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Abstract Calibration is a crucial step in developing agent-based models. Agent-based models10

are notorious for being difficult to calibrate as they can express various degrees of freedom when11

model parameters are unknown. Models that appear correctly calibrated to match macro-level12

observed data perform poorly when micro-level insights need to be inferred. As a result,13

policymakers cannot be certain that an agent-based model can accurately describe the dynamics14

of the real-world phenomena that the model tries to mimic. To begin tackling this challenge, we15

developed a methodology for an epidemiological use case at a full population scale of 17 million16

agents to observe the effects of using microlevel data for the calibration on the accuracy of the17

microlevel model outcomes. We show that by calibrating a model on national statistics, but using18

individual-level microdata, we can on average get 36% more accurate model outcomes on a19

subnational level. Our model implementation performs two orders of magnitude faster than20

prior work and allows efficient calibration on HPC computer systems.21

22

Introduction23

Agent-basedmodeling (ABM) has emerged as a powerful tool for exploring the behavior of complex24

social systems over time Conte and Paolucci (2014). Agent-based models are designed to simulate25

the interactions between autonomous agents, allowing for a nuanced representation of emergent26

phenomena. In contrast to equation-based approaches, ABM allows us to program each agent to27

follow a set of rules that follow from a real-world system. Agents typically interact with a limited28

number of neighboring agents. In social systems, for example, agents are often connected through29

social networks (e.g. family, co-workers, friends).30

Practical application of ABM to real-world use cases faces several challenges. One of the main31

difficulties in ABM is dealing with the extensive parameter space arising from the diverse free pa-32

rameters attributed to each agent and their behaviors Crooks et al. (2008). These parameters33

encompass a wide array of individual attributes and interactions, adding substantial complexity34

to the model. Moreover, obtaining datasets that provide precise, detailed information at the indi-35

vidual agent level (i.e. microdata) can be rather challenging. Even in cases where such a dataset36

is available, limitations in computational capacity often impede the simulation of each real-world37

actor as an individual agent in the model. The sheer amount of computational resources required38

to manage a large number of agents can be prohibitive, making it difficult to achieve the desired39

level of precision and fidelity in the model’s representation of real-world dynamics. As a result,40
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many ABM studies let one simulated agent represent multiple real-world actors (e.g. one agent41

represents 100 persons) Edmonds and Meyer (2017). Throughout this paper we will refer to the42

ratio between simulated agents and real-world actors is often referred to as the ontological corre-43

spondence. We found no studies that discuss and experimentally explore the effects of varying the44

ontological correspondence in agent-based modeling.45

In this work, we analyze the effects of varying the ontological correspondence of ABMs on the46

simulated results, specifically highlighting the impact when simulated agents represent individual47

real-world actors. First, we investigate how high-quality social microdata affects the output results48

of agent-based simulation. We also show how the use of a state-of-the-art agent-based simulation49

platform (that can harness the computational power ofmodern hardware) enables us to scale up to50

high-resolution ABMs, as well as identify values for the diverse free parameters attributed to each51

agent. The platform BioDynaMo Breitwieser et al. (2021) focuses on supporting high-performance52

andmodular agent-based simulations. BioDynaMo demonstrated unprecedented performance in53

biomedical applications, efficiently executing simulations of up to 1 billion agents on a single server54

Breitwieser et al. (2023).55

The relevant social microdata for epidemiological modeling, (e.g. age, sex, relationships, em-56

ployment status, etc.) are often sensitive data. The use of such data is understandably subject to57

rigorous regulations such as the EU GDPR (General Data Protection Regulation). For this reason in58

this paper, particular attention and extra emphasis is given to the secure supercomputing method59

we use to access such data in this study.60

In this work we present the following contributions:61

– We implement a country-wide epidemiological model for the Netherlands in BioDynaMo on62

a 1:1 agent-to-person resolution. At the time of the first wave of the COVID-19 epidemic in63

early 2020, the Netherlands had about 17.4 million inhabitants.64

– We construct a method to simulate the model on a secure supercomputer platform to per-65

formparameter space exploration using high-quality sensitivemicrodata using a total of 153666

CPU cores.67

– We present an analysis of the effects of using various agent-to-personmodel resolutions and68

real-life microlevel data versus randomized synthetic data. We also present the results of a69

parameter sensitivity analysis for various resolutions.70

– We describe a methodology behind distributing the calibration of agent-based models using71

the particle swarm optimization algorithm as part of a high-performance agent-based mod-72

eling framework.73

Results74
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(a) Resolution: 1:100
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(b) Resolution: 1:10
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(c) Resolution 1:1
Figure 1. National hospital admissions in the Netherlands during the first wave of COVID-19 in 2020. Lefty-axis: the daily hospital admissions from simulation (dark purple) and observed data (light purple). Righty-axis: the daily number of infections and exposed people (simulated data) in orange and yellow, respectively.
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Hospital admission resolution effects75

A key result of our study is the comparison between the observed hospital admissions during the76

initial COVID-19 wave in the Netherlands and its simulated counterpart. This comparison, detailed77

across various agent-to-person ratios, is shown in Figure 1. Across all examined ratios, there is78

a notable congruence between the simulated hospital admissions and the actual observed data,79

indicating the model’s robustness in mirroring real-world outcomes. To quantify the accuracy im-80

provement, we calculate the percentage difference in the root mean squared error between the81

observed data and the mean simulated data for each resolution. We find an accuracy improve-82

ment of 49.3% when increasing the resolution from 1:100 to 1:10, and an improvement of 1.7%83

when increasing the resolution from 1:10 to 1:1.84

However, it is important to highlight that the simulated results for the 1:100 agent-to-person ra-85

tio exhibit a relatively wide error margin. As we refine the agent-to-person ratio, leading to higher86

resolution simulations, we witness a strong reduction in this error margin, suggesting an improve-87

ment in the model’s precision. Interestingly, the 1:100 ratio simulations depicted in Figure 1a re-88

veal a potential double-peak phenomenon, which diverges from the actual single-peak pattern89

observed in reality. This discrepancy underscores the limitations of certain resolutions in accu-90

rately capturing the pandemic’s dynamics. Additionally, for the metrics related to exposed and91

infectious categories, our model was able to generate outcomes in the absence of real-world com-92

parative data.93
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(c) The Hague
Figure 2. Local hospital admissions in the municipalities of (a) Eindhoven, (b) Groningen, and (c) The Haguewith the use of synthetic population data during calibration and simulation.

0 500 1000 1500 2000
Time (hours)

0

2

4

6

8

10

12

14

H
os

p
it

al
ad

m
is

si
on

s

Hospital admissions in Eindhoven

Observed Hospitalized

Hospitalized

Error Range

(a) Eindhoven
0 500 1000 1500 2000

Time (hours)

0

2

4

6

8

10

12

14

H
os

p
it

al
ad

m
is

si
on

s

Hospital admissions in Groningen

Observed Hospitalized

Hospitalized

Error Range

(b) Groningen
0 500 1000 1500 2000

Time (hours)

0

2

4

6

8

10

12

14

H
os

p
it

al
ad

m
is

si
on

s

Hospital admissions in The Hague

Observed Hospitalized

Hospitalized

Error Range

(c) The Hague
Figure 3. Local hospital admissions in the municipalities of(a) Eindhoven, (b) Groningen, and (c) The Haguewith the use of CBS microdata population data during calibration and simulation

Local hospital admission accuracy94

Another key finding of our study is exposing the influence of microdata on the accuracy of hospi-95

tal admissions on a local (municipality) level during the initial wave of COVID-19 for a selected set96

of municipalities in the Netherlands: Eindhoven, Groningen, and The Hague. Figure 2 displays the97

outcomes derived from calibrating and simulating our model with synthetic population data, while98
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Figure 3 displays the outcomes using individual-level registry data. This comparison is designed to99

show the effects of using detailed individual data on a local scale. We observe a notable difference100

in the accuracy of the results; the use of microdata yields outcomes that align more closely with101

the actual hospital admissions compared to the simulations based on synthetic data. To quantify102

the accuracy improvement, we calculate the percentage difference in the root mean squared er-103

ror between the observed data and the mean simulated data for each municipality. We find that104

applying microdata improves model accuracy by 36.2% for Eindhoven, 22.9% for Groningen, and105

48.0% for The Hague, resulting in a mean accuracy improvement of 35.7%. Additionally, the vari-106

ability of the results, as indicated by the error range, is significantly reduced when microdata is107

utilized. These findings highlight the potential benefits of incorporating detailed individual-level108

data in agent-based modeling studies.109

Figure 4. Parameter sensitivity analysis using the one-factor-at-a-time (OFAT) method for the beta1parameter.

Figure 5. Parameter sensitivity analysis using the one-factor-at-a-time (OFAT) method for the beta2parameter.
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Num. nodes 8
Cores per node 192

CPU AMD EPYC 9654
RAM per node 384GB

Table 1. System specifications for simulations. Details the computing resources used in our simulation runs.The nodes are part of Snellius, the Dutch national supercomputer cluster.

Parameter sensitivity analysis110

The outcomes of the parameter sensitivity analysis are detailed in Figure 4, where we subtly adjust111

two of the four variable parameters (beta1 and beta2) in our model to assess their impact on the112

stability of our results. Specifically, we examine fluctuations in two key aspects: 1) the full-width113

at half maximum (FWHM) and 2) the amplitude of the wave-like pattern, as depicted in Figure 1.114

Our analysis reveals that the results evolve gradually as the parameters change, indicating a sta-115

ble and proportionate influence on the outcomes. This stability suggests that the parameters are116

well-defined and do not exert undue influence on the model’s predictions, thereby bolstering our117

confidence in the parameters’ validity and their role within the model. The effects of the other118

two free parameters beta3 and beta4) that were not added in this section can be found in the ap-119

pendix. These two beta values represent the phase-bound behaviors such as wearing face masks120

and social distancing in the third and fourth phases of the first COVID-19 wave in the Netherlands.121

Computational performance122

We wish to highlight the computational performance of our simulations, an aspect often over-123

looked or briefly touched upon in discussions of agent-based models. Our decision to focus on124

computational efficiency stems from the pivotal role the BioDynaMo framework played in enabling125

our research. The advanced computational capabilities of BioDynaMo Breitwieser et al. (2023);126

Hesam et al. (2021) significantly contributed to the feasibility of our study, allowing us to undertake127

complex simulations that would otherwise have been unattainable. The details on the hardware128

that was used for the performance benchmarks results can be found in Table 1. The results of the129

performance benchmarks can be found in Figure 6.130

The total duration of a simulation can be divided into initialization time and simulation time.131

During initialization, we create agent objects, assign attributes and behaviors to the agents, and132

apply configuration parameters. During the simulation, we iterate over all timesteps and all agents133

in each timestep. Initialization time can be significant, as agent attributes need to be read from a134

file and are therefore limited by disk reading speed.135

The work of Dekker et al. (2023) reported a runtime of 20 hours for a single full simulation136

run on a single node where one agent represents one person. Our work demonstrates that the137

same model can be simulated in less than 5 minutes on a single node, achieving a speedup of138

240×. Although we do not know the specific hardware used in their benchmarks, they claimed139

that computation time was the bottleneck for simulating their model at such a high resolution.140

BioDynaMo’s ability to utilize modern hardware capabilities eliminates this issue.141

Discussion142

Hospital admission resolution effect143

The observation of a decrease in the width of the error bands surrounding the simulated hospital144

admissions in Figure 1 confirms our initial hypothesis, in which we stated that a lower agent-to-145

person ratio would more accurately track the consequences of the social phenomena at hand.146

We can attribute this observation to two aspects of our model. The first aspect is that a single147

agent-to-agent infection increments the infection by 1 person rather than 10 or 100, which allows148

for more granular stochastic behavior to occur at each simulation step. Especially in regionally-149
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Figure 6. Runtime of a single full simulation run of the COVID-19 agent-based model in BioDynaMo forvarious resolutions indicated by the x-axis label. For these benchmarks, we used only a single node of thesystem specified in Table 1.

resolved simulations such as these, where an epidemic invades previously unaffected regions this150

high resolution is important. The second aspect is that individual agent properties that affect the151

interaction of agents during the infection behavior (Algorithm 3) are applied to each individual152

agent, rather than assigning a random draw frommicrodata to a group of agents. This follows the153

real-life scenariomore closely whichmeans that relative risk assessments for various demographic154

subpopulations become far more precise and accurate. As described in the section Calibration155

the use of higher agent-to-person ratios can be useful when performing a calibration of the free156

parameters in an ABM, as the computational runtime of the calibration is reduced significantly.157

Once a calibrated set of free parameters are found the search space for a full-scale ABM calibration158

is drastically reduced or can even be skipped.159

Effect of microdata on local hospital admission results160

As part of increasing the resolution at which we perform the agent-based simulations, we also in-161

vestigated the effect of microdata for an individual-level agent-basedmodel on a subnational scale.162

A similar study has been done in Dekker et al. (2023), but with two distinct differences: 1) the simu-163

lations were performed on a 1:100 agent-to-person ratio, and 2) there were no benchmarks results164

to evaluate the difference in results when using microdata versus random (synthetic) population165

data. One of the clear conclusions that can be drawn from the differences in Figure 3 and Figure 2 is166

the improved accuracy in following the observed municipality-level hospital admission data when167

applying CBS microdata. Although the results in Figure 2 indicate that there is a wave-like pat-168

tern, such as the observed data shows, the absolute number of admissions is not in line with the169

observed data. The case of Groningen indeed shows a relatively low admission compared to the170

other twomunicipalities due to the fact that Groningen is geographically situated relatively further171

from the epicenter of the pandemic. Applying microlevel data on an individual level allows for the172

interactions that take place at each municipality to follow more closely the expected interactions173

that had taken place during the time of the pandemic. A clear difference between Figure 3 and174

Figure 2 is seen in the size of the error bands, which indicate how accurate the model outcomes175

are. In Figure 2, the error bands are much wider than in Figure 3. The error bands visualize the176

standard deviation of the multiple simulations of the model with the same input parameters. The177

difference can mainly be attributed to the fact that the synthetic population is created anew for178

each run of the simulation, using a different random seed each time. This means that the inter-179
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actions within each municipality vary more from one simulation to the next, leading to a broader180

spread in the results across different runs.181

Parameter sensitivity analysis182

Utilizing the one-factor-at-a-time (OFAT) method for sensitivity analysis reveals that the agent-183

based model’s free parameters exhibit low sensitivity to minor adjustments in their values. We184

deliberately varied the input parameters subtly to observe their effects on the model outcomes,185

rather than to explore the relationship between the parameters and the outcomes. In the context186

of the epidemiological use case applied throughout this study, the four free parameters represent187

the four phases of interventions during the COVID-19 pandemic in the Netherlands. Each phase188

corresponds to a specific set of restrictions imposed on the Dutch population during the initial189

wave of the COVID-19 pandemic. As shown in Results the two parameters representing the first190

two phases turned out to have the most influence on the model’s outcome. The first two phases191

can be seen as the most critical and impactful phases as they correspond to the initial outbreak192

and the rapid escalation of infection rates. These early stages required swift and stringent inter-193

ventions to curb the virus’s spread and prevent overwhelming the healthcare system.194

General applicability195

The work presented in this paper focuses on the recent COVID-19 pandemic, utilizing and refining196

the model from Dekker et al. (2023). We demonstrated that by applying microdata at an individual197

level resolution, our model could achieve a finer accuracy in outcomes than the granularity of the198

data used for its calibration. The applicability of this finding to other models in different fields199

hinges on several factors. Firstly, the efficacy of the agent-based model is critically linked to the200

precision of the agent attribute data. In our analysis, the significant factor was the dependency of201

agent interactions on the demographic characteristics of each municipality. We anticipate that, in202

fields like urban studies, agent-basedmodels would similarly benefit frommicrodata, which allows203

for a more accurate representation of urban populations and their dynamics, such as migration204

patterns and clustering phenomena. Secondly, it is essential that agents within the model can205

be mapped on a one-to-one basis with their real-world counterparts. This fidelity ensures that206

each model agent represents an individual entity in the real world, and enables the application of207

microdata to enhance the model. To solidify the general applicability of our findings, a follow-up208

study is required.209

Methods and Materials210

In this section, we describe the use case model and how we calibrated the free parameters on211

the available data from Dutch health institutes. We perform a parameter sensitivity analysis on212

the found parameter set values. Furthermore, we describe the computational approach used to213

simulate the large-scale models.214

Datasets215

The datasets used in this work are described in the Table 2.216

Synthetic population data217

In our study, as an alternative to the CBS microdata we generate synthetic population data for two218

primary purposes: firstly, to prototype the model, and secondly, to serve as a baseline for evaluat-219

ing the impact of microdata integration. The confidential nature of the CBSmicrodata necessitates220

conducting all related processing within a secure computing environment, as detailed in Secure Su-221

percomputing Infrastructure. To facilitate the functional development of the agent-based model222

outside this restricted setting, we need to work with the synthetic population data. This approach223

1Non-public microdata from Statistics Netherlands. Under certain conditions, these microdata are accessible for statistical
and scientific research. For further information: microdata@cbs.nl.
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Name Description Reference
POLYMOD Age-stratified mixing matrices used to infer contact

matrices per municipality and demographic group
Prem et al. (2017)

PIENTER Quantifies the impact of physical distancing mea-
sures against COVID-19 on contacts and mixing pat-
terns in the Netherlands.

Backer et al. (2021)

Google Mobility Quantifies the impact of COVID-19 restrictions on the
mobility of Dutch citizens

Google (2020)
CBS Microdata National Dutch register data of 2020 containing the

attributes sex, age, work status, education, and resi-
dence municipality

Statistics Nether-
lands 1

NICE Hospital admission data per municipality per day in
the Netherlands

Nationale Inten-
sive Care Evaluatie
(NICE) (2020)

Table 2. Overview of datasets used in this study. Throughout this article, we refer to a dataset by the name inthis table.

proved particularly advantageous for exploratory, trial-and-error methodology, enabling us to ef-224

ficiently identify the necessary tools and software packages for constructing the final model. We225

use the same synthetic population data to perform the comparative study between synthetic data226

and CBS microdata and their contrasting effects on the model outcomes.227

The pseudocode on how we generate the synthetic population can be found in Algorithm 1. In228

short, we determine the number of individuals per demographic group from the publicly known229

statistics from Statline Centraal Bureau voor de Statistiek (2023), a public tool from Statistics230

Netherlands (CBS). For each individual of the group we assign random values for the sex, age,231

and home location (i.e. municipality).232

Algorithm 1 Create synthetic population data
1: for 𝑔𝑟𝑜𝑢𝑝 = 0 to 𝑇 𝑜𝑡𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝑠 − 1 do
2: 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ← 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐹𝑜𝑟𝐺𝑟𝑜𝑢𝑝(𝑔𝑟𝑜𝑢𝑝)
3: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑁𝑒𝑒𝑑𝑒𝑑 ← 𝑇 𝑜𝑡𝑎𝑙𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 × 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒
4: for 𝑖 = 0 to 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑁𝑒𝑒𝑑𝑒𝑑 − 1 do
5: 𝑎𝑔𝑒 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑀𝑖𝑛𝐴𝑔𝑒[𝑔𝑟𝑜𝑢𝑝],𝑀𝑎𝑥𝐴𝑔𝑒[𝑔𝑟𝑜𝑢𝑝])
6: 𝑠𝑒𝑥 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐶ℎ𝑜𝑖𝑐𝑒([𝑀𝑎𝑙𝑒, 𝐹 𝑒𝑚𝑎𝑙𝑒])
7: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑒𝑡𝑤𝑒𝑒𝑛(0, 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙𝑖𝑡𝑖𝑒𝑠 − 1)
8: 𝐴𝑑𝑑𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑇 𝑜𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑔𝑟𝑜𝑢𝑝, 𝑠𝑒𝑥, 𝑎𝑔𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
9: end for
10: end for

COVID-19 epidemiological model233

In order to study the effects of applying microdata on individual-level agent-based modeling, we234

use the recent epidemiological case of the COVID-19 spread. We use this case as it is a well-studied235

recent case for which the agent behaviors are well-defined and scale out to a country-wide popu-236

lation.237

The ABM thatmodels the spread of COVID-19 taking into account non-pharmaceutical interven-238

tions is based on the work of Dekker et al. (2023). It models the first wave in 2020 in four distinct239

phases in which the interventions were put in place. Each phase change introduces changes in240

the mobility and interactions that take place between agents. The two main behaviors that are241

followed by each agent are 1) the traveling behavior (see Algorithm 2) and 2) the infection behav-242
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ior (see Algorithm 3). The traveling behavior updates the location of an agent at each timestep,243

where the location is one of the 380 municipalities in the Netherlands (in 2020). For each agent,244

an hourly travel schedule is generated. The hourly travel schedules are based on a gravity model245

Ramos (2016), which differs from the implementation inDekker et al. (2023). There are two types of246

traveling behavior, frequent (traveling during weekdays) and incidental (traveling in the weekend).247

The exact gravity model used to generate a mobility matrix for frequent and incidental travelers is248

shown in the following set of equations249

𝑀𝑓𝑟𝑒𝑞
𝑖,𝑗 = 1

2
⋅
𝑃𝑖⋅𝑃𝑗
𝑑𝑖𝑗

𝑀 𝑖𝑛𝑐
𝑖,𝑗 = 1

7
⋅
𝑃𝑖⋅𝑃𝑗
√

𝑑𝑖𝑗
,

(1)
where 𝑑𝑖𝑗 is the Euclidean distance between municipality 𝑖 and 𝑗, which respectively have a250

population of 𝑃𝑖 and 𝑃𝑗 . The mobility matrix for incidental travelers is adjusted by a factor of 2
7

251

and therefore 𝑀 𝑖𝑛𝑐
𝑖,𝑗 = 2

7
⋅ 𝑀𝑓𝑟𝑒𝑞

𝑖,𝑗 . This adjustment reflects the weekends, accounting for two out of252

the seven days of the week whenmost people in the Netherlands travel to destinations other than253

their typical routes (e.g. going out to another city, visiting family or friends, etc.). This differentiation254

ensures thematrix accurately represents the travel patterns of frequent versus incidental travelers.255

A weekly schedule is generated per agent on an hourly basis using a Dirichlet distribution which256

parameters are based on the mixing matrices as explained in Dekker et al. (2023).257

The infection behavior follows from a compartmental SEIR model that includes an additional258

state of ’hospitalization’ to keep track of agents that are admitted to a hospital as a consequence259

of a COVID-19 infection. In Algorithm 3, 𝜆 stands for the force of infection, and 𝛽 is a phase-bound260

parameter that represents behaviors such aswearing a facemask and social distancing that cannot261

easily be modeled in an agent-based model. Upon the start of each consecutive phase in the first262

COVID-19 wave, the interventions that are put into place affect the mobility of the agents, their263

demographic mixing behavior, and school closure. For more model details, we refer the reader to264

Dekker et al. (2023).265

We initialize the agent with data from Statistics Netherlands (CBS) to be able to mimic demo-266

graphic mixing as realistically as possible. As an element in its normal operations as the Dutch267

National Statistical Institute, CBS continuously and automatically updates its databases. Demo-268

graphic datasets are typically updated with a monthly cadence but other types of data can be col-269

lected depending on the specific data collection. From the ’basis-registratie personen’ (BRP), the270

base register data on this Dutch population, we use the variables sex, age, work status, education,271

and residence to categorize agents into demographic groups according to Dekker et al. (2023). The272

social interaction between agents in this model is determined by a mixing matrix that is based on273

the survey study of Prem et al. (2017).274

Another aspect in which our model differs from the model presented in Dekker et al. (2023) is275

the increased resolution of which an agent represents an aggregate number of citizens. In contrast276

to just modeling a 1:100 agent-to-person ratio, we explore a range of ratios up to 1:1 in order to277

understand the benefits of high-resolution agent-based modeling on the model outcomes, with a278

special focus on the accuracy of these outcomes.279

A list of all relevant model parameters and their values can be found in Appendix 1.280

Calibration281

In order to allow for the calibration of large agent-based models in BioDynaMo, we developed a282

new method that can be used for distributing multiple simulations as separate processes using283

MPI (Message Passing Interface), the Multi-Simulation Manager. Any iterative algorithm that can284

run its iterations independently of each other can be used within the simulation manager, but for285

the scope of this study we focus on the Particle Swarm Optimization (PSO) algorithm Kennedy and286

Eberhart (1995). The choice for the PSO algorithm was motivated by the fact that our objective287

function is non-convex and non-differentiable.288
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Algorithm 2 Traveling behavior
1: procedure Travel(agent, hour_of_week)
2: if agent.IsHomestay() then
3: agent.location← agent.home_location
4: else
5: schedule← agent.weekly_travel_schedule
6: next_location← schedule[hour_of_week]
7: agent.location← next_location
8: end if
9: end procedure

MultiSimulationManager

Particle Swarm Optimization

Experiment

thread i of N

MPI_Send
(worker1, param)

yes

no

Mth
iteration?

Observed
data

Error Computation

MPI_Send
(master, results, err)

...

converged
OR max_iter?

Experiment
Experiment

MPI_Send
(worker1, param)MPI_Send

(worker1, params)

Simulation
(OpenMP accelerated)

MPI_Recv
(master, params)

Master rank

Worker 0

Worker i

Worker N

Figure 7. Flowchart of the Multi-Simulation Manager using the Particle Swarm Optimization algorithm forcalibrating against observed data
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Algorithm 3 Infection behavior
1: procedure Infect(agent, susceptibility, 𝛽)
2: g← agent.demography
3: if agent.state == Susceptible then
4: s← agent.daily_cycle_parameter
5: mix_sum← DemographicMixing(agent)
6: 𝜆 ← susceptibility[g] * 𝛽 * s * mix_sum
7: if  (0, 1) ≤ 𝜆 then
8: agent.state← Exposed
9: end if
10: else if agent.state == Exposed then
11: if incubation_time > incubation_threshold then
12: agent.state← Infectious
13: else
14: incubation_time← incubation_time + 1
15: end if
16: else if agent.state == Infectious then
17: if infection_time > infection_threshold then
18: agent.state← Recovered
19: else
20: infection_time← infection_time + 1
21: hospital_time← hospital_time + 1
22: if hospital_time > hospital_threshold then
23: agent.hospitalized_← true
24: end if
25: end if
26: else if agent.state == Recovered then
27: hospital_time← hospital_time + 1
28: if hospital_time > hospital_threshold then
29: agent.hospitalized_← true
30: end if
31: if agent.hospitalized then
32: if time_in_hospital > hospital_stay then
33: agent.hospitalized← false
34: else
35: time_in_hospital← time_in_hospital + 1
36: end if
37: end if
38: end if
39: end procedure

11 of 17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.27.24307982doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24307982
http://creativecommons.org/licenses/by-nc/4.0/


In short, PSO is a population-based optimization algorithm used to find the global optimum289

solution in a search space. In PSO, a set of particles is initialized randomly within the search space,290

and each particle moves in the space to find the global optimum. The movement of each particle291

is guided by its own best-known position and the global best position found so far by the entire292

swarm. The algorithm continues until the convergence criteria are met or a maximum number of293

iterations is reached. PSO is awidely usedoptimization algorithmdue to its simplicity and efficiency.294

Note that here the particles are not the agents of the model: in the present context, each particle295

represents a separate full-scale simulation with 17.4 million agents (i.e. a resolution of one agent296

representing one person).297

Figure 7 shows an overview of the implementation of the Multi-Simulation Manager. In the298

context of parallel computing, MPI facilitates the coordination of multiple processors by assigning299

each a unique identifier, known as a rank. The implementation of the Multi-Simulation Manager300

uses a master-worker paradigm, where one rank (the master rank) oversees the computational301

work needed to be executed by the worker ranks. In the figure, the master rank initiates a PSO302

algorithm with 𝑁 particles and at most 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 iterations. Each particle, within each iteration,303

represents a full simulation and is executed by one of the worker ranks in the worker pool, and304

is repeated 𝑀 times for statistical significance. The simulation is executed in a multi-threaded305

fashion with OpenMP with a user-specified number of threads. Each worker rank computes the306

mean-squared error (MSE) between the simulated values and the observed (expected) values. After307

a full iteration, the master receives the MSE from each worker and updates the particle positions308

using the optimization algorithm. The algorithm stops when convergence is reached or 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is309

reached.310

For this case study, we calibrate our agent-based model based on the initial doubling time311

of observed hospital admissions during the first wave of the COVID-19 pandemic in the Nether-312

lands. This approach aligns with the methods described in the study by Dekker et al. (2022), which313

highlights the common practice in epidemiology of calibrating models to the doubling phase of a314

pandemic. Specifically, the doubling time refers to the period during which the number of cases315

or hospitalizations doubles, providing a critical measure of the virus’s spread rate. In this instance,316

the doubling time spanned from March 13th to March 27th, approximately two weeks.317

The objective of the PSO algorithm, in this case, isminimizing the error of the simulated hospital318

admissions and the observed hospital admissions during the doubling period, which accounts for319

approximately 15% of the total observed hospital admission dataset. The consequent course of320

the hospital admissions after the doubling period is left to be predicted by the model. As such, the321

model should be able to predict the peak of the wave (both in time and in amplitude) as well as322

the decline after the peak.323

Parameter Sensitivity Analysis324

Understanding the influence of each free parameter on the model’s outcome is crucial for assess-325

ing the stability of an agent-basedmodel. Parameters that significantly alter the outcomewith only326

minor adjustments might indicate sensitive dependencies within the model, warranting further in-327

vestigation to understand their implications fully. This sensitivity could reflect critical dynamics328

within the model but could also suggest areas requiring more robust definition or validation. Con-329

versely, if a parameter anticipated to have a strong correlation with themodel output exhibits little330

variation during sensitivity analysis, this may indicate that the parameter is not adequately con-331

strained by the available data. Such findings should prompt a reevaluation of both the parameter332

settings and the data used for model calibration.333

There exist various methods to perform parameter sensitivity analysis on agent-based models334

ten Broeke et al. (2016). In order to choose the right method it is important to know what one is335

trying to achieve with the results of the analysis. In this work, we wish to quantify the variability of336

the four beta parameters as described in COVID-19 epidemiological model on the correspondence337

of the simulated hospital admission to the observed data. The resulting outcome should give us338
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an indication of the robustness of the chosen model parameters and the relative influence on339

the model outcome among them. The authors of ten Broeke et al. (2016) recommend starting340

such an analysis with a version of the one-at-a-time (OAT) method. Although the OAT method341

is meant to uncover the emergent patterns and mechanisms of an ABM, the goal of quantifying342

the variability of the four beta parameters tells us about the emergence of the pandemic’s peak343

hospital admission value and its location in time. These values describe the global emergence of344

the COVID pandemic that our case study revolves around.345

One-at-a-Time Method346

With the one-at-a-time (OAT) or the one-factor-at-a-time (OFAT) method one varies one model pa-347

rameter while the other model parameters stay the same. The variation occurs typically around348

a nominal value which is the value that best corresponds to the desired model outcome. The dif-349

ference between the OAT and OFAT methods is the range of parameter variability: the range in350

OAT is narrow, while the range in OFAT is wide. The authors of ten Broeke et al. (2016) state that351

the narrow range examination (OAT) can be used to estimate the partial derivatives of the model352

outcome with respect to the parameter in question, whereas OFAT aims to show the form of re-353

lationship between the outcome and the parameter. The latter is of interest at present because354

of the need to explore as much as possible the range of outcomes that can be represented. The355

former is also important for future use of these models since that technique can be used to deter-356

mine which parameters policymakers or national response teams should try to influence, and in357

which direction, for the most effective pandemic control.358

Secure Supercomputing Infrastructure359

Processing confidential CBSmicrodata requires a secure computing environment in order to avoid360

data leakage. The ODISSEI Secure Supercomputer (OSSC) by Scheerman et al. (2021) provides361

such an environment. The OSSC runs on a virtualized partition of the Dutch national supercom-362

puter, Snellius, and is connected to the CBS data infrastructure using a dedicated VPN connection.363

CBS curates various person-level datasets which are made available in pseudonomized form to364

researchers under specific guidelines. The microdata used in this work, as referred to in Table 2,365

is one such dataset.366

In order to allow for our simulations to be reproducible among various computing platforms,367

we containerized the simulation code and all its dependencies in an Apptainer (formerly known368

as Singularity) container. This allowed us to prototype and run the model in BioDynaMo on other369

computing platforms before running full-scale simulations and calibrations on the OSSC. Since370

the microdata is only available within the OSSC, we used the synthetic population data for our371

prototyping efforts as described in Synthetic population data.372

Code373

This work uses the BioDynaMo agent-based simulation software tomodel and simulate the COVID-374

19 model. The model code is available at https://github.com/Senui/covid-abm-paper. Compiling375

this code requires a custom BioDynaMo build. For reproducibility purposes, we created an App-376

tainer (formerly known as Singularity) container (Hesam (2024)), which can be used to reproduce377

the results in this paper. The instructions to obtain and run the simulations can be found in Ap-378

pendix 2.379
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Appendix 1442

Model details443

Appendix 1—table 1. Input Parameters for the COVID-19 model444

Parameter Value Description

repeat 10 Number of times to repeat the simulation
population_size 17181084 Total population size
init_infection_rate 0.1 Initial infection rate
init_infection_time 408 hours Initial infection time
total_hours 2256 Total hours from 27 Feb to 1 June 2020
phase_1_hours 336 Hours between 27 Feb and 12 March
phase_2_hours 264 Hours between 12 March and 23 March
phase_3_hours 1176 Hours between 23 March and 11 May
phase_4_hours 504 Hours between 11 May and 1 June
phase_2_mobility_reduction 0.372 Mobility reduction in phase 2
phase_3_mobility_reduction 0.424 Mobility reduction in phase 3
phase_4_mobility_reduction 0.201 Mobility reduction in phase 4
beta1 0.0701 Transmission rate parameter for phase 1
beta2 0.0093 Transmission rate parameter for phase 2
beta3 0.3533 Transmission rate parameter for phase 3
beta4 0.2380 Transmission rate parameter for phase 4
phase_2_homeschooling_parents 12% Percentage of parents homeschooling in phase 2
no_fixed_seed false Whether a fixed seed is used for simulation
incubation_shape_param 20 Shape parameter for the incubation period
incubation_scale_param 110.4 Scale parameter for the incubation period (hours)
infection_shape_param 1 Shape parameter for the infection period
infection_scale_param 120 Scale parameter for the infection period (hours)
hospitalization_shape_param 14 Shape parameter for hospitalization period
hospitalization_scale_param 240 Scale parameter for hospitalization period (hours)
hospital_average_mean 2.48 Mean of hospital stay (days)
hospital_average_sigma 0.913 Standard deviation of hospital stay
homestay_mean 15 Mean duration of staying at home (days)
homestay_sigma 6 Standard deviation of staying at home duration
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Appendix 2445

Reproducing results446

This paragraph describes the steps needed to reproduce the results of this work. Some
of the results require access to sensitive datasets provided by Statistics Netherlands as re-
ferred to in Table 2, which can only be accessed in a secure remote environment. See the
corresponding footnote in Table 2 for more information.

447

448

449

450

For the purpose of reproducibility, we have created an Apptainer containerHesam (2024)
that can be downloaded and used to build and run the simulation code in, which is available
at https://github.com/Senui/covid-abm-paper. Apptainer is an open-source software tool
that can be installed from https://apptainer.org. We recommend a Linux-based system to
perform the simulations on.

451

452

453

454

455

Once Apptainer is installed in the simulation environment and the Apptainer image is
downloaded, the BioDynaMo source code and the simulation code need to be cloned from
the aforementioned Github repository. The simulation environment can then be set up as
shown in as follows:

456

457

458

459

460 1 export BDM_SOURCE_DIR =’/path/to/ biodynamo ’461

2 export SIM_SOURCE_DIR =’/path/to/abm -covid -paper ’462

3463

4 reproduce / start_container .sh464
465

Listing 1. Running a single simulation466467

This will deploy a containerized environment that is identical to the environment with
which the results for this paper were produced. It will automatically start a simulation with
the input parameters defined in the bdm.json. To run any other set of input parameters you
can adjust the contents of the bdm.json file. There are various configuration files present in
the simulation code repository (in the config directory), which are named according to the
type of experiments that are run for this paper. The results of a single simulation can be
found in the directory build/output/single-experiments

468

469

470

471

472

473

474

To run multiple simulations distributed on a cluster or supercomputer (for calibration
or parameter sensitivity analysis) the following script needs to be invoked:

475

476

477 1 export BDM_SOURCE_DIR =’/path/to/ biodynamo ’478

2 export SIM_SOURCE_DIR =’/path/to/abm -covid -paper ’479

3480

4 sbatch reproduce / start_container_mpi .batch481
482

Listing 2. Running many simulations distributed483484

The results of multiple simulation runs can be found in the directory
build/output/experiments_<timestamp>.

485

486
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