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Abstract
Comprehensively studying metabolism requires the measurement of metabolite levels.
However, in contrast to the broad availability of gene expression data, metabolites are rarely
measured in large molecularly-defined cohorts of tissue samples. To address this basic barrier
to metabolic discovery, we propose a Bayesian framework (“UnitedMet”) which leverages the
empirical strength of RNA-metabolite covariation to impute otherwise unmeasured metabolite
levels from widely available transcriptomic data. We demonstrate that UnitedMet is equally
capable of imputing whole pool sizes as well as the outcomes of isotope tracing experiments.
We apply UnitedMet to investigate the metabolic impact of driver mutations in kidney cancer,
identifying a novel association between BAP1 and a highly oxidative tumor phenotype. We
similarly apply UnitedMet to determine that advanced kidney cancers upregulate oxidative
phosphorylation relative to early-stage disease, that oxidative metabolism in kidney cancer is
associated with inferior outcomes to combination therapy, and that kidney cancer metastases
themselves demonstrate elevated oxidative phosphorylation relative to primary tumors.
UnitedMet therefore enables the assessment of metabolic phenotypes in contexts where
metabolite measurements were not taken or are otherwise infeasible, opening new avenues for
the generation and evaluation of metabolite-centered hypotheses. UnitedMet is open source
and publicly available (https://github.com/reznik-lab/UnitedMet).
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Introduction
Changes to metabolite pool sizes and metabolic flux are fundamental to numerous diseases
and biological phenomena1, and by consequence measurement of metabolites themselves is
critical to the discovery of disease biomarkers, therapeutic vulnerabilities, and mechanisms of
action2–4 5 6,7. However, despite the translational value of metabolite measurement, large-scale
profiling of metabolite levels in clinical specimens remains scarce due to the technical
challenges associated with metabolomic measurements (e.g. the need for fresh, snap-frozen
tissue, and the analytical challenges of measuring chemically diverse compounds) 8.
Overcoming this data scarcity therefore comes with the potential reward of new access to the
large space of underexplored, metabolite-centered biological hypotheses.

Two simultaneous and recent developments have now poised the metabolism field to overcome
the lack of large-scale metabolite measurements. First, recent developments in machine
learning have demonstrated the promise of using reference multimodal data (i.e. measurements
of two or more distinct data modalities) to ultimately impute measurements of interest in
single-modality data 9,10. For example, multi-modal learning methods for single cell multi-omics
9–11 have been successful at cross-modal prediction for single-modality datasets (e.g., protein
prediction by jointly modeling with single cell RNAseq in TotalVI 12, single cell ATAC prediction
via modeling with single cell RNA sequencing in MultiVI13). Second, we and other groups have
identified both cancer-type-specific as well as lineage-agnostic patterns of RNA-metabolite
covariation 14–19. Together, these developments suggest that suitably designed machine learning
models may, by leveraging strong covariation between transcripts and metabolite pools, be able
to predict otherwise unmeasured metabolite levels from matched single-modality transcriptomic
data. Such a joint framework for modeling metabolic and RNA measurements would also
produce a unified, low-rank representation of multimodal metabolite/RNA data, enabling
downstream sample clustering, visualization and integration in a latent space.

Three key quantitative challenges must be addressed by multimodal models of metabolite/RNA
levels. First, mass-spectrometry-derived metabolomics/isotope labeling data is predominantly
reported in semi-quantitative relative abundances, impeding comparisons of identical
metabolites/isotopologues across datasets (and of different metabolites within the same
dataset). Second, different metabolomic measurement platforms often detect a subset of
metabolites with limited overlap. As a result, each metabolic reference dataset exhibits a varying
degree of missing measurements. Third, both metabolic and RNA modalities possess distinct
sources of technical errors and noise which need to be suitably modeled.. Prior attempts at
predicting metabolic profiles from RNA-seq data have had limited success, in part due to their
inefficiency in addressing the aforementioned challenges. One method, reliant on correlation
networks, struggled with missing values, resulting in a limited ability to predict cross-dataset
outcomes for only 34 metabolites, with the highest Pearson’s below 0.5 20. Similarly, a differentρ

approach employing multivariate Lasso regression yielded poor performance, with a median 𝑅2

value of 0 for within-dataset prediction and an inability to perform cross-dataset prediction 21.

Here we present UnitedMet, a Bayesian probabilistic method for joint modeling of metabolic and
RNA-seq data. UnitedMet addresses the above challenges by mapping both RNA and
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metabolite data onto a shared rank-transformed scale and inferring missing metabolic
measurements in reference datasets. UnitedMet operates as a comprehensive framework at
two levels. In the latent space, it learns a unified representation for both metabolic and RNA
data, facilitating tasks like sample clustering and dataset integration. At a higher level,
UnitedMet seizes on the strength of RNA-metabolite covariation to impute either metabolite pool
sizes or isotopologue distributions from isotope labeling experiments directly from RNA
abundance. We demonstrate that UnitedMet performs well on both imputation of pool sizes as
well as imputation of isotope tracing experiments. We subsequently apply UnitedMet to identify
the metabolite phenotypes of driver mutations in clinical specimens from patients with clear cell
renal carcinoma (ccRCC), and study the metabolic phenotypes associated with metastatic
disease in ccRCC.

Results

UnitedMet: A Bayesian probabilistic model for multimodal metabolic data analysis
UnitedMet is a Bayesian generative method that jointly models RNA-seq and metabolite data.
The input to UnitedMet comprises the paired matrices of RNA counts (X) and total ion counts of
metabolites/isotopologues (Y) from samples with both RNA-seq and metabolite data measured
(defined as reference datasets) and single modality matrices with only RNA-seq data available
(defined as target datasets) (Figure 1A). To map metabolite relative abundances and gene
expression levels onto a shared measurement scale, we rank-transform the
metabolite/isotopologue and gene expression levels across all the samples within each dataset.
Such a rank transformation places the distribution of values for metabolite features onto a
common, non-parametric scale which naturally accounts for the semi-quantitative nature of
mass-spectrometry-based metabolomics data. UnitedMet then takes in an aggregate
multiple-dataset matrix (R) containing the rankings data from both paired and single-modality
samples. UnitedMet assumes observations are generated from a Plackett-Luce ranking
distribution of a latent variable Z, which is the matrix product of a latent sample embedding
matrix (W) and a latent feature embedding matrix (H) (Figure 1B). UnitedMet infers posterior
distributions of gene expressions and metabolic profiles for all samples in the aggregate matrix
and predicts metabolic profiles for single-modality samples using Stochastic Variational
Inference (SVI). A hyperparameter , the number of latent embedding dimensions is selected byλ
grid search. The output of UnitedMet is a fully-imputed multimodal data matrix, where any
missing measurements from single modality data in the input matrix R are replaced with their
posterior estimates.

UnitedMet provides a unified solution for multimodal metabolomic data analysis at two levels.
First, UnitedMet learns a shared representation of both transcriptomic and metabolic data,
including from samples where one type of measurement is missing, and integrates these data
into a common low-dimensional latent space. Such a low-dimensional, integrated representation
facilitates downstream tasks such as sample clustering and data visualization (Figure 1B).
Second, by learning an unified representation of metabolomic and transcriptomic features from
reference data, UnitedMet enables the imputation of otherwise unmeasured metabolite levels
and/or isotopologue distributions from gene expression data alone, and delivers these
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predictions along with a quantification of their uncertainty. Together, these functions of
UnitedMet enable the interrogation of metabolism, and the evaluation of hypotheses relying on
metabolite measurements, in large, deeply-profiled cohorts of tumors otherwise lacking
metabolomic data.

UnitedMet accurately predicts metabolite levels from RNA sequencing data in human
tumor samples
To evaluate UnitedMet’s capacity to predict metabolite abundances on real-world patient derived
data, we first applied UnitedMet to four datasets of ccRCC patient samples with fully-paired
RNA-seq and metabolomics profiles. The aggregated data contained two datasets from the NIH
Clinical Proteomic Tumor Analysis Consortium (CPTAC) project, CPTAC (n=50, # metabolites =
183, # genes = 60483), CPTAC_val (n=71, # metabolites = 130, # genes = 60483), and two
in-house datasets RC18 (n = 144, # metabolites=783, # genes = 22937), RC20 (n=76, #
metabolites=1012, # genes = 22987). These data represented a typical use case for UnitedMet:
while 20,171 genes were represented in all four datasets (corresponding largely to
protein-coding genes uniformly measured across all data), only 86 (7% of the 1148 unique
metabolites in the entire dataset) were measured in all four datasets.

We designed a benchmarking experiment to evaluate the performance of UnitedMet and
comparator methods for the imputation of otherwise unmeasured metabolites. At each iteration
of our benchmarking experiment, we treated three of the four ccRCC datasets as “reference”
datasets for UnitedMet (in which both metabolomic and transcriptomic data is available), and
treated the remaining ccRCC dataset as a “target” dataset (where only transcriptomic data was
available). We subsequently trained four distinct UnitedMet models (one for each iteration of the
benchmarking experiment, each with different hyperparameters ) (Figure S1A) and evaluatedλ
the accuracy of UnitedMet metabolite predictions in the target dataset. For each metabolite,
predicted levels from UnitedMet were compared with their ground-truth values by Spearman
correlation (Figure 2A). We considered a metabolite well-predicted if the correlation between
ground-truth and imputed abundance for that metabolite was positive and statistically significant
(FDR-adjusted p-value < 0.05). UnitedMet successfully imputed between 48% and 67% of
metabolites in the four target datasets (Figure 2B). We explored UnitedMet’s capacity to
estimate model uncertainty by evaluating the standard error of 1000 draws from the posterior
distribution of metabolite levels. We found that prediction uncertainty was negatively correlated
with the prediction accuracy (Figure S2B), indicating that posterior uncertainty could guide the
selection of reliable predictions for downstream analyses. Finally, we compared the performance
of UnitedMet against two existing methods for prediction of metabolite abundance from gene
expression with the same datasets: multivariable Lasso regression 21, and MIRTH 22,23

(Methods). We used two metrics to quantify how well each method predicted metabolite
abundance: the spearman rho among all predicted metabolites, and the number of
well-predicted metabolites. UnitedMet outperformed the other methods in all 4 cross-validation
datasets by both metrics (Figure 2C, Figure S1B).

We next investigated the consistency of prediction accuracy across four datasets in UnitedMet .
For each pair of two datasets from the four, we observed strong correlation between their
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metabolite-level prediction performances (Spearman correlation 0.32 - 0.83 in all pairwise
comparisons, p < 0.001 in all pairwise comparisons; Figure S2A), confirming that well-predicted
metabolites were highly consistent across all four datasets. For instance, kynurenine (average
Spearman correlation 0.64, FDR-adjusted p-value < 0.05 in all 4 datasets) and
N-acetylneuraminate (average spearman = 0.64, FDR-adjusted p-value < 0.05 in all 4ρ
datasets) exhibited robust prediction results across 4 datasets (Figure 2C). Combining these
prediction results in four datasets, we labeled 59 metabolites as “reproducibly” well-predicted
metabolites, indicating that they were well-predicted in at least 3/4 target datasets (Figure 2D).
Reproducibly well-predicted metabolites were enriched for amino acids and carbohydrates, but
depleted of lipids, relative to the full panel of metabolites (Figure 2D).

As targeted mass spectrometry can only measure a specific class of metabolites, a related
challenge is imputing a large panel of metabolites from a subset of measured metabolites and
RNA-seq data. To address this, we extended UnitedMet's capabilities by introducing a weighted
loss function to address the imbalanced metabolomics and RNA-seq modalities. To benchmark
the imputation accuracy, we randomly selected 50% of all measured metabolites as
simulated-missing in each dataset. Once again, we found UnitedMet was the top performer on
all datasets in terms of the same metrics mentioned above (Figure S1C, Figure S1D).

UnitedMet can predict isotopologue distributions from RNA-seq data in vitro and in vivo
Unlike measurements of metabolite pool sizes, isotopologue distributions produced from
steady-state isotopic labeling experiments capture the flow of nutrients through cellular
metabolism. However, labeling experiments are technically challenging, and consequently there
is even less publicly available isotopic labeling data (both in cell lines as well as in tissue
specimens) than there is conventional metabolomic data. Motivated by the ability of UnitedMet
to predict metabolite levels by jointly modeling metabolomics and RNA-seq data and the
generalizability of our model, we hypothesized that UnitedMet might be able to predict
isotopologue distributions from RNA-seq data. To test this hypothesis, we obtained three
datasets with paired RNA-seq data and isotopic labeling data (measured by mass
spectrometry). Dataset RCC contained renal cell carcinoma (RCC) tumor samples obtained
from 76 patients receiving infusions of [U-13C]glucose prior to surgery24. A total of 64
isotopologues and 12300 genes were measured in the RCC dataset24. The other two datasets
were composed of human non-small cell lung cancer (NSCLC) cell lines labeled by either
[U-13C]glucose or [U-13C]glutamine: NSCLC-G (n=85), NSCLC-Q (n=85) 3. Both NSCLC
datasets measured a total of 78 isotopologues and 16383 genes.

To evaluate UnitedMet’s performance of predicting isotopologue distributions, we conducted a
simulation where 50% of the samples in a given dataset were randomly selected and treated as
target data for UnitedMet (i.e. with isotopologue measurements masked, Figure 3A). The
remaining 50% of samples were treated as a reference dataset for UnitedMet. We trained three
distinct UnitedMet models (one for each dataset) with different hyperparameters (Figure S3A).λ
UnitedMet was able to successfully impute 52% (RCC), 56% (NSCLC-G) and 63% (NSCLC-Q)
of the held-out isotopologues (spearman > 0 , FDR-adjusted p-value < 0.05) respectivelyρ
(Figure 3B). Citrate m+2, which reflects the contribution of glucose-derived carbon to the TCA

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.05.24.24307903doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=14413485&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14413485&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8474738&pre=&suf=&sa=0
https://doi.org/10.1101/2024.05.24.24307903
http://creativecommons.org/licenses/by-nc/4.0/


cycle via pyruvate in [U-13C]glucose labeled data, was reproducibly predicted with high accuracy
in both the in-vitro NSCLC dataset (spearman = 0.44, p = 0.003) and the in-vivo RCC datasetρ
(spearman = 0.39 , p = 0.01) (Figure 3C). In contrast, gene expression scores of eitherρ
oxidative phosphorylation signature or TCA cycle signature, calculated directly from RNA-seq
data, were not correlated to citrate m+2 labeling in these datasets (OXPHOS signature:
spearman = 0.16, p = 0.3 (NSCLC), spearman = 0.22, p = 0.19 (RCC), Figure 3C; TCAρ ρ
cycle signature: = 0.06, p = 0.3 (NSCLC), = 0.25, p = 0.13 (RCC), Figure S3C). Similarly,ρ ρ
lactate m+3, which reflects glucose contribution to glycolysis in [U-13C]glucose labeled data, was
accurately predicted in the RCC dataset (spearman = 0.43, p = 0.007), while a glycolysisρ
gene expression signature was not correlated to lactate m+3 (spearman = 0.05, p = 0.8;ρ
Figure S3D). Together, these results demonstrated UnitedMet can accurately predict
isotopologues that characterize specific metabolic phenotypes, an achievement not possible
with standard GSEA analysis of RNA-seq data.

Human kidney cancer arises in a variety of subtypes, including clear cell (ccRCC), papillary
(pRCC), and chromophobe (chRCC), presenting with functionally distinct metabolic activity. To
further benchmark the capacity of UnitedMet to impute isotopologue distributions, we assessed
its capacity to capture histology-associated differences in metabolism across RCC subtypes. To
do so, we applied UnitedMet, using multimodal RNA-seq/isotopologue data from Bezwada et al
24 as a reference dataset, and 1020 RCC tumor and adjacent normal samples from the TCGA
Pan-kidney cohort (KIPAN) (encompassing ccRCC, pRCC, and chRCC) as a target dataset
(Figure S3B). At the low-dimensional latent space learned by UnitedMet, we found that
UnitedMet successfully embedded samples in both the reference and target datasets according
to their subtype, despite missing measurements of isotopologues in the TCGA KIPAN (Figure
3D). Furthermore, imputed labeling patterns in the TCGA KIPAN dataset preserved ground-truth
differences between both ChRCC/ccRCC samples (Spearman = 0.85, p = 4.2 × 10-15) andρ
pRCC/ccRCC samples (Spearman = 0.79, p = 5.0 × 10-12) (Figure 3E). Consistent with priorρ
findings 24, ccRCC samples demonstrated higher glycolytic labelings such as lactate
m+3/glucose m+6, while ChRCC and pRCC samples displayed higher ratios of TCA cycle
labelings such as citrate m+2/glucose m+6 and succinate m+2/glucose m+6 (Figure 3E). While
ChRCC displays increased utilization of the TCA cycle, loss-of-function alterations to
mitochondrial DNA (mtDNA)-encoded Complex I genes can result in loss of oxidative
phosphorylation and metabolic reprogramming to glycolytic pathways 25. Consistent with these
findings, we found ChRCC samples with Complex I alterations demonstrated a shift to an
alternative glycolytic metabolic pathway with higher levels of lactate m+3/glucose m+6 (p =
0.02) and lower levels of citrate m+2/glucose m+6 (p = 0.04, Wilcoxon rank sum test, Figure
3F). This suggested that UnitedMet captured mutation-driven metabolic reprogramming in
ChRCC, which further validated UnitedMet’s capability to generate biologically meaningful
predictions.

In total, the analysis presented in Figure 2 and Figure 3 demonstrates that UnitedMet is
capable of accurately imputing both metabolite levels as well as isotopologue distributions from
RNA-seq data via joint, multimodal modeling with reference datasets.
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BAP1 mutations are associated with an oxidative metabolic phenotype in ccRCC
Although both oncogenes (such as MYC and PIK3CA) and tumor suppressor genes (PTEN,
VHL) are well-recognized regulators of metabolism 26,27, the functional consequences of driver
alterations on tumor metabolism in vivo is poorly studied 28,29. In fact, the lack of
population-scale metabolomic profiling in contemporary cohorts of molecularly profiled tumors
renders a direct evaluation of the association of either metabolite levels or metabolic flux with
the presence of specific driver alterations infeasible. We reasoned that we could apply
UnitedMet to impute both metabolite levels and isotope labeling patterns in richly profiled
cohorts of tumors, such as those from the TCGA, to assess whether genomic alterations were
associated with specific metabolite changes.

We focused our efforts on understanding the genome-metabolome covariation in ccRCC, for
which we have several reference datasets with both transcriptomic and metabolomic/labeling
data. The canonical founder mutation in ccRCC is the biallelic inactivation of the tumor
suppressor gene VHL and the activation of a pseudohypoxic transcriptional and metabolic
program. The subsequent evolution of ccRCC includes the acquisition of secondary driver
mutations in genes (such as PIK3CA, PTEN, MTOR, and BAP1) whose functions are (at least in
part) metabolic2. To understand the associations between genetic mutations and metabolic
variations in ccRCC, we applied UnitedMet to large-scale multi-omics TCGA Kidney renal clear
cell carcinoma (KIRC) cohort (n=606) which has paired RNA-seq and whole exome-sequencing
(WES) data. Training the RNA-seq data from TCGA KIRC with 4 ccRCC reference datasets
(CPTAC, CPTAC_val, RC18, RC20, n=341) containing paired RNA-seq and metabolomics data,
UnitedMet predicted metabolite levels for TCGA KIRC samples(Figure 4A) Similarly, UnitedMet
predicted isotopologue distributions for TCGA KIRC samples by training them with the
[U-13C]glucose labeled reference dataset RCC (Figure 4E).

We first studied associations between the predicted metabolite abundances and genetic
mutations in the TCGA KIRC cohort. For each reproducibly well-predicted metabolite, we
compared the predicted abundances in mutant samples to wild-type samples among fourteen
key driver mutations in ccRCC (VHL, PBRM1, SETD2, BAP1, MTOR, KDM5C, PTEN, TP53,
PIK3CA, TSC2, TCEB1, TSC1, PIK3R1, SDHB), using a false detection rate (FDR)-corrected
Wilcoxon test (Figure 4B). We identified significant higher/lower mutation-specific abundance of
metabolites in BAP1 (n=38 metabolites), PBRM1 (n=37), VHL (n=22), SETD2 (n=15), and TP53
(n=3) mutations. BAP1 mutation showed the strongest association with the largest variety of
predicted metabolites despite a relatively low mutation rate (~10%) in ccRCC patients (Figure
4B). Consistent with this observation, prior literature has shown that BAP1 mutations play a role
in several aspects of cellular metabolism including glucose metabolism 30. Mass spectrometry
measurements demonstrated that germline BAP1 mutations induced the Warburg effect in
human fibroblasts, including depleted TCA cycle activity and increased aerobic glycolysis 31.
Additionally, transcriptome analysis showed that BAP1-mutant ccRCC patient samples were
enriched in glycolytic gene expression 32. To gather insight into the interplay between BAP1
mutation and metabolite abundance, we performed a pathway-based differential abundance
(DA) analysis of predicted metabolic changes in BAP1 mutant and wild-type samples in TCGA
KIRC. BAP1 mutant samples showed significant depletion in the TCA cycle metabolism (DA
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score = −1), including drops in the levels of citrate (p = 0.03), fumarate (p = 0.007), and malate
(p = 0.008)(Figure 4C, Figure 4D). BAP1-mutant samples also demonstrated lower levels of
free, unphosphorylated glucose (p = 3 × 10-7), suggesting that these tumors may upregulate
glucose uptake from the microenvironment (Figure 4D).

To more granularly understand the metabolic flux patterns associated with the above-described
pool size changes, we leveraged imputed [U-13C]glucose-labeled isotopologue distribution data
from TCGA KIRC. Relative to BAP1-wild-type tumors, BAP1-mutant tumors demonstrated
increased levels of citrate m+2/pyruvate m+3 (p = 3 × 10-4), succinate m+2/pyruvate m+3 (p =
0.003), malate m+2/pyruvate m+3 (p = 0.03) (Figure 4F), indicating an elevated contribution of
glucose to TCA cycle activity in BAP1-mutant ccRCC. These data indicate that pool size drops
in TCA cycle metabolites are not caused by decreased entry of glucose into the TCA cycle.
Instead, they suggest that BAP1-mutant tumors undergo reduced entry of other anapleurotic
sources of TCA cycle intermediates, such as glutamate, or alternatively increase diversion of
TCA cycle intermediates into alternate pathways, such as the utilization of acetyl-CoA for fatty
acid synthesis. Such hypotheses are directly testable by analogous infusion experiments using,
for example, labeled glutamine, and suggest that BAP1 tumors may harbor metabolically distinct
(and potentially therapeutically targetable) metabolic alterations.

Shift to oxidative metabolism correlates with disease progression and poorer clinical
outcome
Recent work has suggested that, although ccRCC tumors generally downregulate mitochondrial
gene expression and limit entry of glucose-derived carbon into the TCA cycle relative to normal
tissue, distant metastases in ccRCC upregulate oxidative phosphorylation and glucose entry
into the TCA cycle 24. However, there is no large-scale data available on the metabolism of
metastatic tumors. We reasoned that high-stage, aggressive ccRCC tumors, which ultimately
seed distant metastases, should exhibit signatures of upregulation of oxidative glucose
metabolism. To test this hypothesis, we again leveraged predicted isotopologue distribution data
from TCGA KIRC and compared isotopologue levels of [U-13C]glucose-labeled TCA cycle
intermediates normalized by pyruvate m+3 in ccRCC tumors from different pathological stages.
Aggressive ccRCCs with higher stage demonstrated higher levels of citrate m+2/pyruvate m+3
(p = 3 × 10-4), succinate m+2/pyruvate m+3 (p = 7 × 10-6) and malate m+2/pyruvate m+3 (p = 2
× 10-4, Kruskal–Wallis test; Figure 5A), consistent with increased glucose-derived carbon entry
into the TCA cycle. We then applied UnitedMet to predict isotopologue distribution data for 823
primary or metastatic tumor samples from a publicly available advanced ccRCC clinical trial
(IMmotion151). We trained RNA-seq data from IMmotion151 with the ccRCC samples from the
RCC reference dataset. Predicted isotopologue levels of [U-13C]glucose-labeled TCA cycle
intermediates normalized by pyruvate m+3 were compared between primary and metastatic
ccRCC tumors in IMmotion 151. Metastatic ccRCC tumor samples demonstrated higher levels
of citrate m+2/pyruvate m+3 (p = 5 × 10-13), succinate m+2/pyruvate m+3 (p = 3 × 10-10) and
malate m+2/pyruvate m+3 (p = 2 × 10-9, Wilcoxon rank sum test; Figure 5B). Together, these
results indicate that, in ccRCC, increased TCA cycle activity is associated both with (1) high
stage/disease progression and (2) the establishment of metastasis itself.

8

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.05.24.24307903doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=14413485&pre=&suf=&sa=0
https://doi.org/10.1101/2024.05.24.24307903
http://creativecommons.org/licenses/by-nc/4.0/


We next interrogated if this oxidative metabolic phenotype may be linked to poor clinical
outcomes. ccRCC patients in the IMmotion151 trial were treated with either atezolizumab plus
bevacizumab (a combination of tyrosine kinase inhibitor and immunotherapy) or sunitinib (a
tyrosine kinase inhibitor). We evaluated the association between isotopologue levels of TCA
cycle intermediates and progression-free survival (PFS) by multivariate Cox proportional
hazards models (evaluating different treatment arms separately). We observed that patients with
high citrate m+2/pyruvate m+3 (p = 0.0001 in atezo+bev arm, p = 0.02 in sunitinib arm, Figure
5C), succinate m+2/pyruvate m+3 (p = 0.003 in atezo+bev arm, p = 0.04 in sunitinib arm,
Figure 5D) and malate m+2/pyruvate m+3 (p = 0.003 in atezo+bev arm, p = 0.01 in sunitinib
arm, Figure 5E) were all associated with poorer PFS in both arms . These data nominate
oxidative metabolism of glucose as a potential druggable target to diminish cancer progression
and metastasis in patients receiving both immunotherapy and anti-angiogenic agents in ccRCC.

Discussion

This work presents a novel methodology for the joint, probabilistic modeling of multimodal
metabolic data. In doing so, it addresses the numerous challenges associated with analysis of
metabolomics data (including but not limited to semi-quantitative data and batch effects) and its
joint modeling with transcriptomics data. After establishing that UnitedMet accurately imputes
metabolite features in benchmark datasets, we applied UnitedMet to study the metabolic
consequences of key driver mutations and the metabolic adaptations associated with
aggressive disease and metastatic competency.

Several key limitations underlie UnitedMet and represent important challenges in development
of next-generation methods for joint modeling of multimodal metabolic data. Among these, two
are of significant near-term importance. First, while rank transformation has proven useful in
both UnitedMet and MIRTH 23 for the comparison of semi-quantitative metabolite data produced
in distinct batches, the process of rank transformation produces a loss of information, where
large effect sizes (i.e. large fold changes between pairs of samples) in one metabolite feature
can be equated to small effect sizes in another metabolite feature in the rank-transformed
space. Second, UnitedMet requires at least one reference dataset of sufficient size in order to
carry out imputation. For the majority of diseases, such a dataset does not exist 14,33. One
potential avenue to overcoming this challenge is to train disease-agnostic models to impute
metabolite features. This seems feasible for at least some metabolite features that demonstrate
lineage-agnostic covariation with gene expression, such as IDO1 and kynurenine 14,22.

UnitedMet harnesses the covariation between the transcriptome and metabolome to impute
otherwise-unmeasured metabolite features. In doing so, it enables the inference of pool size
and tracing patterns (and, by consequence, the evaluation of metabolite-centered hypotheses)
in samples where metabolite profiling is difficult or otherwise infeasible. Several valuable use
cases come to mind as natural applications of the UnitedMet framework where ancillary
transcriptomic data is available. For instance, one may seek to infer metabolite levels in archival
FFPE samples of inadequate quality for metabolite profiling, or in biopsy samples with an
inadequate quantity of material for metabolite profiling. Separately, in isotope-tracing

9

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.05.24.24307903doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=13556625&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4772010,15008748&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15008748,15100008&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/2024.05.24.24307903
http://creativecommons.org/licenses/by-nc/4.0/


experiments where one is interested in more than one tracer (e.g. 13C-glucose and
13C-glutamine tracing, where infusion of both tracers in the same patient does not provide useful
data), UnitedMet could be used to impute the outcome of the counterpart tracer as long a
common data modality (e.g. RNA-seq) was collected. UnitedMet therefore democratizes
metabolomics data for scientific discovery.

Methods

Data preprocessing
The input to UnitedMet consists of reference datasets with paired measurements of RNA counts
and total ion counts of metabolites/isotopologues and a single-modality target dataset with
RNA-seq data only (Figure 1A). We assume that there are N different reference datasets, each

with a RNA-seq sample×gene matrix of raw counts and a paired𝑋
𝑛

∈ ℝ
𝑆

𝑛
×𝐺

𝑛 (𝑛 = 1, 2,..., 𝑁)

sample×metabolite or sample×isotopologue ion count matrix . Let𝑌
𝑛
 ∈ ℝ

𝑆
𝑛
×𝑀

𝑛( 𝑛 = 1, 2,..., 𝑁)

be the RNA-seq sample×gene matrix in a single-modality target dataset.𝑋
0

∈ ℝ
𝑆

0
×𝑀

0

Normalization. We first normalized all input data with distinct techniques. We implemented total
ion count (TIC) normalization to raw ion count matrices of metabolomics data (Y) and transcripts
per million (TPM) normalization to raw count matrices of RNA-seq data (X). In metabolomics
experiments, ion counts below a threshold were not detected by the mass spectrometry. This
ended up with missing metabolite measurements in some samples. We treated these
left-censored values as half of the minimum value across all metabolite measurements when
calculating the TIC normalizer.

For sample×isotopologue ion count matrices (Y) of isotope labeling data, we first calculated the
fractional labeling, namely the proportion of each isotopologue relative to the sum of all
isotopologues in that metabolite. We then divided all fractions by the fraction of pyruvate m+3 or
glucose m+6. Normalization by pyruvate m+3 allowed us to establish the labeling ratio of each
isotopologue to pyruvate m+3, providing insights into the contribution of glucose-derived
pyruvate to that specific isotopologue.The labeling ratio of citrate m+2 to pyruvate m+3, for
instance, suggested the contribution of glucose through the pyruvate dehydrogenase (PDH)
reaction. Normalization by glucose m+6 instead revealed the contribution of glucose carbon to
other metabolites.

Rank-transformation. As metabolomics/isotope tracing data generated using mass spectrometry
are reported as semi-quantitative relative abundances, we are only able to compare
measurements of the same metabolite/isotopologue from different samples in the same dataset.
To map metabolic relative abundances and gene expression levels into a shared measurement
scale across all features and datasets, we rank the metabolite/isotopologue and gene
expression levels across all the samples within each dataset. Ranks enable the comparison of
features across datasets and transfer learning from RNA-seq modality to metabolic modality.
Samples exhibiting the maximum level for a specific feature within the provided dataset are
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assigned the highest rank. Conversely, samples displaying the minimum level for the same
feature are allocated the lowest rank. Left-censored samples are tied, sharing the last rank in
the ranking hierarchy. While we use unnormalized rankings for modeling, we normalize ranks by
their total number of samples in downstream analyses, mapping them to a comparable scale𝑁
of ranks in all datasets. For each feature the normalized rank of a measurement[0, 1) 𝑗,

in that dataset is defined by .𝑓
𝑖𝑗

 (𝑖 = 1, 2,..., 𝑁) 𝑟𝑎𝑛𝑘
𝑖𝑗

= 𝑘=1

𝑁

∑ 1[𝑓
𝑖𝑗

>𝑓
𝑘𝑗

]

𝑁

Data aggregation. Rankings data of RNA-seq matrices and metabolic matrices𝑋
𝑛

in reference datasets are aggregated into a single data matrix along with 𝑌
𝑛
( 𝑛 = 1, 2,..., 𝑁) 𝑅

the rankings data of metabolic matrix in the target dataset. While we take in the common𝑋
0

genes shared across datasets to save computation costs, we aggregate metabolic modalities by

embracing the union of relevant features. Namely, the aggregated matrix , where𝑅 ∈ ℝ
𝑆

𝑅
×𝐹

𝑅

and . In the benchmarking test on𝑆
𝑅

= 𝑆
0

+
𝑖=1

𝑁

∑ 𝑆
𝑛
 𝐹

𝑅
= (𝐺

𝑅
+ 𝑀

𝑅
),  𝐺

𝑅
 =

𝑖=0

𝑁

⋂ 𝐺
𝑖
, 𝑀

𝑅
 =  

𝑖=1

𝑁

⋂ 𝑀
𝑖
 

four ccRCC datasets, R contains measurements of 1148 metabolites and 20171 genes for 341
samples.

The UnitedMet model
UnitedMet is a probabilistic generative method that jointly models RNA-seq and metabolic data.
UnitedMet assumes rankings in are generated by a Plackett-Luce ranking distribution of a𝑅

latent variable matrix , where is the product of the latent sample embedding matrix𝑍 𝑍 = 𝑊𝑇𝐻

and the latent feature embedding matrix . The hyperparameter is the𝑊 ∈ ℝ
𝑆

𝑅
×λ

𝐻 ∈ ℝ
λ×𝐹

𝑅 λ

number of embedding dimensions. We suppose all latent variables in both latent embedding
matrices are generated by normal prior distributions:

where is the entry in the sample and the𝑊
𝑖𝑘

 ∼𝑁𝑜𝑟𝑚𝑎𝑙(0, 1),  𝐻
𝑘𝑗

 ∼𝑁𝑜𝑟𝑚𝑎𝑙(0, 1),  𝑊
𝑖𝑘

𝑖𝑡ℎ 𝑘𝑡ℎ

embedding column in embedding matrix W and is the entry in the embedding row and the𝐻
𝑘𝑗

𝑘𝑡ℎ

feature in embedding matrix H.𝑗𝑡ℎ

Plackett-Luce ranking distribution. The Plackett-Luce distribution models a ranking of items as𝑁
an ordered series of choices. It begins by choosing the top-ranked item from the entire set of 𝑁
options, followed by choosing the second-ranked item from the remaining options and so on 34.

Given a set of N options , the probability of selecting the item is defined as{𝑄
1
,  ...,  𝑄

𝑁
} 𝑖𝑡ℎ 𝑄

𝑖

by the Luce Choice Axiom, where represents the utility score of . The𝑃(𝑖| 1,  ...,  𝑁{ }) =
𝑢

𝑖

𝑛=1

𝑁

∑ 𝑢
𝑛

𝑢
𝑖

𝑄
𝑖

probability of a full ordering where we assume , is then given by{σ
1
,  ...,  σ

𝑁
}, 𝑄

σ
1

﹥ ...﹥ 𝑄
σ

𝑁
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recursively applying the Plackett-Luce distribution: choose from , choose fromσ
1

{1,  ...,  𝑁} σ
2

choose from . . Given the{1,  ...,  𝑁}\{σ
1
},  σ

3
{1,  ...,  𝑁}\{σ

1
, σ

2
} 𝑃({σ

1
,  ...,  σ

𝑁
}| 1,  ...,  𝑁{ }) =

𝑖=1

𝑁

∏
𝑢

σ
𝑖

𝑟=𝑖

𝑁

∑ 𝑢
σ

𝑟

latent variable matrix in UnitedMet, we suppose the utility score of the item in the𝑍 = 𝑊𝑇𝐻 𝑖𝑡ℎ

sample and the feature is defined as Extending this to censored𝑗𝑡ℎ 𝑒𝑥𝑝(𝑍
𝑖𝑗

) = 𝑒𝑥𝑝(𝑊
𝑖
𝑇𝐻

𝑗
).

rankings in UnitedMet, the likelihood of observing a censored ordering

in the feature of a batch, is then defined by{σ
1
, σ

2
,  ...,  σ

𝐾
, {σ

𝐾+1
 ,...,  σ

𝑁
}} 𝑗𝑡ℎ 𝑃(

. Detailed definitions𝑅
𝑗

= {𝑍
σ

1
,𝑗
﹥𝑍

σ
2
,𝑗
﹥ ...﹥ 𝑍

σ
𝐾

,𝑗
﹥{𝑍

σ
𝐾+1

,𝑗
 ,...,  𝑍

σ
𝑁

,𝑗
}}| 𝑍

1,𝑗
,  ...,  𝑍

𝑁,𝑗{ })=
𝑖=1

𝐾

∏
𝑒𝑥𝑝(𝑍

σ
𝑖
,𝑗
)

𝑟=𝑖

𝑁

∑ 𝑒𝑥𝑝(𝑍
σ

𝑟
,𝑗
)

of UnitedMet are described below.

Cross-validation. To determine the optimal number of embedding dimensions ( ) of latentλ
matrices and , we employ 10-fold cross-validation. The range of to be tested is contingent𝑊 𝐻 λ
on the total number of samples . For instance, performance evaluation spans a range of𝑆

𝑅
λ

[1,110] with a step of 10 in the benchmarking test on ccRCC datasets. For each batch,
cross-validation features that are used to test model performance are selected separately. Only
metabolic features (metabolites/isotopologues) that are measured in at least one other batch
are included. These features are then randomly distributed into 10 folds. We treat one fold at a
time as unmeasured and hold out the fold's features in the corresponding batch. Masked
features are then predicted by UnitedMet. In the end, we calculate the mean absolute error
(MAE) between the true ranks of held-out features in the fold and their predicted ranks. The
MAE scores across all folds are averaged to obtain a final performance score. We evaluate the
MAE scores for all values, and the one resulting in the elbow of the MAE score curve isλ
chosen as the optimal number of embedding dimensions for the factorization.
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Inference. The likelihood is computed from observed rankings in both paired modalities of
reference datasets, and only in the respective RNA-seq modality of the target dataset. We
employ stochastic variational inference within the Pyro package for inference. Variational
distributions are generated using the AutoNormal function. Optimization is executed through the
Adam optimizer, with a default learning rate set to 0.001. Convergence is ascertained when the
relative change in Evidence Lower Bound (ELBO) falls below 0.01.

Posterior prediction. UnitedMet estimates the joint posterior distribution of the latent embedding
matrix and . For every latent variable in and , we draw 1000 samples from their𝑊 𝐻 𝑊 𝐻

estimated posterior distribution. Given posterior samples of the latent matrix ,𝑍 (= 𝑊𝑇𝐻)
posterior rankings are then generated by the Plackette-Luce ranking distribution. To sample in a
computation-efficient way, we implemented the Gumbel-Max trick, which generates ordered
samples from the Plackette-Luce ranking distribution by sorting the perturbed log-probability
through the addition of independent variables from the Gumbel distribution 35. Let

Let be the column of the latent matrix . Set perturbed𝐺
1
,  ...,  𝐺

𝑁
 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(0),  𝑖𝑖𝑑. 𝑍

,𝑗
𝑗𝑡ℎ 𝑍

log-probability = . The ordered indices of the column returned by sorting the𝑈
𝑖

𝑍
𝑖,𝑗

+ 𝐺
𝑖

𝑗𝑡ℎ

perturbed log-probabilities are equivalent to the orderings generated by the{𝑈
1
,  ...,  𝑈

𝑁
}

Plackett-Luce model given probabilities(utility scores) . Namely, if{𝑍
1,𝑗

,  ...,  𝑍
𝑁,𝑗

}

, then we observe .{𝑈
σ

1

﹥𝑈
σ

2

﹥ ...﹥ 𝑈
σ

𝐾

﹥{𝑈
σ

𝐾+1

 ,...,  𝑈
σ

𝑁

}} {𝑍
σ

1
,𝑗
﹥𝑍

σ
2
,𝑗
﹥ ...﹥ 𝑍

σ
𝐾

,𝑗
﹥{𝑍

σ
𝐾+1

,𝑗
 ,...,  𝑍

σ
𝑁

,𝑗
}}

Estimates of the rankings can be found as the mean of the 1000 posterior draws, while the
standard deviation of posterior samples represents a quantification of the prediction uncertainty.

Benchmarking
Multivariable Lasso regression. We implemented multivariable Lasso regression on four ccRCC
datasets according to Li et al 21. In each dataset, metabolomics data were preprocessed by TIC
normalization, while transcript levels are converted into TPM units. At each time in the
benchmarking experiments, one ccRCC dataset was treated as the testing set while the other
three were training sets. All RNA-seq data were scaled before training or testing. For every
metabolite (y), we utilized gene expressions (x) to predict it in the training set. LassoCV in
Python package scikit-learn was used to select the best penalizer alpha by 5-fold
cross-validation. The maximum number of iterations fitting along the regularization path was set
to default 1000. After selecting the best model for each metabolite, we assessed model
accuracy by calculating spearman correlation coefficients between predicted metabolite levels
and its ground truth.

MIRTH. MIRTH is a matrix factorization approach aimed at predicting the levels of unmeasured
metabolites by collectively analyzing the co-variation of metabolites across multiple datasets 23.
We extended MIRTH to the cross-modality prediction problem. Metabolomics and RNA-seq data
were preprossed in the same way mentioned above.

Memorial Sloan Kettering Cancer Center (MSKCC) ccRCC datasets
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We obtained two datasets RC18 (n=144) and RC20 (n=76), each with matched RNA-seq and
mass spectrometry metabolomics measurements from fresh frozen high-quality tumor/adjacent
normal specimens of ccRCC patients undergone partial or radical nephrectomies in MSKCC 22.
Samples were collected under the approval of Memorial Sloan Kettering Cancer Center’s
institutional review board. The alignment of RNA-sequencing reads was performed using STAR
2-pass alignment against human genome assembly hg19. Metabolites were identified based on
criterion according to Benedetti et al 14. RC18 has measurements for 783 metabolites and
22937 genes. RC12 has measurements for 1012 metabolites and 22987 genes.

CPTAC ccRCC datasets
Metabolite raw count matrices of CPTAC (n=50) and CPTAC_val (n=71) were downloaded from
Li et al 1. Transcriptomic and WES data were downloaded from Genomic Data Commons (GDC)
at: https://portal.gdc.cancer.gov/projects/CPTAC-3 (Project: CPTAC-3, Primary Site: Kidney).
CPTAC contained only ccRCC tumor samples, while CPTAC_val contained tumor and adjacent
normal samples of ccRCC patients. Mass spectrometry peaks were quantified using Thermo
Scientific Compound Discoverer® software to generate raw counts. HTSeq v0.11.2 was
implemented to calculate the gene-level stranded read count. We then performed TIC
normalization and TPM normalization on metabolite and gene expression count matrices
respectively. CPTAC has measurements for 183 metabolites and 60483 genes. CPTAC_val has
measurements for 130 metabolites and 60483 genes.

Human RCC RNAseq + isotopic labeling data infused with [U-13C]glucose in vivo
Paired RNA-seq and isotopic labeling data from 76 primary tumor or adjacent normal kidney
samples of RCC patients were downloaded from Bezwada et al 24. The RCC dataset has
measurements for 64 isotopologues and 12300 genes. Since small fluctuations of isotopologue
levels that are not biologically interpretable can be quantified as signals in mass spectrometry,
we set a criterion to filter out isotopologues whose average fraction over all samples are less
than 10%. This ended up with a total of 23 isotopologues including biologically meaningful
isotopologues like citrate m+2, malate m+2 etc.

Human NSCLC cell line RNAseq + isotopic labeling data
We downloaded two human NSCLC cell line datasets with paired RNA-seq and isotopic labeling
data from Chen et al 3: NSCLC-G (n=85) and NSCLC-Q (n=85). 85 NSCLC cell lines were
cultured with medium containing the isotopically enriched nutrient under identical conditions.
The isotopic data in NSCLC-G was labeled by [U-13C]glucose, while the isotopic data in
NSCLC-Q was labeled by [U-13C]glutamine. The NSCLC-G and NSCLC-Q dataset both have
measurements for 78 isotopologues and 16383 genes.

TCGA KIPAN datasets
We downloaded paired RNA-seq and WES data of 1020 RCC tumor and adjacent normal
samples in TCGA KIPAN from the Genome Data Analysis Center (GDAC) in Broad Institute.
606 TCGA KIRC samples were included in TCGA KIPAN. mtDNA mutation calls using a
Polymerase Chain Reaction (PCR)-based amplification approach for 61 ChRCC cases in TCGA
KICH were downloaded from Davis et al 25.
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Annotation of MAF files from WES data
We downloaded MAF files of WES data for CPTAC, CPTAC_val, TCGA KIPAN and TCGA KIRC
from corresponding websites mentioned above. We annotated all molecular variations to 0 or 1
in a gene-wise way, where 0 represented wild-type or silent variations and 1 represented
non-silent variations. Missense mutation, nonsense mutation, frame-shift deletion, splice site
mutation, frame-shift insertion, in-frame deletion, splice-region variant, translation start site
mutation, in-frame insertion and nonstop mutation were considered as non-silent molecular
variations. Silent mutations, intron mutation, 3’ UTR mutation, and 5’ UTR mutation were
considered as silent variations, because they were not able to change gene functions.

Differential abundance score
The Differential Abundance (DA) score assesses the distinct regulation of a metabolic pathway
between two groups. Calculated through a Wilcoxon rank sum test applied to all pathway
metabolites, the score undergoes P-value correction using the Benjamini-Hochberg method
(FDR-corrected p-value < 0.05). For each pathway, the DA score is derived as follows:
(#significantly enriched metabolites - #significantly depleted metabolites) / #total metabolites.
Scoring is exclusively applied to pathways exhibiting three or more significantly altered
metabolites.

Survival analysis
We collected RNA-seq data and patient-level clinical information from IMmotion151 36,37

(N=823), a published trial exploring immunotherapeutic versus systemic agents in advanced
ccRCC. To account for diverse drug effects in clinical trials, we conducted separate statistical
analyses for the immunotherapy arm (Atezolizumab + Bevacizumab) and the sunitinib arm. The
survival regression analysis was performed using the Python package lifelines.

Statistical analysis
Statistical analyses were conducted using either R or Python. Differential distribution
comparisons were implemented with Wilcoxon rank sum test or t-test. All statistical tests were
two-sided by default, unless specified otherwise, with p-values corrected using the
Benjamini-Hochberg method 38.
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Figure Captions
Figure 1. Overview of the UnitedMet method. a)Workflow of a metabolite imputation pipeline
with UnitedMet. UnitedMet takes paired matrices of RNA counts ( ) and total ion counts of𝑋
metabolites/isotopologues ( ) (defined as reference datasets) and single modality matrices with𝑌
only RNA-seq data available ( ) (defined as target datasets) as inputs. UnitedMet then𝑋

0

normalizes and rank-transforms both RNA-seq and metabolic data. By probabilistic modeling,
UnitedMet infers posterior distributions of metabolic profiles for single-modality target samples,
which can be used in downstream analysis for biological hypothesis testing. b) Architecture of
the UnitedMet model. An aggregate matrix ( ) containing rankings data from both paired and𝑅
single-modality samples is modeled with a Plackett-Luce ranking distribution based on latent
variables derived from embedding matrices and . UnitedMet integrates transcriptomic and𝑊 𝐻
metabolic data into a common low-dimensional space for tasks like clustering and visualization.
Next, UnitedMet imputes missing metabolite levels from gene expression data, offering
predictions and uncertainty quantification.

Figure 2. UnitedMet achieves high accuracy predicting metabolite levels in human tumor
samples. a) Schematic of the benchmarking experiment to evaluate model performance in a
cross-validation scenario. Each time, three out of four ccRCC datasets were designated as
"reference" datasets, while the fourth dataset served as the "target" dataset with only
transcriptomic data. The accuracy of UnitedMet's predictions was then evaluated by comparing
predicted metabolite abundances with their ground-truth levels. : RNA-seq data; :𝑋 𝑌
Metabolomics data. b) The imputation performance for each dataset is assessed by spearman
rho values between predicted values and their ground-truths across all simulated missing
features. Metabolites with predicted ranks that show significant positive correlation
(FDR-adjusted p < 0.05 and spearman rho > 0) with the actual ranks are labeled red. c)
Performance of UnitedMet, multivariate Lasso regression, and MIRTH based on the metric: the
spearman rho among all predicted metabolites. Significant difference was assessed by the
Wilcoxon signed-rank test. **** denotes P < 0.0001. d) Correlation between actual and predicted
metabolite ranks for two reproducibly well-predicted metabolites: kynurenine (top) and
N-acetylneuraminate (bottom). Each point represents one sample in which the metabolite was
measured and predicted. e) The imputation performance for each metabolite is summarized
across datasets, with average spearman rho values plotted. A subset of consistently
well-imputed metabolites is labeled, and those that are reproducibly well-predicted are marked
in blue.

Figure 3. UnitedMet accurately predicts isotopologue distributions from RNA-seq data. a)
Schematic of the benchmarking experiment to assess model performance on isotopologue
predictions. 50% of the samples in a given dataset were randomly selected and treated as
target data for UnitedMet (i.e. simulated as unmeasured). The remaining 50% of samples were
treated as a reference dataset for UnitedMet. : RNA-seq data; : Isotopologue data. b)𝑋 𝑌
Imputation performance for each dataset is evaluated using Spearman's rho values between
predicted values and their ground truths across all simulated missing features. Isotopologues
with predicted ranks that exhibit a significant positive correlation with the actual ranks are
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marked in red. c) True ranks of citrate m+2 were well-predicted by UnitedMet but not by gene
expression signature of Hallmark oxidative phosphorylation pathway. For each sample in
[U-13C]glucose labeled NSCLC dataset (top) and RCC (bottom), true ranks of citrate m+2 were
compared with predicted ranks from UnitedMet (left) and oxidative phosphorylation pathway
scores calculated from gene expressions in the corresponding Hallmark gene set (right). d)
UMAP plots of sample embedding matrix W (posterior means) learned by UnitedMet reveal
integration of batches (top) and clustering across renal cell carcinoma subtypes in the
TCGA-KIPAN batch (bottom). Each dot represents a patient sample. RCC and TCGA-KIPAN
samples overlap in the latent space. e) UnitedMet captures histology-associated differences in
metabolism across RCC subtypes. Differential abundance of imputed isotopologues across
RCC subtypes in TCGA KIPAN were compared to ground-truth differences in the measured
RCC cohort. Isotopologues in blue are consistently and significantly enriched (FDR-adjusted p <
0.1, Wilcoxon rank-sum test) in both measured and predicted cohorts. f) UnitedMet captures
mutation-driven metabolic reprogramming in ChRCC. For each sample in the ChRCC cohort
(n=61), predicted levels of lactate m+3/glucose m+6 (left) and citrate m+2/glucose m+6 (right)
are shown. Error bars represent ± one standard deviation. X-axis is sorted by predicted
abundances of corresponding isotopologues. Samples with complex 1 insertion or deletions are
labeled red. Samples with complex 1 single nucleotide variations are labeled green. p values
show the results of Wilcoxon rank sum test between complex 1 indel samples and the other
samples.

Figure 4. BAP1 mutations in ccRCC are associated with a unique metabolic phenotype. a)
Schematic of the metabolite level prediction and downstream analysis for TCGA KIRC samples
with UnitedMet. RNA-seq data ( ) of the TCGA KIRC cohort (target dataset) are trained with𝑋

𝑇𝐶𝐺𝐴

4 ccRCC reference datasets (CPTAC, CPTAC_val, RC18, RC20, n=341) containing paired
RNA-seq and metabolomics data. : RNA-seq data; : Metabolomics data. Predicted metabolite𝑋 𝑌
levels ( ) are leveraged for association analysis with ccRCC driver mutations. b) BAP1𝑌

𝑇𝐶𝐺𝐴

mutation demonstrates the strongest association with a broad range of predicted metabolites.
Distribution of the total number of significantly associated metabolites across 14 key driver
mutations in ccRCC (top). X-axis is sorted by the number of significantly associated metabolites.
Mutation frequency of 14 driver genes (bottom). X-axis is sorted by mutation frequency. c)
Pathway-based analysis of predicted metabolic changes in BAP1 mutant v.s. BAP1 wildtype
samples in TCGA KIRC cohort. d) Predicted metabolite level changes in BAP1 mutant v.s.
BAP1 wildtype samples in TCGA KIRC cohort. Left: Diagram of glucose metabolism pathways:
glycolysis and TCA cycle. Right: Boxplots comparing predicted unphosphorylated glucose,
citrate, fumarate malate levels in MUT BAP1 v.s. WT BAP1 samples. p values are calculated by
unpaired two tailed parametric t-tests. e) Schematic of the isotopologue distribution prediction
for TCGA KIRC samples with UnitedMet. RNA-seq data ( ) of the TCGA KIRC cohort𝑋

𝑇𝐶𝐺𝐴

(target dataset) are trained with ccRCC samples in the [U-13C]glucose labeled RCC dataset
containing paired RNA-seq and isotope labeling data. : RNA-seq data; : Isotopologue data. f)𝑋 𝑌
Predicted isotopologue changes in BAP1 mutant v.s. BAP1 wildtype samples in TCGA KIRC
cohort. Boxplots comparing predicted citrate m+2/pyruvate m+3, succinate m+2/pyruvate m+3,
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malate m+2/pyruvate m+3 ratios in MUT BAP1 v.s. WT BAP1 samples. P values are calculated
by unpaired two tailed parametric t-tests.

Figure 5. Shift to oxidative metabolism correlates with disease progression and poorer
clinical outcome. a) Aggressive ccRCCs with higher stage demonstrate higher ratios of
predicted citrate m+2/pyruvate m+3 (left), succinate m+2/pyruvate m+3 (middle) and malate
m+2/pyruvate m+3 (right) in TCGA KIRC cohort. Significance between any two stages is
assessed by pairwise t-test. P values are FDR adjusted. * P < 0.1, **** P <0.01, **** P < 0.001,
**** P < 0.0001. b) Samples from metastatic sites in ccRCC patients show higher ratios
(compared to samples from primary tumor sites) of predicted citrate m+2/pyruvate m+3 (left),
succinate m+2/pyruvate m+3 (middle) and malate m+2/pyruvate m+3 (right) in IMmotion151
cohort. Significances are assessed by the Wilcoxon rank sum tests. c) Kaplan-Meier plot
showing that ccRCC patients with a high level of citrate m+2/pyruvate m+3 (based on median
level) had poorer PFS than patients with low level of citrate m+2/pyruvate m+3 in both
atezo+bev arm (top) and sunitinib (bottom) arm. Significance is assessed by the log-rank test.
d) Same as c) but for succinate m+2/pyruvate m+3. e) Same as c) but for malate m+2/pyruvate
m+3.

Supplemental Figures
Supplemental Figure 1. UnitedMet outperforms Lasso and MIRTH at predicting metabolite
levels from RNA-seq data. a) UnitedMet’s hyperparameter , the number of embeddingλ
dimensions, is determined by 10-fold cross-validation in the benchmarking experiments of 4
ccRCC datasets. Average mean absolute error between predicted ranks and true ranks across
10 folds changes with different numbers of embedding dimensions. Optimal dimension is picked
by the knee point of the curve. Performance evaluation spans a range of [1,351] with a step ofλ
10. b) The imputation performance for each dataset is assessed by the number of
well-predicted metabolites. Metabolites with predicted ranks that show significant positive
correlation (FDR-adjusted p < 0.05 and spearman rho > 0) are defined as well-predicted. c)
Performance to impute 50% held-out metabolites from the remaining 50% measured
metabolites and RNA-seq data. Performance evaluated by the spearman rho among all
predicted metabolites. Extended UnitedMet with a weighted loss function is used. d)
Performance to impute 50% held-out metabolites from the remaining 50% measured
metabolites and RNA-seq data. Performance evaluated by the number of well-predicted
metabolites. Extended UnitedMet with a weighted loss function is used.

Supplemental Figure 2. UnitedMet’s metabolite level predictions are consistent across 4
ccRCC datasets. a) Correlation plots of metabolite-level prediction performances, characterized
by their spearman correlation between true ranks and predicted ranks, in all pairwise
comparisons of 4 ccRCC datasets. Each dot represents a metabolite. b) Prediction uncertainty
is negatively correlated with the prediction accuracy. Prediction accuracy is estimated by
quantifying the standard error of 1000 posterior draws of metabolite levels. For each metabolite,
average standard error across all samples is associated with its prediction accuracy,
characterized by spearman rho values between true ranks and predicted ranks. Each dot,
colored by the proportion of censored measurements, represents a metabolite.
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Supplemental Figure 3. UnitedMet’s performance of predicting isotopologues from
RNA-seq data. a) UnitedMet’s hyperparameter , the number of embedding dimensions, isλ
determined by 10-fold cross-validation in the benchmarking experiments of 3 isotope labeling
datasets respectively. Performance evaluation spans a range of [1,81] with a step of 10.λ
Average mean absolute error between predicted ranks and true ranks across 10 folds changes
with different numbers of embedding dimensions. Optimal dimension is picked by the knee point
of the curve. b) Schematic of the isotopologue distribution prediction for TCGA KIPAN samples
with UnitedMet. RNA-seq data ( ) of the TCGA KIPAN cohort (target dataset) are𝑋

𝑇𝐶𝐺𝐴−𝐾𝐼𝑃𝐴𝑁

trained the [U-13C]glucose labeled RCC dataset containing paired RNA-seq and isotope
labeling data. : RNA-seq data; : Isotopologue data. Both target and reference datasets𝑋 𝑌
contain different subtypes of RCC. c) True ranks of Lactate m+3 were well-predicted by
UnitedMet but not by gene expression signature of Hallmark glycolysis pathway. For each
sample in [U-13C]glucose labeled RCC, true ranks of lactate m+3 were compared with predicted
ranks from UnitedMet (left) and glycolysis pathway scores calculated from gene expressions in
the corresponding Hallmark gene set (right).
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