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Abstract

The wealth of genomic data that was generated during the COVID-19 pandemic
provides an exceptional opportunity to obtain information on the transmission of
SARS-CoV-2. Specifically, there is great interest to better understand how the effective
reproduction number Re and the overdispersion of secondary cases, which can be
quantified by the negative binomial dispersion parameter k, changed over time and
across regions and viral variants. The aim of our study was to develop a Bayesian
framework to infer Re and k from viral sequence data. First, we developed a
mathematical model for the distribution of the size of identical sequence clusters, in
which we integrated viral transmission, the mutation rate of the virus, and incomplete
case-detection. Second, we implemented this model within a Bayesian inference
framework, allowing the estimation of Re and k from genomic data only. We validated
this model in a simulation study. Third, we identified clusters of identical sequences in
all SARS-CoV-2 sequences in 2021 from Switzerland, Denmark, and Germany that were
available on GISAID. We obtained monthly estimates of the posterior distribution of Re

and k, with the resulting Re estimates slightly lower than resulting obtained by other
methods, and k comparable with previous results. We found comparatively higher
estimates of k in Denmark which suggests less opportunities for superspreading and
more controlled transmission compared to the other countries in 2021. Our model
included an estimation of the case detection and sampling probability, but the estimates
obtained had large uncertainty, reflecting the difficulty of estimating these parameters
simultaneously. Our study presents a novel method to infer information on the
transmission of infectious diseases and its heterogeneity using genomic data. With
increasing availability of sequences of pathogens in the future, we expect that our
method has the potential to provide new insights into the transmission and the
overdispersion in secondary cases of other pathogens.
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Author summary

Pathogen transmission is a stochastic process that can be characterized by two
parameters: the effective reproduction number Re relates to the average number of
secondary cases per infectious case in the current conditions of transmission and
immunity, and the overdispersion parameter k captures the variability in the number of
secondary cases. While Re can be estimated well from case data, k is more difficult to
quantify since detailed information about who infected whom is required. Here, we took
advantage of the enormous number of sequences available of SARS-CoV-2 to identify
clusters of identical sequences, providing indirect information about the size of
transmission chains at different times in the pandemic, and thus about epidemic
parameters. We then extended a previously defined method to estimate Re, k, and the
probability of detection from this sequence data. We validated our approach on
simulated and real data from three countries, with our resulting estimates compatible
with previous estimates. In a future with increased pathogen sequence availability, we
believe this method will pave the way for the estimation of epidemic parameters in the
absence of detailed contact tracing data.

Introduction 1

The COVID-19 pandemic prompted an unprecedented global effort in generating and 2

sharing SARS-CoV-2 sequences. As of March 2024, four years after the first sequences 3

were released, over 16 million full-genome sequences have been shared, almost fifty times 4

the estimated number of full-genome flu sequences generated over decades [1]. At the 5

same time, scientists, governments, and public health authorities were keen to make use 6

of all available methods to better understand the ongoing pandemic and implement 7

appropriate responses. For example, information on the transmission dynamics of 8

SARS-CoV-2, that can be characterized by the basic reproduction number R0 and the 9

effective reproduction number Re, was critical to understanding whether current 10

pandemic restrictions were controlling transmission [2] and whether new variants might 11

cause pressure on healthcare systems. As well as estimating Re from the available 12

case-count data [3, 4], the availability of significant numbers of sequences created the 13

opportunity to estimate this, and other parameters, through sequence- and 14

phylogenetic-based methods [5–7]. 15

Historically many of these techniques have been developed and applied to study 16

pathogen dynamics in the past or in outbreak conditions when information such as 17

reliable case counts may not be available [8–11]. However, another benefit of utilizing 18

sequences is the ability to estimate parameters that otherwise require a level of detailed 19

data acquisition that is difficult to obtain. A prime example of this is measuring the 20

heterogeneity in transmission, which can be quantified by the dispersion parameter k. 21

Estimating k normally requires knowledge not only of the number of confirmed cases 22

per day, but the number of secondary cases created by individual cases. In a pandemic 23

or epidemic, k quantifies how much spread may be driven by superspreading events, and 24

thus can inform intervention efforts [12–17]. As part of contact-tracing efforts by many 25

countries, estimates of k using groups of linked cases have been possible, but due to the 26

detailed level of data most require, have generally been limited to use on a few thousand 27

cases and contacts [18–31], or simulated data [32]. In countries where SARS-CoV-2 28

cases were well-contained and thus had a high probability of being fully-traced, these 29

datasets may be able to capture transmission dynamics well, but particularly as the 30

pandemic has progressed and case numbers have risen, using relatively small subsets 31

may both not fully capture the larger dynamics and may not be completely traced [33]. 32

Using the large number of readily-available SARS-CoV-2 sequences to estimate values 33
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such as k could overcome these limitations. 34

Blumberg and Lloyd-Smith’s (2013) [34] method provides a way to estimate R0 (or 35

Re) and k without requiring contact tracing data, and instead using a transmission 36

chain size distribution. Their framework presumes transmission chains are finite with 37

Re below 1, or in other words, the transmission chain must “stutter out”. This method 38

has been successfully applied to pathogens that spill over from animal reservoirs and 39

don’t lead to sustained human-to-human transmission, such as mpox prior to 2022 and 40

MERS-CoV. In MERS-CoV outbreaks during 2013-2014, multiple spillover events from 41

camels and well-traced transmission chains have resulted in datasets well-suited to 42

estimating R0 and k [35–37]. However, even in instances such as these, where 43

transmission networks are relatively well-recorded, cases may be missed, mis-attributed, 44

or incorrectly considered a part of a transmission chain rather than a separate 45

introduction due to insufficient background case detection. Thus, Blumberg and 46

Lloyd-Smith [38] adapted their method to take into account imperfect case-detection. 47

During a pandemic, individual transmission chains might stop, but the state of being 48

in a pandemic implies that overall these chains persist. Therefore, cases can not be 49

readily decomposed into individual limited transmission chains. Instead, transmissions 50

chains aggregate to macroscopic case numbers and the method of stuttering chains by 51

Blumberg and Lloyd-Smith [34] can not be applied in such a scenario. To overcome this 52

limitation, we propose to use clusters of identical sequences as a proxy for transmission 53

chains: even in an ongoing transmission chain, the mutation rate of the virus means 54

that every unique genotype will only exist until the virus mutates and thus is limited in 55

size. To this end, we introduce a new metric, the genomic reproduction number Rg, 56

that relates the reproduction number of cases with identical sequences to the effective 57

reproduction number of cases, Re. 58

In this study, we extended the method by Blumberg and Lloyd-Smith [34] and 59

developed a Bayesian framework to infer Re and k from viral sequence data. First, we 60

developed a mathematical model of the size distribution of identical sequence clusters, 61

in which we integrated viral transmission, the mutation rate of the virus, and 62

incomplete case-detection to capture all aspects of the data-generating mechanism. 63

Second, we implemented this model within a Bayesian inference framework, that we 64

validated using simulated data. Third, we identified clusters of identical sequences in all 65

SARS-CoV-2 sequences in 2021 from Switzerland, Denmark, and Germany that were 66

available on GISAID and applied our method to obtain monthly estimates of Re and k 67

in these countries. 68

Materials and methods 69

Data 70

We downloaded all available SARS-CoV-2 sequences (14.8 million) from GISAID [1] on 71

7 March 2023. We ran them through the Nextstrain’s ncov-ingest pipeline [39], which 72

provides a list of all nucleotide mutations relative to the Wuhan-Hu-1/2019 reference 73

(Genbank: MN908947) via Nextclade analysis [40]. Sequences identified as being 74

problematic due to divergence issues or variant sequences reported prior to the variant’s 75

origin (dating issues) were excluded. We then selected sequences from Switzerland, 76

Denmark, and Germany, three countries with different testing and sequencing strategies 77

resulting in different case-detection and sequencing coverage. The total number of 78

sequences at the start of our analysis was 162,049 for Switzerland, 632,400 for Denmark, 79

and 901,748 for Germany. All sequences are available from GISAID after registration as 80

EPI SET 240326pm for Switzerland, EPI SET 240326mz for Denmark, and 81

EPI SET 240326uh for Germany (see also Supplementary Tables S1-3 Tables). 82
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To identify genetically identical sequences efficiently on a large number of sequences, 83

the list of nucleotide mutations was used as a hash key, with sequences with identical 84

hash keys being classified as a cluster. To minimize the chance that sequences with low 85

numbers of mutations, which may have arisen independently, falsely cluster together, 86

only sequences with more than four mutations, relative to the reference Wuhan strain, 87

were used to form clusters. Due to the mutation rate of SARS-CoV-2, this limitation 88

only excluded sequences at the very start of the pandemic and before our study period 89

of 2021, as most lineages had more than four nucleotide mutations by March/April 2020. 90

Clustering by lists of nucleotide mutations is efficient but imperfect, as sequencing 91

errors such as lack of coverage and use of ambiguous bases can impact whether sequence 92

mutation lists hash identically. We assumed that such errors are randomly distributed 93

through time and thus have minimal effect on the overall cluster size distribution of 94

such a large number of sequences. It’s infeasible to account for all possible sequencing 95

errors, but in an effort to minimize their impact, for all recognised Nextstrain variants, 96

variant-defining mutations as obtained from CoVariants.org [41] were removed and 97

replaced with the variant name. This prevents variant sequences being erroneously 98

separated if they are missing variant-defining mutations. The code used for this 99

processing is available at github.com/emmahodcroft/sc2 rk public. The robustness of 100

the resulting clusters for each country was checked by picking 15 clusters at random, 101

plus the top 10 largest clusters, and identifying them on phylogenetic trees and manually 102

verifying that the shared mutations appeared only once, forming a monophyletic cluster. 103

We grouped the identical sequence clusters into monthly time windows from January 104

to December 2021. We assigned clusters to a given month if at least one sequence was 105

sampled during that month. We focused on this period as the arrival of the 106

SARS-CoV-2 variant of concern (VoC) Alpha in late 2020 led to a scale-up in sequencing 107

efforts in all three countries. Sequencing uptake remained relatively high though 2021 108

until the arrival of Omicron in late 2021, when a dramatic increase in cases led to a 109

reduction in case ascertainment and sequencing coverage. The number of sequences that 110

were assigned to identical sequence clusters from 1 January 2021 to 31 December 2021 111

was 96,622 for Switzerland, 267,472 for Denmark, and 355,193 for Germany. 112

We calculated the sequencing coverage for each month as the ratio of the number of 113

sampled sequences in GISAID over the total number of laboratory-confirmed cases as 114

reported by public health authorities in the respective country. For each country and 115

month we determined among the sequences that have been assigned to identical 116

sequence clusters the number of sequences that have been sampled in the specific month. 117

We directly retrieved daily numbers of newly confirmed cases from public sources of 118

Switzerland [42], Denmark [43] and Germany [44] and summarized them to monthly 119

values. For comparison with our estimates of Re, we also downloaded estimates that 120

were based on laboratory-confirmed cases for all three countries 121

(github.com/covid-19-Re) [7]. To show as additional information in results figures, we 122

retrieved proportions of viral variants among sequences for all three countries on a 123

bi-weekly basis from CoVariants.org [41]. 124

Mathematical model 125

We derived a model of the size distribution of identical sequence clusters (Fig 1). To 126

this end, we applied branching process theory to viral transmission, with nodes 127

corresponding to cases and connections between two nodes corresponding to 128

transmission events. We assumed that for each node the number of offspring, i.e. the 129

number of persons to whom an infected individual transmitted the virus, is independent 130

and identically distributed. In addition to the viral transmission process, we 131

consecutively took into account both the mutation of the virus and the incomplete 132

case-detection. At each node of the branching process, a mutation of the virus could 133
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occur, with a constant probability for all nodes. Provided a mutation took place, we 134

assumed that it happened prior to the respective node further transmitting the virus or 135

being detected. Consequently, a new mutation was passed on to all secondary cases. 136

This assumption is backed by the work of Braun et al. [45], which showed that overall 137

within-host diversity is low during acute infection and estimated that transmission 138

bottlenecks between hosts are narrow. Furthermore, they argued that the low number 139

of viral particles transmitted while infecting another person can induce a founder effect 140

that wipes out low-frequency intra-host single nucleotide variants. The mutation 141

process allowed us to divide the overall transmission chain into multiple smaller 142

transmission chains by the viral genome sequence present at the nodes. From there we 143

obtained a model of the distribution of the size of identical sequence clusters according 144

to the parameters governing viral transmission and mutation. A detailed description of 145

all different steps can be found in the Supplementary Material S1 Text, chapter 3. 146

2

2

3

1 0

Identical sequence cluster: A B C D E

Transmission: Within same cluster Not within same cluster

Detection: Case observed Case not observed

Fig 1. Transmission chain and identical sequence clusters The branching
process model creates transmission chains. Viral mutation splits the transmission chains
into identical sequence clusters. The numbers indicate the size of the observed identical
sequence clusters, i.e. the number of cases in the clusters that were tested and
sequenced.

This approach allowed us to adapt a method previously developed by Blumberg and 147

Lloyd-Smith [34] to estimate Re and k from the distribution of cluster size to our 148

specific case involving the size of identical sequence clusters. This method assumes a 149

negative binomial distribution for the number of secondary cases with mean Re 150
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(interpreted as the average number of secondary cases per infectious case in the current 151

conditions of transmission and immunity) and dispersion parameter k (lower values 152

implying more dispersion, and thus more superspreading events). The mean number of 153

mutations per transmission has been estimated to be MT = 0.33 [46]. Based on MT we 154

can determine the probability µ that genomes from two subsequent cases in a 155

transmission chain differ from each other by at least one mutation: 156

µ = 1− e−MT . (1)

Plugging in MT = 0.33 into the above formula, we get µ = 28.1%. Alternatively, we 157

estimated µ from the evolutionary rate M and the serial interval D: 158

µ = 1− e−MD/365.25 . (2)

For a within-variant rate M of 14 mutations per year [47] and a mean generation 159

time of D = 5.2 days [48], we get µ = 18.1%. While the former value for µ might be a 160

slight over-estimate since it is not clear whether all transmission pairs used in this 161

estimation are direct transmission pairs, the latter is likely an under-estimate since 162

deleterious mutations contribute more on short time scales within transmission clusters 163

than on longer time scales used to estimate the rate M . We use µ = 28.1% in the main 164

text and provide an alternative analysis with µ = 18.1% in the supplementary materials 165

(Supplementary Material S1 Text, chapter 7). 166

Since a new mutation splits the transmission chains into identical sequence clusters, 167

we introduced a new metric, the genomic reproduction number: 168

Rg = (1− µ)Re (3)

that is related to the effective reproduction number of cases Re and corresponds to the 169

average number of secondary cases within a given identical sequence cluster. Since the 170

number of secondary cases follows a negative binomial distribution with mean Re and 171

dispersion parameter k, the number of secondary cases that belong to the same identical 172

sequence cluster as their source case also follows a negative binomial distribution with 173

mean Rg and dispersion parameter k. We have included a complete mathematical 174

derivation of this property in the Supplementary Material S1 Text, chapter 2. 175

As a last step, we incorporated incomplete case-detection assuming an independent 176

observation process [38]. We computed the probability that a case was detected as the 177

product of the probability that a case was confirmed by a test and the probability that 178

the viral genome of a confirmed case was sequenced. 179

Bayesian inference 180

We developed a Bayesian inference framework to estimate the model parameters from 181

the size distribution of identical sequence clusters and implemented in Stan, a 182

probabilistic modeling platform using Hamiltonian Monte Carlo methods [49]. We used 183

weakly-informative prior distributions for Re, k, and the testing probability and, 184

depending on the manner the mutation process was included into the model, a 185

weakly-informative prior distribution for the mutation probability µ or an informative 186

prior distribution for the yearly mutation rate M . The mean generation time D and the 187

sequencing probability were taken as fixed values. We estimated Re, k, and the testing 188

probability for monthly time windows from January to December 2021. While the main 189

focus was to estimate Re and k, inclusion of the testing probability allows for our 190

approach to be generalizable to contexts where few data exist about this quantity. In 191

addition, this allows incorporating the uncertainty about testing in the final estimates 192
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of Re and k. The posterior samples were summarized by their mean and 95% credible 193

interval (CrI). More details can be found in the Supplementary Material S1 Text, 194

chapters 4 and 6. The R and Stan code files are provided within the R package 195

estRodis, available on the following GitHub repository: 196

github.com/mwohlfender/estRodis. 197

Simulations 198

We conducted a simulation study to validate the model. We generated data of identical 199

sequence clusters for different parameter combinations of Re, k, and the mutation, 200

testing and sequencing probability. To this end, we performed stochastic simulations of 201

transmission using branching processes and then applied mutation and incomplete 202

case-detection. Cases with an identical sequence were grouped in a cluster. We 203

subsequently applied our inference framework to the simulated data and compared the 204

mean of the posterior distribution of the estimated parameters to the true values using 205

the root mean squared error (Fig 2) and coverage of the true value by the 95% CrI of 206

the posterior distribution (Supplementary Material S1 Text, Figure S4). 207

Results 208

Based on the new metric of the genomic reproduction number Rg, we developed a 209

Bayesian inference model to estimate Re, k, and the testing probability from data on 210

the size distribution of identical sequence clusters. We validated this model using 211

simulated data and investigated how combinations of Re, k, the testing probability, and 212

the sequencing probability could be accurately recovered. To this end, we ran 10 rounds 213

of simulation of 3,000 identical sequence clusters for 240 parameter combinations 214

(Fig 2). Generally, we found that the error between the true and estimated values of Re 215

and k is minimized for higher testing and sequencing probabilities. Our method 216

provided reliable estimates of Re and k as long as Re was below 1.2 (i.e., Rg is below 1 217

given our assumption for the mutation rate, Fig 2 A and B). When Re was set to 1.3 218

(so that Rg is above 1), the inference model could not reliably recover the true value 219

anymore. Overall, the validation showed that our model can be used to estimate Re and 220

k in specific settings. 221

We identified clusters of identical SARS-CoV-2 sequences using real-world 222

sequencing data from Switzerland, Denmark, and Germany. From a total of 96,622 223

sequences from Switzerland, 267,472 from Denmark, and 355,193 from Germany, we 224

identified 58,587, 84,537 and 218,497 clusters of identical sequences, respectively. Small 225

clusters dominated the distribution of cluster size, with 79.7%, 70.8%, and 79.4% of the 226

clusters being of size one in Switzerland, Denmark, and Germany, respectively. The 227

mean cluster size was 1.65 in Switzerland, 3.16 in Denmark, and 1.63 in Germany, 228

which suggests a higher probability of testing and/or sequencing in Denmark compared 229

to the other countries. The sequencing coverage for laboratory-confirmed SARS-CoV-2 230

cases indeed differed substantially between the three countries over time, with an 231

average sequencing coverage of 10.4% for Switzerland, 38.2% for Denmark, and 6.4% for 232

Germany over 2021. 233

Each identical sequence cluster was assigned to a given month if it contained at least 234

one sequence from that month, thus we assigned 3603 (6.1%) identical sequence clusters 235

from Switzerland, 6610 (7.8%) from Denmark and 14,520 (6.6%) from Germany to at 236

least two months of 2021. Including the identical sequence clusters overlapping from 237

2020 into 2021 or from 2021 into 2022, the number of identical sequence clusters 238

extending beyond one month among the identified clusters was 4151 (7.1%) in 239

Switzerland, 8144 (9.6%) in Denmark and 15,992 (7.3%) in Germany. The number of 240
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Fig 2. Validation of the Bayesian inference model to estimate Re, k and τtest
from the size distribution of identical sequence clusters. A: Estimate of the
effective reproduction number Re. B: Estimate of the dispersion parameter k. C:
Estimate of the testing probability τtest. True values are shown as black lines. For each
parameter combination, we ran the model 10 times on 3,000 simulated clusters each.
The generated samples of the posterior distributions are summarized by mean and 95%
credible interval.

clusters assigned to a month and their mean size varied by country as well as by month 241

(Fig 3). More details about the size distribution of identical sequence clusters of 242

Switzerland, Denmark or Germany assigned to a month of 2021 are presented in the 243

Supplementary Material S1 Text, chapter 1. 244

We applied the model to the size distribution of identical sequence clusters to obtain 245

monthly estimates of Re, k, and the testing probability for SARS-CoV-2 in Switzerland, 246

Denmark, and Germany (Fig 4). The estimated Re values per month for each country 247

across 2021 generally remained below 1, though the values did fluctuate through the 248
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Fig 3. Identical sequence cluster size distribution and sequencing coverage
for SARS-CoV-2 in Switzerland, Denmark, and Germany in 2021.
A: Range, mean, 90th percentile and 99th percentile of the identical sequence cluster
size distribution and number of clusters by month based on data from GISAID.
B: Sequencing coverage (dots) and proportion of SARS-CoV-2 variants (background
colour) by month.

year (Fig 4A). The average Re value for Switzerland, Denmark, and Germany was 0.89 249

(95% credible interval, CI: 0.76-1.00), 1.04 (95% CI: 0.88-1.16), and 0.92 (95% CI: 250

0.83-1.00), respectively. The estimates of Re come with narrow credible intervals. This 251

might be due to the structure of the posterior probability, being highly concentrated 252

around the most likely estimate. Due to the relatively large time window of one month, 253

the underlying trends in Re as estimated based on laboratory-confirmed cases were not 254

captured consistently using our new method based on identical sequence clusters, 255

notably at time points with transitions between SARS-CoV-2 variants. 256

Our estimates of the dispersion parameter k varied between the different countries, 257

September 27, 2024 9/19

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.05.26.24307940doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.26.24307940
http://creativecommons.org/licenses/by/4.0/


Switzerland Denmark Germany

Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0

0.2

0.4

0.6

0.8

1

Time

E
st

im
at

ed
 R

e

P
roportion of variant

A

Method: Estimate External estimate

Switzerland Denmark Germany

Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.2

0.4

0.6

0.8

1

Time

E
st

im
at

ed
 d

is
pe

rs
io

n 
pa

ra
m

et
er

P
roportion of variant

B

Switzerland Denmark Germany

Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Sep Oct

Nov Dec

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

Time

E
st

im
at

ed
 te

st
in

g 
pr

ob
ab

ili
ty

P
roportion of variant

C

Variants: Alpha Delta Omicron Others

Fig 4. Parameter estimates based on the size distribution of identical
SARS-CoV-2 sequence clusters in Switzerland, Denmark and Germany in
2021. A: Effective reproduction number Re. B: Dispersion parameter k. C: Testing
probability. The estimates are based on monthly time windows of identical sequence
clusters. For each month the estimated mean and 95% credible interval of the posterior
distribution (in black)are shown. Re values are compared to external estimates based on
laboratory-confirmed cases (in blue, from github.com/covid-19-Re [7]).

with average estimates over the 12 month period of 0.17 (95% CI: 0.02-0.30) for 258

Switzerland, 0.38 (95% CI: 0.13-0.60) for Denmark, and 0.15 (95% CI: 0.02-0.27) for 259

Germany. Estimates of k were highest in Denmark, fluctuating around 0.3 to 0.5 from 260

January to October before dropping at the end of the year. Depending on the country 261

and month, the estimates of k have narrower or wider credible intervals. In Switzerland 262

and Germany, the estimates of k were generally lower with values around 0.1 to 0.3 and 263

also dropped at the end of the year. The transition from Alpha to Delta was not 264

associated with a substantial change in the estimates of k. 265
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The estimated testing probability was relatively high and came with more 266

uncertainty. This indicates that the testing probability cannot be precisely estimated 267

from the size distribution of identical sequence clusters using our Bayesian inference 268

model. Thus, we conducted a sensitivity analysis where the testing probability was fixed 269

at 57.6% from January to August 2021 and at 35% from September to December 2021, 270

based on estimates of the case ascertainment using swab positivity in England [50]. 271

This did impact Re and k estimates to a small degree, generally increasing Re estimates 272

slightly and decreasing k estimates slightly (Supplementary Material S1 Text, chapter 273

7). 274

Furthermore, we have carried out a posterior predictive check and a goodness of fit 275

analysis to assess the compatibility of our simulation of identical sequence clusters based 276

on the estimated parameters with the cluster data from Switzerland, Denmark and 277

Germany (Supplementary Material S1 Text, chapters 9 and 10). 278

Discussion 279

We developed a novel Bayesian model to estimate the effective reproduction number, 280

Re, and crucially the level of superspreading of an epidemic from viral sequence data, k. 281

To this end, we introduced a new metric, the genomic reproduction number, Rg, the 282

mean number of secondary cases created by an infected individual that share the same 283

viral genome. Rg is therefore the analogue of Re in the context of clusters of identical 284

sequences. We applied our model to the size distribution of identical sequence clusters 285

of SARS-CoV-2 in Switzerland, Denmark, and Germany in 2021. We obtained monthly 286

estimates of Re around or below the epidemic threshold of 1. The estimates of the 287

dispersion parameter k varied substantially by country and month and were typically 288

between 0.1 and 0.5. Together, our study illustrates how the increasing amount of viral 289

sequence data can be used to inform epidemiological parameters of SARS-CoV-2 and 290

potentially other pathogens. 291

During our work, Tran-Kiem and Bedford (2024) [51] published a study based on the 292

same underlying theory as ours. The fact that two research groups applied the same 293

concepts at the same time independently of each other to estimate parameters related 294

to transmission dynamics of infectious diseases is certainly linked to the increasing 295

availability of viral genomic data, and underlines the promising nature of this approach. 296

A major difference between the two studies is the choice of the method for parameter 297

inference. Instead of a maximum likelihood approach, we have decided to use a 298

Bayesian framework allowing the full propagation of the uncertainty related to data and 299

incompletely known input parameters throughout the estimation process. Furthermore, 300

while Tran-Kiem and Bedford (2024) [51] applied their model to rather small datasets of 301

different diseases where traditional phylodynamic methods would also have been 302

applicable, we have dealt with significantly larger country-wide datasets covering the 303

whole year 2021. We have developed approaches to efficiently identify clusters of 304

identical sequences within these datasets containing hundreds of thousands of sequences 305

and applied our model to monthly segments of the data to estimate the effective 306

reproduction number Re and the dispersion parameter k and track their change over 307

the year 2021. These points demonstrate the different applications of the underlying 308

theory and the complementary nature of these two studies. 309

The main strength of our study is the presentation of a new method to estimate 310

epidemiological parameters, specifically the overdispersion in the number of secondary 311

cases, from viral sequence data alone. While Re can often be reliably estimated from 312

counts of laboratory-confirmed cases as well, estimating k has historically been 313

considerably more challenging since it requires direct information about transmission 314

events, for example, the number of secondary cases created by individual cases or the 315
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size of transmission chains. With the novel method presented here, this challenge can be 316

overcome through making use of the large number of sequences available for 317

SARS-CoV-2. In addition, our method uses a computationally efficient way to identify 318

clusters of identical sequences without the need to reconstruct very large phylogenies. 319

Finally, the Bayesian inference model allows a full propagation of the uncertainty in the 320

viral transmission parameters, the mutation rate, and the incomplete case-detection. 321

Our study comes with a number of limitations. First, the presented method requires 322

a large amount of sequence data and a relatively high case ascertainment to obtain 323

reliable estimates of epidemiological parameters. We expect such datasets to become 324

more common with further technological developments in diagnostics and sequencing, in 325

particular for outbreaks and epidemics of emerging infectious diseases. Second, miscalls 326

in sequences, such as reversions to a reference sequence, might have resulted in some 327

clusters that are artificially separated or combined. We countered this problem to a 328

certain extent by replacing variant-defining sequences with the variant name. For the 329

remaining sequences, we expect that miscalls would have only little impact on the 330

overall cluster size distribution and the parameter estimates. Third, we assumed an 331

independent observation process, i.e., infected cases are detected randomly and tested 332

cases are sequenced at random. However, testing and sequencing uptake might cluster 333

in certain settings, such as during contact tracing and outbreak investigations. This 334

would on average lead to a higher detection probability for cases contained in a large 335

identical sequence cluster and to a lower detection probability for cases contained in a 336

small identical sequence cluster. We think that the effects on the estimations of Re and 337

k resulting from this are limited. For example, a lower probability of observing an 338

identical sequence cluster of size one would indicate a larger value of k, whereas a higher 339

probability of observing large clusters would indicate a lower value of k. However, it is 340

possible that the assumption of an independent observation process that we took to 341

limit computational complexity of the model is not perfectly realistic, which manifests 342

in large credible intervals for the estimates of the testing probability. Lastly, we did not 343

consider changes in the mutation rate and the generation time during the study period, 344

which could have led to different ratios between Re and Rg, especially for different 345

SARS-CoV-2 variants. 346

Our estimates of Re were not able to fully capture the observed changes when Re is 347

estimated from laboratory-confirmed cases. This could be a result of our assumption to 348

assume a fixed time window (months) for which we estimated averaged epidemiological 349

parameters during an ongoing epidemic. This introduces potential biases due to left and 350

right censoring. On the one hand, we partly circumvented this problem by assigning 351

identical sequence clusters to a given month if at least one sequence was sampled during 352

that month. On the other hand, this has the disadvantage that we included clusters in 353

our analysis that can span much longer time periods than one month and that cover 354

different epidemic phases with widely different values of Re. Furthermore, the transition 355

periods from one SARS-CoV-2 variant to another pose an additional challenge to our 356

inference method, as by definition sequence clusters cannot span over these transitions. 357

Thus, it is not surprising that our method cannot capture the rapid changes of Re and 358

its rise after the arrival of new variants, such as the growth of Delta and Omicron in 359

June and December 2021, respectively. The issue with left and right censoring also 360

means that our method cannot reliably estimate Re when the genomic reproduction 361

number Rg is above 1, i.e., when some clusters can grow - in theory - indefinitely. We 362

considered ways to enable the model to deal with situations in which Rg is larger than 363

1, but we have not found a suitable solution. We set out our considerations in the 364

Supplementary Material S1 Text, chapter 3.1. Together, these limitations can explain 365

why our estimates of Re seemed to fluctuate around the epidemic threshold of 1, which 366

corresponds to the long-term average of an ongoing epidemic. For further exploration of 367
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the impact of different model assumptions on Re estimates, see Supplementary Material 368

S1 Text, chapter 7. 369

In contrast, the estimates of k (range: 0.15-0.38) that we obtained with our new 370

method fit well within the range of previous estimates for SARS-CoV-2 [18–32]. While 371

Re is constantly changing by definition, for example due to increasing immunity in the 372

population, k, which reflects the degree of individual variation [52], is more stable over 373

time. Still, k can vary, for example depending on the variant of SARS-CoV-2 or the 374

implementation of public health measures. Therefore, our assumption of constant values 375

of Re and k within monthly time windows is less restrictive for the estimation of k than 376

for Re, which makes our framework more suitable for the estimation of k than for the 377

estimation of Re. Interestingly, k was considerably higher in Denmark compared to 378

Switzerland and Germany, indicating fewer superspreading events. While Switzerland 379

and Germany had similar levels of testing uptake and laboratory-confirmed cases during 380

most of 2021, the testing uptake in Denmark was considerably higher while the number 381

of laboratory-confirmed cases was similar to the other countries. This suggests a higher 382

case ascertainment and a better control of SARS-CoV-2 transmission in Denmark, 383

which could have led to fewer opportunities for superspreading events and, as a 384

consequence, higher values of k. Based on the same underlying theory, Tran-Kiem and 385

Bedford [51] estimated k at 0.63 (95% confidence interval: 0.34-1.56) in New Zealand, 386

which is somewhat higher than our estimates. Again, this can be explained by the fact 387

that they analyzed identical sequence clusters during a period when there was a high 388

level of transmission control with little opportunities for superspreading events. Lastly, 389

it remains unclear how our estimates of k were affected by the left and right censoring 390

of clusters, but the relatively low estimates in January and December 2021 could be 391

impacted by the early spread of Alpha and Omicron. Another potential explanation is 392

that superspreading events may be favoured by indoor gathering during winter periods. 393

Another potential source of bias of the estimates of both Re and k is the import and 394

export of cases. An imported case from abroad most likely carries a mutation not yet 395

present in the country and hence starts a new cluster of identical sequences. Imported 396

cases could on one hand create fewer secondary cases compared to local cases because 397

their infectious period already might have started prior to arrival. Tsang et al. [53] took 398

this into account in their study by adjusting the infectiousness profiles of imported cases. 399

Furthermore, the imposition of quarantine measures was likely effective in reducing 400

transmission [54]. On the other hand, Creswell et al. [55] argue that frequent travelers 401

might have more contacts than those individuals who do not travel abroad. This would 402

lead to a higher risk of transmission. An exported case leads to the corresponding 403

identical sequence cluster not getting as big as it would in a scenario without 404

exportation of cases. Therefore, in general the importation and exportation of cases 405

could increase the overall number of identical sequence clusters and reduce the mean size 406

of identical sequence clusters. Such a deformation of the size distribution of identical 407

sequence clusters could lead to an underestimation of both the effective reproduction 408

number and the dispersion parameter. However, we expect that the proportion of 409

imported, respectively exported, cases in the dataset is small. Therefore, we assume 410

that our results are not significantly influenced by case importation and exportation. 411

The vast amount of genomic data that was generated during the pandemic provides 412

novel opportunities to characterize and track the transmission dynamics of 413

SARS-CoV-2. Our newly developed Bayesian model to infer epidemiological parameters 414

from the size distribution of identical sequence clusters can reliably estimate the level of 415

superspreading through the dispersion parameter k and has the potential to inform 416

about Re, albeit with some practical limitations for the latter. With the increasing 417

affordability and ease of sequencing, we expect that large volumes of sequence data will 418

become more readily available in the future, making it possible to adapt this method to 419
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other pathogens and to estimate the transmission heterogeneity in different countries, 420

for different variants, and over time. 421
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