beth Israel 
Deaconess Medical Center from 2001 to 2012 [20]. Created by the MIT Lab for 
Computational Physiology, MIMIC-III encompasses diverse data categories such as 
demographics, vital signs, laboratory test results, medications, and mortality outcomes. This 
extensive dataset enables multifaceted research in clinical informatics. 
 
Patient Selection 
 
We initially included patients who were classified as “Sepsis,” “severe Sepsis,” and “septic 
shock.” To exclude incomplete and repeated data, we have further narrowed data, as illustrate 
in Figure 1, adhering to specific inclusion criteria: (I) patients aged 18 years or older; (II) 
patients lacking demographic and lab test results and with fewer than 20% of features 
missing; (III) patients with SOFA scores.  
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Figure 1: It illustrates the process of patient selection 
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Feature Selection and Pre-processing 
 
The feature selection process of the research unfolds in two distinct stages. Firstly, we 
employed entropy analysis using Decision Trees to discern and filter out the most significant 
features. Secondly, we sought the input of clinical medical experts to validate and refine the 
selection. Initially, drawing from existing literature and expert insights, demographic data 
including age, gender, ethnicity, weight, height, and body mass index (BMI), along with 
hospital and ICU lengths of stay and in-hospital mortality status, were extracted from initial 
ICU admission records. Vital signs such as heart rate (HR), mean arterial pressure (MAP), 
temperature (TEMP), respiratory rate (RR), and oxyhemoglobin saturation (SpO2) were 
recorded from the first 24 hours of ICU admission. Additionally, laboratory values 
encompassing blood routine examination, liver and kidney function, blood glucose, and 
arterial blood gas (ABG) measurements were abstracted. Given the high sampling frequency, 
maximum, minimum, and mean values were utilized to incorporate vital signs and related 
laboratory indicators effectively. 
 
Subsequently, employing entropy analysis based on decision trees with a threshold of 30, we 
refined the feature set, resulting in 30 features selected for further analysis as shown in Table 
1. Furthermore, owing to the constraints posed by the relatively modest final sample size 
(4,559), we implemented bootstrapping [21], a statistically robust resampling technique 
aimed at augmenting the volume and diversity of the original patient population.  
 

 
Table 1: A summary of numerical and categorical features. 

 
During the data preprocessing stage, we employed data imputation techniques. Leveraging 
random data from the dataset to populate missing values serves to mitigate biases and 
minimize information loss inherent in incomplete datasets [22]. Moreover, this approach 
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generates additional samples for model training, thereby enhancing its robustness. The Min-
Max Scaler was employed to rescale numerical features, thereby normalizing them to a range 
of 0 to 1. This procedure plays a crucial role in ensuring that all numerical features contribute 
equally to the analysis, thereby mitigating biases resulting from features with larger scales. 
Categorical features underwent transformation using Label Encoder, which involves 
converting categorical labels into numerical codes, thereby enabling their integration into 
regression and ML models. These preprocessing techniques serve to standardize the dataset, a 
fundamental prerequisite for efficient model training and evaluation. Furthermore, they 
ensure that analyses accurately reflect the original measurements and categories present in the 
dataset. In conclusion, the complete process is demonstrated in Figure 2.  
 

 
Figure 2: It presents the work flow of data preprocessing 

 
Model Development and Optimization 
 
Our final dataset encompasses 9,118 patients with 30 features. A train-test split is executed 
with an 80/20 ratio to facilitate model evaluation. To mitigate overfitting, we utilize Grid 
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Search CV to identify the optimal combination of hyperparameters. We construct various ML 
algorithms, including Logistic Regression, LightGBM, CatBoost [23], Random Forest [24], 
K-Nearest Neighbors (KNN) [25], Support Vector Machine (SVM) [26], and Extra Gradient 
Boosting (XGBoost) [27]. The training process of these models included a grid search of 
model parameters. This search process aimed to find the best model which was determined 
based on the Area Under the Receiver Operating Characteristic (AUROC) scores of the 
cross-validation cohort. Accuracy and F1 scores are also computed for comparative analysis 
of model performance. Given the widespread adoption of AUC as an evaluation metric in 
existing literature, the selection of the proposed model is based on AUC on the cross-
validation. LightGBM emerges as the top performer, consistent with our expectations of its 
superior performance compared to other models. Since we observed a notably high 
importance score for the feature ho HOSP_LOS during entropy analysis, we calculated the 
AUC scores of the proposed model with and without this feature. An overview of the 
methodologies employed is illustrated in Figure 3. 
 

 
Figure 3: It elaborates our novel feature engineering methodologies and model construction 
process. 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.05.27.24308004doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24308004


 
Statistical Analysis of Models 
 
To validate the statistical robustness of our model results, we employed comprehensive 
statistical tests, utilizing diverse criteria to evaluate overall performance. 
 
To ascertain whether these AUC scores were statistically different, we conducted the Mann-
Whitney U Test (Wilcoxon Rank-Sum Test) [28]. Unlike the Student's t-test, the Mann-
Whitney U Test does not require assumptions about the underlying dataset distribution, 
making it more suitable for our analysis. The null hypothesis posits that the AUC scores with 
and without HOSP_LOS are not statistically different, while the alternative hypothesis 
suggests AUC scores are significantly different. 
 
Lastly, we conducted a statistical analysis on our train/validation dataset to compare their 
cumulative distributions. Utilizing the Kolmogorov-Smirnov test for its non-parametric 
nature, we made no assumptions about the specific distribution of the data [29]. This is 
particularly important as some features in our dataset may not adhere to a normal distribution. 
With a predetermined significance level of 0.05, our null hypothesis assumes no statistically 
significant difference between the test and validation sets. 
 
Feature Impacts 
 
To deepen our analysis, we utilized SHapley Additive exPlanations (SHAP) [30] analysis to 
evaluate feature importance and elucidate the decision-making mechanisms of the predictive 
models, particularly within the framework of random forests. This advanced technique 
quantifies the influence of each feature on the model's predictions, offering valuable insights 
into the reasoning behind specific predictions. 
 
RESULTS 
 
Cohort Characteristics Model Completion 
 
Following our approach for feature selection and data augmentation for ICU patients with 
Sepsis-3 discussed before in this paper, our final dataset contained 9118 patients from 
MIMIC-III database. The selected cohort was then split into train/test cohorts randomly with 
a ratio of 80/20, which yielded a result of 7294 patients for train and 1824 patients for the test 
cohorts. Moreover, the training cohort was used to train the model, Grid Search CV and K-
fold cross-validation were then used to identify the optimal parameters and to validate our 
model, and the testing cohort was used to evaluate the performance of our proposed model. 
Furthermore, the best model was chosen based on its AUC performance on the test set. The 
mortality for train and test were 19.5% and 20% respectively, out of 7294 patients in the 
training cohort, 1422 of them did not survive within 30-day, out of 1824 patients in the 
testing cohort, 365 of them did not survive. The Mann-Whitney U Test is performed for the 
AUC results of LightGBM with and without HOSP_LOS, and the P-value is 
9.182598395744396e-89. Thus, our null hypothesis for The Mann-Whitney U Test was 
rejected, suggesting that AUC scores are significantly different. The Kolmogorov-Smirnov 
test for training and test data distribution is also performed. The null hypothesis is that data 
distributions from training and test are the same, and the alternative hypothesis is that test and 
training datasets come from different distributions. Significance level is pre-determined to be 
0.05. The P-value for Hospital Length of Stay (HOSP_LOS) is 0.1062, suggesting there were 
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no significant differences between cohorts. In terms of Logistic Organ Dysfunction System 
(LODS), a scoring system used to assess the severity of organ dysfunction in critically ill 
patients which is a typical symptom for ICU patients with Sepsis-3, P value is 0.1648, 
showing that there were no statistically significant differences between cohorts either.   
However, P-value for age and P-value for average white blood cell counts (WBC_mean) did 
not exceed the significance threshold of 0.05, suggesting statistically significant difference in 
distribution between training and test cohorts. Details are illustrated in Table 2, which 
indicates no statistically differences between cohorts, except for age and WBC_mean. This 
ensures robust model generalization and performance across datasets.  
 

 
Table 2: It illustrates the P-values of train/test cumulative distributions for all the significant 
features. 
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Evaluation Metrics, Proposed and Baseline Models Performance 
 
The summary of the results for both proposed and baseline models are shown in Table 3. The 
proposed approach resulted in the following metrics, AUC = 0.983, 95% CI = [0.980-0.990] 
as shown in Figure 4, accuracy score = 0.966, F1 score = 0.910, underscoring not only its 
accuracy but also its robustness in minimizing both Type I and Type II errors, thereby 
affirming its suitability for our predictive modeling tasks. 
 

 
Figure 4: A comparison of the ROC AUCs for all Models 

 
On the other hand, the baseline model development utilizing the MIMIC-III database, 
Random Forest proved to be the best baseline model. Random Forest resulted in the 
following metrics, AUC = 0.926, 95% CI = [0.910,0.940], accuracy score = 0.968, F1 score = 
0.915. It can be observed that the results of the proposed approach are far better than the 
results of the best baseline model. 
 
Shapley Value Analysis 
 
Figure 5 illustrates the SHAP value results. Based on this figure, HOSP_LOS had the most 
significant impact on the prediction of mortality for ICU patients with Sepsis-3, followed by 
ICU Length of Stay (ICU_LOS) and age. Intriguingly, the relationship between HOSP_LOS 
and mortality appears to be negative, suggesting that extended hospital stays may correlate 
with lower mortality rates among ICU patients with Sepsis-3. Furthermore, the analysis 
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indicates a positive contribution of ICU_LOS to mortality prediction, as evidenced by the 
proliferation of red dots towards the right. This implies that prolonged ICU stays may elevate 
mortality risks for ICU patients with Sepsis-3. Moreover, age and the Elixhauser Comorbidity 
Index (ELIXHAUSER_HOSPITAL) exhibit positive associations with prediction accuracy. 
This aligns with intuition, as advanced age and greater comorbidity burden typically elevate 
patient vulnerability and subsequent mortality risks. Whereas Minimum of Lactate Level 
(LACTATE_MIN) and Average Blood Urea Nitrogen level (BUN_MEAN) were the least 
important features for the prediction of mortality. 
 

 
Figure 5: It illustrates the contribution of each feature to the model's prediction for a specific 
instance. 
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LightGBM’s Learning Curve Analysis 
 
Additionally, to evaluate LightBGM’s ability to handle unseen data, its learning curve has 
been plotted by software Python. Binary error, the proportion of incorrectly classified 
instances in the dataset, is decreasing as boosting rounds, sequential training of individual 
decision trees, rises, which is implying model’s classification accuracy. The convergence of 
both the training and testing curves has been observed. As depicted in Figure 6, a decreasing 
training error accompanied by a decreasing testing error indicates that LightGBM is learning 
effectively without overfitting. 
 

 
Figure 6: Error curve for training and validation data as tested on the LightGBM model. 

 
DISCUSSION 
 
Existing Model Compilation Summary 
 
Several methods have been concurrently developed to predict mortality for ICU patients with 
Sepsis [13,16]. However, to the best of our knowledge there is only one research focusing on 
prediction of mortality for ICU patients of Sepsis-3 using MIMIC-III database [15]. The 
paper proposed XGBoost as the best model, which yielded in the following results: AUC = 
0.857, 95% CI = [0.839-0.876].  
 
In our study, novel data preprocessing techniques have been utilized. Bootstrapping, a 
statistical resampling method, is applied to augment the limited sample size, doubling our 
dataset's size to 9118 samples.  
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Our novel feature selection approach, entropy analysis using Decision-Tree, has allowed our 
proposed model to produce more accurate and robust results. Our approach has resulted in an 
almost 15% Improvements of AUC metric. Our proposed model, LightGBM, has distinct 
features such as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB), enabling it to be more computationally efficient.  
 
In addition, our approach has also enabled us to find the most statistically significant factor in 
prediction of mortality, which is HOSP_LOS. Mann-Whitney U Test is also performed to 
prove that the absence of HOSP_LOS results in statistically different AUC score, and this 
feature is not included in the best existing literature [15].  
 
Although the existing proposed methodology in the literature was successful in predicting 30-
day mortality for ICU patients of Sepsis-3, it possessed several drawbacks. First, they have 
failed to consider more efficient feature engineering techniques such as Entropy Analysis, 
thus it ignored the most significant feature in predicting mortality which is HOSP_LOS. 
Secondly, the existing literature has a wide confidence internal for its AUC metric. A wide 
confidence interval can be a consequence of an inadequate sample size used for evaluation. 
 
Our proposed approach had several advantages over prior research papers which are as 
follows: (a) Novel preprocessing and feature engineering techniques collectively augmented 
the predictive performance of our models, leading to substantial advancements over those of 
existing literatures. (b) Identification of a statistically significant feature in the prediction of 
mortality which was ignored by other research papers. (c) Choice of LightGBM and Grid 
Search CV. LightGBM is more suitable at handling large-scale and high dimensional datasets 
with better computational efficiency. All of those have led an enhancement of nearly 10% 
compared to the existing literature as shown in Table 3. This substantial increase underscores 
the efficacy of our preprocessing strategies and feature engineering in refining model 
performance and underscores the potential for significant advancements in mortality 
prediction within the medical domain. 
 

 
Table 3: A summary of various evaluation metrics for the models 

 
Study Limitation 
 
Our study has two main limitations. Firstly, we were unable to validate our model using 
external datasets due to lack of having access to comprehensive databases like MIMIC-III. 
The absence of external data hampers our ability to confirm the effectiveness of our proposed 
model. It opens room for future researchers to validate our models externally by having 
comprehensive data ready.  
 
Secondly, the MIMIC-III database, which we used, is more than 10 years old, and it lacks 
historical information for many patients. This could introduce bias when selecting our 
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datasets. It opens room for newer database. To address this concern in future research, we 
aim to utilize newer databases to mitigate potential biases. 
 
CONCLUSION 
 
Utilizing bootstrapping, entropy analysis via Decision-Tree algorithms, data imputation 
strategies, and model optimization techniques not only enhances predictive model accuracy 
and robustness but also improves generalization to unseen data. This is evident from notable 
improvements in AUC and Accuracy metrics, outperforming existing methodologies. These 
advancements underscore the importance of feature selection for computational efficiency 
and highlight the potential of ML as a valuable tool in the dynamic ICU environment, where 
precise predictive models are crucial. 
 
In future studies, the proposed approach could be validated using datasets from other 
healthcare systems to ensure its applicability and robustness across different populations and 
settings. Moreover, incorporating the comprehensive information available in the MIMIC-III 
dataset, such as clinical notes and images, as inputs for models holds promise for further 
research and exploration. These rich data sources could provide additional context and 
features, potentially leading to even more accurate and reliable predictive models. By 
leveraging diverse data types and sources, we aim to develop models that not only perform 
well in controlled settings but also demonstrate strong generalizability and reliability in real-
world clinical environments. 
 
Ultimately, through ongoing research efforts and the integration of varied datasets and 
advanced data types, we anticipate further enhancing the model's generalizability and 
performance. This continuous improvement is essential to developing reliable tools that can 
aid clinicians in making informed decisions, thereby improving patient outcomes in intensive 
care units and beyond. 
 
ABBREVIATIONS 
 
ML: Machine Learning; ICU: Intensive Care Unit; SAPS-II: Simplified Acute Physiology 
Score-II; SOFA: Sequential Organ Failure Assessment; AUROC: Average Area Under the 
Receiver Operating Characteristic Curve 
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