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Abstract  

Significance: Seizure semiology, the study of signs and clinical manifestations during 

seizure episodes, provides crucial information for inferring the location of 

epileptogenic zone (EZ). Given the descriptive nature of seizure semiology and recent 

advancements in large language models (LLMs), there is a potential to improve the 

localization accuracy of EZ by leveraging LLMs for interpreting the seizure semiology 

and mapping its descriptions to the corresponding EZs. This study introduces the 

Epilepsy Semiology Large Language Model, or EpiSemoLLM, the first fine-tuned LLM 

designed specifically for this purpose, built upon the Mistral-7B foundational model. 

Method: A total of 865 cases, each containing seizure semiology descriptions paired 

with validated EZs via intracranial EEG recording and postoperative surgery 

outcome, were collected from 189 publications. These collected data cohort of seizure 

semiology descriptions and EZs, as the high-quality domain specific data, is used to 

fine-tune the foundational LLM to improve its ability to predict the most likely EZs. 

To evaluate the performance of the fine-tuned EpiSemoLLM, 100 well-defined cases 

were tested by comparing the responses from EpiSemoLLM with those from a panel 

of 5 epileptologists. The responses were graded using the rectified reliability score 

(rRS) and regional accuracy rate (RAR). Additionally, the performance of 

EpiSemoLLM was compared with its foundational model, Mistral-7B, and various 

versions of ChatGPT, Llama as other representative LLMs. 
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Result: In the comparison with a panel of epileptologists, EpiSemoLLM achieved the 

following score for regional accuracy rates (RAR) with zero-shot prompts: 60.71% for 

the frontal lobe, 83.33% for the temporal lobe, 63.16% for the occipital lobe, 45.83% 

for the parietal lobe, 33.33% for the insular cortex, and 28.57% for the cingulate cortex; 

and mean rectified reliability score (rRS) 0.291. In comparison, the epileptologists' 

averaged RAR scores were 64.83% for the frontal lobe, 52.22% for the temporal lobe, 

60.00% for the occipital lobe, 42.50% for the parietal lobe, 46.00% for the insular 

cortex, and 8.57% for the cingulate cortex; and rectified reliability score (rRS) with 

mean of 0.148. Notably, the fine-tuned EpiSemoLLM outperformed its foundational 

LLM, Mistral-7B-instruct, and various versions of ChatGPT and Llama, particularly in 

localizing EZs in the insular and cingulate cortex. EpiSemoLLM offers valuable 

information for presurgical evaluations by identifying the most likely EZ location based 

on seizure semiology. 

Conclusion: EpiSemoLLM demonstrates comparable performance to epileptologists 

in inferring EZs from patients’ seizure semiology, highlighting its value in epilepsy 

presurgical assessment. EpiSemoLLM outperformed epileptologists in interpreting 

seizure semiology with EZs originating from the temporal and parietal lobes, as well as 

the insular cortex. Conversely, epileptologists outperformed EpiSemoLLM regarding 

EZ localizations in the frontal and occipital lobes and the cingulate cortex. The model's 

superior performance compared to the foundational model underscores the 

effectiveness of fine-tuning LLMs with high-quality, domain-specific samples. 

Keywords: AI for Epilepsy, Epilepsy Semiology, Large Language Models, 

Epileptogenic Zones Localization, Low-Rank Adaption Fine-tuning  
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1 Introduction 

Epilepsy is one of the most common neurological diseases, affecting more than 70 

million people worldwide [1]. Each year, approximately 50.4 per 100,000 people 

develop new-onset epilepsy [2]. At present, the primary treatment for epilepsy is 

antiseizure medications, which successfully controls seizures in about two-thirds of 

patients [3]. However, for those with drug-resistant focal epilepsy, surgical 

resection/disconnection of the epileptogenic zone (EZ) may provide a curative 

solution.  Seizure semiology - the study of signs and symptoms exhibited and 

experienced by a patient during epileptic seizures [4] - offers valuable clues for the 

inference of Symptomatogenic Zone (SZ) [5] thus indicative of the EZs [6]. 

Interpretation on the initial ictal symptom and the evolution of ictal semiology can 

help in inferring the localization of the EZ, which can serve as a crucial step for 

preoperative assessment and help to achieve optimal surgical outcomes.  

Given the limited surgical epilepsy cases at each epilepsy center, it is hard to 

summarize and generalize the systematic knowledge on mapping from the descriptions 

of seizure semiology to EZs, complicated by (1) unstructured and subjective textual 

descriptions of seizure semiology by different epileptologists; (2) conflicting 

lateralizing or localizing signs occurring in a single seizure [6]; (3) the bias on 

presumption of the temporal lobe and frontal lobe epilepsy. This problem can be 

potentially addressed by aggregating a large cohort of data with descriptions of seizure 

semiology paired with the validated EZs and a generalizable machine learning model 

to extract knowledge on seizure semiology interpretation to mitigate the inconsistencies 

caused by different epileptologists and different epilepsy centers.   
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Recently, large language models (LLMs) have demonstrated their capabilities 

across a wide range of natural language processing (NLP) tasks [7]. ChatGPT, a 

representative example, is trained on a diverse database of text from various domains 

[8] and can emulate human experts with cross-disciplinary knowledge. In medical 

informatics, ChatGPT exhibits an advanced proficiency in processing and interpreting 

extensive textual data, making it a valuable tool for information retrieval, clinical 

decision support, and medical report generation [7, 9, 10, 11]. However, previous 

studies have raised concerns about the responses from LLM trained from the general 

public data, especially its poor performance in highly specialized domains due to 

limited data [12, 13]. To address this, fine-tuning LLM on locally collected and well-

annotated data is a common approach that requires relatively low computational 

resources. Examples include ChatDoctor, which is a fine-tuned LLM based on Llama 

and trained on a dataset of 100,000 patient-doctor dialogues, providing informative, 

accurate, and professional advice [14]. Xie et al. created Me-LlaMA by fine-tuning 

Llama using an instruct-tuning medical dataset, achieving superior performance in both 

general and medical tasks [15]. Labrack et al. introduced the BioMistral, fine-tuned on 

medical data from PubMed Central, which demonstrated the state-of-the-art (SOTA) 

performance in medical question-answering tasks [16]. 

The growing applications of LLM enriched by domain specific data records  in 

a variety of clinical applications inspired this study to develop a fine-tuned LLM on 

interpreting seizure semiology by mapping its descriptions to the underlying EZs, 

which can serve as a valuable decision making tool during presurgical workup Phase I 

to (1) provide accurate localization of EZs based on seizure semiology, (2) streamline 

the decision making process and shorten the time to definitive treatment, (3) help reduce 
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mistakes and treatment bias especially in the resource-limited epilepsy centers, (4) 

reduce the inter-rater variability on the interpretation of seizure semiology.  

 In this study, we used a collected dataset of seizure semiology paired with 

validated EZs to fine-tune an LLM to improve its EZ localization performance. Mistral-

7B, an emerging lightweight LLM, has outperformed larger models like Llama-2-13B 

in various aspects and is suitable for fine-tuning domain-specific tasks [17]. We 

selected the Mistral-7B-Instruct-v0.3 model as the foundation model for the EZ 

localization, resulting in the fine-tuned model termed as EpiSemoLLM. The framework 

of EpiSemoLLM is illustrated in Figure 1. To evaluate EpiSemoLLM’s advantages 

and limitations, we systematically compare its performance with human experts and 

other SOTA LLMs, such as different versions of ChatGPT.  

 
Figure 1: Framework for fine-tuning LLMs to predict EZs based on seizure 

semiology. 

 

2 Methods 

2.1 Seizure semiology and EZ data collection and annotation 
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We compiled an epilepsy-specific database from published articles indexed by PubMed. 

By searching for terms such as “seizures”, “epilepsy”, “clinical semiology”, and 

“seizure semiology”, we identified 189 articles [18]. These selected articles 

documented over 900 epilepsy cases, detailing seizure semiology across various 

surgically validated EZs. The confidence in the epileptogenic zone location reported 

locations (i.e., ground truth) was labeled based on postoperative outcomes (defined as 

seizure freedom after surgery), concordance of imaging and neurophysiology, or 

available stereoelectroencephalography (sEEG) findings, as recently suggested by 

Ryvlin et al. [31]. Cases with low levels in confidence of EZ localization or nonspecific 

seizure semiology were excluded. For example, cases indicating only hemisphere-level 

EZs, like right hemispherectomy or left subtotal hemispherectomy, without lobe details 

or specific regional details, were excluded. Additionally, cases described with 

nonspecific terms, like ‘non-specific aura’ or those aggregating a large patient cohort 

without providing detailed semiology for each individual, were excluded.  

A thorough collection of patient data was compiled, encompassing demographics, 

seizure semiology, imaging and/or sEEG findings (if provided), and surgical results. 

The resultant database comprises 865 patient-derived semiology-EZ pairs, with a 

demographic spread of 134 right-handed, 22 left-handed, 3 ambidextrous, and 706 

unspecified-handed individuals, aged from newborn to 77 years. These semiology-EZ 

samples include both single and multiple EZ locations. A PRISMA flow chart for 

dataset construction and the finalized regional distribution of screened records are listed 

in Fig. 2 and Fig. 3, respectively. In documenting these locations, we have referenced 

a classification system based on FreeSurferWiki and LCN-CortLobes [20]. This system 

organizes the EZs into six broad regions: frontal lobe, parietal lobe, temporal lobe, 

occipital lobe, cingulate cortex, and insular cortex [21].   
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Figure 2: PRISMA flow chart for dataset construction 

 
Figure 3: Regional distribution of screened records. 

 

2.2 Fine-tuning of LLM 

In this study, the collected seizure semiology records from our self-compiled database 

were leveraged to investigate the capabilities of a fine-tuned LLM in identifying the 

most likely locations of the EZs. We used 765 pairs of semiology descriptions and 
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validated EZs for the fine-tuning of a light-weighted foundational backbone model, 

which is the Mistral-7B, due to its good performance at a variety of tasks [17]. The 

remaining 100 records were used as the testing dataset to evaluate EpiSemoLLM, 

ChatGPT, and a panel of epileptologists.   

The model was fine-tuned using a self-instructed format dataset similar to 

Stanford Alpaca [22]. To minimize the impact of fine-tuning on the overall LLM 

performance and improve the fine-tuning efficiency, we applied Low-Rank Adaption 

(LoRA) [23], integrated into the Hugging Face Parameter Efficient Fine-Tuning (PEFT) 

library. Instead of comprehensively fine-tuning the entire weight matrix of the pre-

trained LLM, LoRA fine-tunes two smaller matrices that approximate the larger weight 

matrix. These matrices construct the LoRA adapter, which, after fine-tuning, can be 

easily loaded into pre-trained models and used for inference.  

The key hyperparameters used for fine-tuning include the epochs number being 

set to be 2, a learning rate of 3 × 10-5, a maximum sequence length of 512 tokens, a 

weight decay of 0.001, a warmup ratio of 0.03, a LoRA alpha to be 32, and a LoRA 

rank of 16. The prompt format can be classified in two ways: zero-shot prompting (ZSP) 

fine-tuning [24], where the model was asked to identify EZs solely based on semiology 

reports, and few-shot prompting (FSP) [25], which differed from ZSP by providing 

three sample hints as prior knowledge to assist model training. 

2.3 Semiology Interpretation Data Collection 

To compare the performance of LLMs (both foundation models and fine-tuned ones) 

and epileptologists on the interpretation of seizure semiology, we invited a panel of 

eight epileptologists, with an average of 10 years of experience in treating patients with 

epilepsy, to complete an online survey on seizure semiology interpretation with 

unconstrained time and attempts (https://survey.zohopublic.com/zs/NECl0I). In this 
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survey, we used the 100 hold-out semiology records, spanning all six regions from our 

self-compiled database, to gather the epileptologists’ opinions on the most likely EZs. 

The selection of semiology records met the following criteria, reviewed by the 

epileptologists: (1) the records provided comprehensive and explicit descriptions of 

seizure signs and symptoms; (2) the distribution of EZs covered all six general regions, 

rather than being focused on a particular region; and (3) the records captured the 

broadest possible range of seizure symptoms. 

All survey responses were collected from January 2024 to February 2024. 

During this period, 70 survey invitations were sent to doctors specializing in epilepsy, 

identified from the National Association of Epilepsy Center, American Epilepsy 

Society, and International League Against Epilepsy (ILAE). Among these, five 

epileptologists completed the survey in full, and three others partially completed it. This 

can also highlight the advantage of all-time availability and non-fatigue features of the 

clinical AI models.  

In addition to comparing the performance of the fine-tuned LLM to 

epileptologists, we also evaluated the performance of non-fine-tuned pre-trained LLMs, 

including Mistral-7B-instruct, ChatGPT-3.5, and ChatGP-4.0, as the baseline models. 

For ChatGPT prediction, we adopted a stringent methodology where each query was 

entered in a separate "New Chat" session to mitigate any potential bias or interference 

due to the stateful nature of ChatGPT. 

2.4 Statistical Analysis 

All responses from EpiSemoLLM, foundation LLMs (ChatGPT-3.5 and -4.0, Mistral- 

7B-instruct-v0.3, Llama-2-7B-chat-hf, Llama-2-13B-chat-hf, Llama-3-8B-Instruct), 

and the panel of epileptologists underwent thorough review, with the addressed EZ 

locations being systematically cataloged and summarized. By evaluating and 
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comparing responses from EpiSemoLLM, baseline foundation LLMs, and 

epileptologists, an in-depth understanding of the strengths and limitations of AI-

generated medical information can be achieved, which provides insights into its future 

applications in the biomedical and healthcare domains.  

To provide a quantitative assessment of the responses provided by the LLMs 

and epileptologists, two statistical performance metrics were introduced: the rectified 

Reliability Score (rRS) and the Regional Accuracy Rate (RAR) [26]. 

The introduced rRS quantifies the accuracy of responses, where a score of 1 

indicates 100% correct identification of EZ locations, aligning perfectly with the 

ground truth. A score between 0 and 1 suggests partially accurate, while a score less 

than 0 indicates misleading responses, potentially complicating preoperative 

evaluations by neurologists. The rRS is calculated as follows: 

𝑟𝑅𝑆 =
𝛼𝑁𝑐+𝛽(𝑁𝑖+𝑁𝑚)

𝑁𝑇
      (1) 

where 𝑁𝑇 denotes the total count of different EZs identified in both the ground truth 

and the model predictions for a given semiology case. 𝑁𝑐 and 𝑁𝑖 respectively represent 

the counts of correct and incorrect predictions made by LLMs or epileptologists, given 

the ground truth of each epilepsy case, while 𝑁𝑚 is the number of EZs in the ground 

truth that was not identified by either LLM or epileptologists. Correct predictions (𝑁𝑐) 

positively contribute with a weight of α=1, while incorrect ones (𝑁𝑖) and missed ones 

(𝑁𝑚 ) carry a negative weight of β=−0.5 to account for their potential to mislead 

epileptologists in determining the correct EZ location.  

The weighting factors (α=1, β=−0.5) are chosen to balance the impact of correct 

and incorrect responses. With α=1 and β=0, the rRS would be greater than or equal to 

zero, which simply represents the proportion of correct answers but could not reflect 

the potentially negative impact of incorrect and misleading answers. Conversely, with 
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α=1 and β=−1, equal weight is assigned to both positive and negative impacts. However, 

this would result in an rRS of zero when the count of correct responses matches those 

of incorrect ones for a given semiology, failing to convey the positive impact of correct 

identifications in narrowing down the diagnoses of EZ. In our study, we set α=1, β=−0.5 

to prevent the complete negation of a correct answer by an incorrect one, thus ensuring 

that the rRS accounts for the influence of both positive and negative responses on 

clinical decision-making, and with these weighting factors, the range of rRS is [-0.5, 

1.0].   

For example, if we consider a semiology case where the ground truth for the EZ 

is the frontal, parietal, and occipital lobes, but LLM’s response identifies the frontal, 

temporal, and parietal lobes as the potential EZs. In this scenario, two correct 

identifications (𝑁𝑐=2), one incorrect identification (𝑁𝑖=1), and one missing prediction 

(𝑁𝑚=1), with the ground truth and identification specifying four different EZ (𝑁𝑇=4), 

result in an rRS of 0.25. 

The RAR is introduced as a region-specific metric designed to evaluate the 

precision of EZ localization for specific regions. It calculates the region-level 

localization performance by LLMs or epileptologists against the ground truth. The RAR 

values range from 0% to 100%. When the response from the LLMs or epileptologist 

perfectly matches the ground truth, the RAR is 100%; otherwise, it is less than 100%. 

For a region x, which is one of the following regions: frontal lobe, parietal lobe, 

temporal lobe, occipital lobe, cingulate cortex, and insular cortex, the RAR(x) is 

calculated as: 

𝑅𝐴𝑅(𝑥) =
∑ 𝕀𝑅𝑖

(𝑥)𝑁
𝑖=1

∑ 𝕀𝐺𝑖
(𝑥)𝑁

𝑖=1

× 100%    (2) 

with 
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𝕀𝑅𝑖
(𝑥) = {

1, 𝑥 ∈ 𝐺 ∩ 𝑅
0, 𝑥 ∉ 𝐺 ∩ 𝑅

    (3) 

𝕀𝐺𝑖
(𝑥) = {

1, 𝑥 ∈ 𝐺
0, 𝑥 ∉ 𝐺

     (4) 

where N represents the number of semiology-EZ pairs; G and R represent the sets of 

EZ locations from the ground truth and the responses from LLM or epileptologists, 

respectively. 𝕀𝐺𝑖
(𝑥) is an indicator function that scores 1 if the general region x is 

included in the ground truth G of a semiology-EZ pairing; otherwise, it is 0. 𝕀𝑅𝑖
(𝑥) is a 

similar indicator function that scores 1 if region x is correctly identified in the 

intersection of the response R and the ground truth G for a semiology-EZ pairing and 0 

otherwise. ∑ 𝕀𝐺𝑖
(𝑥)𝑁

𝑖=1  quantifies the aggregate presence of the general region x within 

the ground truth in N semiology-EZ pairs. ∑ 𝕀𝑅𝑖
(𝑥)𝑁

𝑖=1  quantifies the intersection of the 

response R and the ground truth G for a semiology-EZ pairing in N semiology-EZ pairs, 

regardless of whether a single region or multiple regions for each pair.  

For instance, we can calculate the RAR for the frontal lobe within a dataset of 

100 semiology-EZ pairs. In this dataset, the ground truth may include both cases with 

a single EZ located in the frontal lobe and cases where the frontal lobe is one of multiple 

EZs. Suppose there are 50 instances where the ground truth indicates the frontal lobe 

as an EZ; the value of ∑ 𝕀𝐺𝑖
(𝐹𝑟𝑜𝑛𝑡𝑎𝑙 𝐿𝑜𝑏𝑒)𝑁

𝑖=1  would be 50. If only 30 responses — 

whether from LLM or an epileptologist — correctly match the ground truth, the value 

of ∑ 𝕀𝑅𝑖
(𝐹𝑟𝑜𝑛𝑡𝑎𝑙 𝐿𝑜𝑏𝑒)𝑁

𝑖=1  would be 30. Consequently, the RAR (Frontal Lobe) would 

be calculated as 60%. 

3 Results 

3.1 Comparison of Responses from EpiSemoLLM and Multiple LLMs 

In this study, the EpiSemoLLM was fine-tuned based on 765 records and evaluated on 

a hold-out set of 100 records, as detailed in 2.2. Pre-trained LLMs (LLM without fine-
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tuning), specifically Mistral-7B, ChatGPT-3.5, and ChatGPT-4.0 were used as baseline 

models for comparison. 

In EZ location inference using ZSP, EpiSemoLLM demonstrated the highest 

rRS score with a mean of 0.291 compared to the average and the best epileptologist’s 

performance with mean rRS of 0.148 and 0.192, respectively, and the best baseline 

result from ChatGPT-4.0 with mean rRS of 0.195. 

For the six regions, the RARs for EpiSemoLLM with ZSP were: 60.71% for the 

frontal lobe, 83.33% for the temporal lobe, 63.16% for the occipital lobe, 45.83% for 

the parietal lobe, 33.33% for the insular cortex, and 28.57% for the cingulate cortex. 

With FSP, the RARs for EpiSemoLLM were: 39.29% for the frontal lobe, 75.00% for 

the temporal lobe, 73.68% for the occipital lobe, 62.50% for the parietal lobe, 33.33% 

for the insular cortex, and 14.29% for the cingulate cortex.  

By contrast, Mistral-7B with ZSP had RARs of: 57.14% for the frontal lobe, 

80.56% for the temporal lobe, 15.79% for the occipital lobe, 12.50% for the parietal 

lobe, 0.00% for the insular cortex, and 0.00% for the cingulate cortex. With FSP, 

Mistral-7B had RARs of: 21.43% for the frontal lobe, 69.44% for the temporal lobe, 

57.89% for the occipital lobe, 37.50% for the parietal lobe, 0.00% for the insular cortex, 

and 0.00% for the cingulate cortex. These results highlight the importance of fine-

tuning with highly domain-specific datasets. 

Besides, the best result from that ChatGPT family was ChatGPT-4.0 with ZSP, 

which had RARs of: 79.31% for the frontal lobe, 69.44% for the temporal lobe, 57.89% 

for the occipital lobe, 54.17% for the parietal lobe, 0.00% for the insular cortex, and 

0.00% for the cingulate cortex. With FSP, the RARs were: 79.31% for the frontal lobe, 

63.89% for the temporal lobe, 63.16% for the occipital lobe, 45.83% for the parietal 

lobe, 0.00% for the insular cortex, 14.29% for the cingulate cortex. 
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These results show that EpiSemoLLM performs well in interpreting seizure 

semiology not only for the common frontal and temporal lobe epilepsies but also for 

the less common occipital and parietal cases. Even in rare areas, i.e., cingulate and 

insular cortex, according to the regional distribution from the screened records shown 

in Fig. 3, EpiSemoLLM provides more accurate inferences than baseline models.  

3.2 Comparison of Responses from EpiSemoLLM and Epileptologists 

An online survey comprising 100 questions regarding EZ locations and corresponding 

seizure semiology was conducted to gather responses from eight Board-certified 

epileptologists. Out of these, five participants completed the survey entirely, while three 

others completed it partially. Consequently, the analysis focused on the fully completed 

responses from five epileptologists (E1, E2, E3, E4, E5). After excluding ambiguous 

characterization of EZs from the literature, the analysis was further narrowed down to 

90 questions for the comparison between all LLMs and epileptologists. 
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In the general region localization, epileptologist E5 demonstrated the highest 

rRS with a mean of 0.192 (Fig. 4). For six regions, the mean RARs were: 64.83% for 

the frontal lobe, 52.22% for the temporal lobe, 60.00% for the occipital lobe, 42.50% 

for the parietal lobe, 46.00% for the insular cortex, and 8.57% for the cingulate cortex, 

while the best possible RAR from all epileptologists’ responses was 82.76% for the 

frontal lobe, 50.00% for the temporal lobe, 68.42% for the occipital lobe, 41.67% for 

the parietal lobe, 40.00% for the insular cortex, and 0.00% for the cingulate cortex (Fig. 

5).  

Notably, EpiSemoLLM demonstrated comparable or superior accuracy to the 

best possible answers from all epileptologists in interpreting seizure semiology related 

Figure 4: (1) Distribution of average performance of epileptologists and other SOTA LLMs with zero-

shot prompting according to rRS metrics. (2) Distribution of average performance of epileptologists 

and other SOTA LLMs with few-shot prompting performance according to rRS metrics.  

(1) (2) 
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to the frontal, temporal, parietal, and occipital lobes, as well as rare regions, the insular 

and cingulate cortex. (Fig. 5). The FSP results are presented in supplementary material.  

 
Figure 5: RAR scores for average performance of epileptologists and other SOTA 

LLMs with zero-shot prompting. 

 

A group t-test based on the 100 times bootstraps was applied to identify the 

significance of the difference in RAR performance between the averaged 

epileptologists and EpiSemoLLM with different types of prompting, as shown in Fig. 

7. The results indicate that EpiSemoLLM is comparable to or even outperforms 

epileptologists in frontal, temporal, parietal, occipital, and cingulate regions. 
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Figure 7: T-test significance of RAR between epileptologists and EpiSemoLLM with 

zero-shot prompting (A) and few-shot prompting (B) on different regions, based on 

the 100 times bootstraps. Stars indicate significance levels: - (no significance), * (p-

value<0.05), ** (p-value<0.01), and *** (p-value<0.001). 

However, in the insular cortex identification, the EpiSemoLLM performs poorer than 

epileptologists, while the gap is not too large. A visualization of RAR distribution 

across different brain general regions is provided in Fig 8.  

 

Figure 8: RAR distribution across different brain regions. 
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4 Discussion 

This study proposes the first fine-tuned LLM for predicting EZ locations by interpreting 

seizure semiology. The fine-tuned model, EpiSemoLLM, was systematically compared 

with a cohort of board-certified epileptologists and a few foundational LLMs, including 

ChatGPT, Llama and Mistral. Trained from a meticulously collected cohort of seizure 

semiology-EZs pairs from published literature, EpiSemoLLM showed improved 

performance over the original foundation model, highlighting the importance of fining-

tuning using carefully annotated and domain specific data.  

EpiSemoLLM was evaluated using metrics of rRS and RAR, which was 

constructed to balance the score of correct answer while penalizing the score with 

misleading answers. The rRS evaluation revealed that EpiSemoLLM demonstrated a 

performance comparable to a panel of epileptologists, who provided responses to all 

100 cases overcoming limitations in time and motivation, typical restrictions to human 

performance. Moreover, it outperformed its original version, Mistral-7B-instruct, 

underscoring the importance of fine-tuning with domain-specific datasets. Results also 

indicated that ZSP provided more robust and accurate results compared to FSP. Few-

shot prompting can introduce biases when training samples are insufficient, leading to 

less accuracy for samples similar to the previous given cases. 

Compared to the heavyweight ChatGPT models, there is a significant gap in 

both knowledge reserve from pre-training and model inference capabilities. However, 

according to the RAR assessment, EpiSemoLLM exceeds all baseline models in 

inference accuracy across most epileptogenic regions and showed significant 

improvements in some uncommon regions, particularly the insular cortex.  Compared 

to the results from epileptologists, EpiSemoLLM achieved performance comparable to 

or better than the average level of epileptologists, though there remains a gap in 
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performance for the cingulate cortex. This discrepancy is attributed to the limited 

number of training samples (only 29) for the cingulate, compounded by the overlap in 

semiology with other regions. Even among experts, the localization accuracy for the 

cingulate cortex is the lowest, with an average RAR of less than 10%.  

Our results align with findings from previous studies assessing LLM 

performance in epilepsy-related inquiries. Specifically, Kim et al. evaluated the 

reliability of responses of LLM to 57 commonly asked questions about epilepsy 

symptoms and diagnosis, with all responses reviewed by two epileptologists. The 

results indicated that almost all questions were either of “sufficient educational value” 

response or “correct but inadequate” response [27]. Wu et al. assessed LLM 

performance on 378 epilepsy-related questions and 5 questions related to emotional 

support, finding that LLM provided “correct and comprehensive” answers to 68.4% of 

the questions but performed poorly on “prognostic questions”, with only 46.8% rated 

as comprehensive [28].  

The improvement in LLM performance with fine-tuning is consistent with 

previous work. Li et al. fine-tuned Llama with patient-doctor dialogues, significantly 

enhancing its ability to provide reliable medical information [14]. Wu et al. performed 

instruct tuning on Llama for medical question-answering, with the fine-tuned LLM 

exhibiting superior performance, even surpassing more complex state-of-the-art models 

such as ChatGPT [29]. 

While this study offers valuable insights into EpiSemoLLM’s capability to 

provide reliable interpretations of seizure semiology, it has several limitations. First, 

the training sample size is limited for some specific regions and is unbalanced among 

regions. Additionally, different EZ locations may share similar semiology, 

complicating the fine-tuning process. Unlike ChatGPT, which tends to provide 
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relatively conservative answers, EpiSemoLLM boldly gives the most likely inference, 

even if it may be incorrect, based on its fine-tuning samples. The overlap of symptoms 

in different EZs allows EpiSemoLLM to learn a broader range of possibilities, resulting 

in it offering more potential EZs based on the semiology descriptions. The collected 

data can only allow us to infer the lobe level EZs, given the most of the specific brain 

regions are missing. However, with more data available in the future, we believe more 

specifical region localization is feasible.  Finally, it is seizure semiology that is more 

directly linked to the SZ which is indicative of EZ, which limits the capability to 

localize the EZ with 100% accuracy. Nevertheless, the EpiSemoLLM can provide 

valuable information during Phase 1 of presurgical workup. In order to allow optimal 

EZ location prediction a LLM would have to also include data from imaging (MRI and 

PET), interictal and ictal EEG, neuropsychology etc., as generally needed in presurgical 

epilepsy diagnosis (Rosenow and Lüders 2001). 

However, it is crucial to recognize that the information provided by 

EpiSemoLLM may not always be supported by reliable sources, posing a challenge to 

verifying its responses. Furthermore, medical professionals, including epileptologists 

and neurosurgeons, must fully recognize the limitations of EpiSemoLLM and exercise 

caution when utilizing its responses.  Future work should aim to address these issues 

by improving the training sample size, diversity, and quality. Additionally, more 

advanced LLM architectures with larger weights can be applied to achieve better 

overall performance after fine-tuning [30]. Finally, the current version of EpiSemoLLM 

is based solely on textual information on semiology. Thus, future studies could explore 

the feasibility of using both semiology descriptions, video and neuroimaging data from 

other modalities for EZ localization, offering a novel method for preoperative 

assessments.  
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5 Conclusion 

In this cross-sectional study of seizure semiology interpretation, EpiSemoLLM, 

the first fine-tuned LLM specializing on prediction of EZs based on the description of 

seizure semiology, demonstrated performance comparable to epileptologists and 

improved performance than other foundational LLMs. The model excelled in regions 

where EZs are commonly located and showed significant improvement in insular EZ 

locations compared to other SOTA LLMs. Our results demonstrate the feasibility of 

utilizing LLMs to map seizure semiology to potential EZ.  

This study serves as an important reference for employing EpiSemoLLM in 

seizure semiology interpretation while highlighting its current constraints. With the 

ongoing development of LLMs and the availability of more training samples and 

importantly the inclusion of data from EEG, brain imaging and neuropsychology, the 

reliability and accuracy of EpiSemoLLM are expected to improve in the foreseeable 

future. 
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