-
-

2	Comparison of actionable alterations in cancers with
3	kinase fusion, mutation, and amplification
4	
5	Short title: Kinase alterations in cancer
6	
7	Shinsuke Suzuki ^{1,2,3} *, Toshiaki Akahane ^{1,4} , Akihide Tanimoto ⁴ , Michiyo Higashi ⁴ , Ikumi
8	Kitazono ⁴ , Mari Kirishima ⁴ , Masakazu Nishigaki ⁵ , Toshiro Ikeda ⁶ , Shuichi Kanemitsu ⁷ ,
9	Junichi Nakazawa ⁸ , Erina Akahane ¹ , Hiroshi Nishihara ⁹ , Kimiharu Uozumi ¹⁰ , Makoto
10	Yoshimitsu ³ , Kenji Ishitsuka ³ , Shin-ichi Ueno ^{1,2}
11	
12	
13	¹ Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
14	² Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University
15	Graduate School of Medical and Dental Sciences, Kagoshima, Japan
16	³ Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima,
17	Japan
18	⁴ Department of Pathology, Kagoshima University Graduate School of Medical and Dental
19	Sciences, Kagoshima, Japan NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

- ⁵Department of Genetic Counseling, International University of Health and Welfare (IUHW),
- 21 Tokyo, Japan
- ⁶Department of Genetic Counseling, Kagoshima University Hospital, Kagoshima, Japan
- ²³ ⁷Department of Plastic Surgery, Sagara Hospital, Kagoshima, Japan
- ⁸Department of Medical Oncology, Kagoshima City Hospital, Kagoshima, Japan
- ⁹Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.
- ²⁶ ¹⁰Department of Medical Oncology, National Hospital Organization Kagoshima Medical
- 27 Center, Kagoshima, Japan
- 28
- 29 *Corresponding author:
- 30 E-mail: <u>suzuki2@m.kufm.kagoshima-u.ac.jp</u> (SS)

31 Abstract

32	Kinase-related gene fusion and point mutations play pivotal
33	roles as drivers in cancer, necessitating optimized targeted therapy against these alterations.
34	The efficacy of molecularly targeted therapeutics varies depending on the specific alteration,
35	with great success reported for such therapeutics in the treatment of cancer with kinase fusion
36	proteins. However, the involvement of actionable alterations in solid tumors, especially in
37	relation to kinase fusions, remains incompletely understood. This study aimed to compare the
38	number of actionable alterations in patients with tyrosine or serine/threonine kinase domain
39	fusions, mutations, and amplifications. We analyzed 613 patients with 40 solid cancer types
40	who visited our division between June 2020 and April 2024. To detect alterations involving
41	multiple-fusion calling, we performed comprehensive genomic sequencing using
42	FoundationOne® companion diagnostic (F1CDx) and FoundationOne® Liquid companion
43	diagnostic (F1LCDx). Patient characteristics and genomic profiles were analyzed to assess
44	the frequency and distribution of actionable alterations across different cancer types. Of the
45	613 patients, 44 had fusions involving kinases, transcriptional regulators, or tumor
46	suppressors. F1CDx and F1LCDx detected 13 with kinase-domain fusions. We identified 117
47	patients with kinase-domain mutations and 58 with kinase-domain amplifications. The
48	number of actionable alterations in patients with kinase-domain fusion, mutation, or
49	amplification (median [interquartile range; IQR]) was 2 (1-3), 5 (3-7), and 6 (4-8),

50	respectively. Patients with kinase fusion had significantly fewer actionable alterations than
51	those with kinase-domain mutations and amplifications. However, those cancers with fusion
52	involving tumor suppressors tended to have more actionable alterations (median [IQR]; 4 [2-
53	9]). Cancers with kinase fusions tended to exhibit fewer actionable alterations than those with
54	kinase mutations and amplifications. These findings underscore the importance of detecting
55	kinase alterations and indicate the pivotal role of kinase fusions are strong drivers of cancer
56	development, highlighting their potential as prime targets for molecular therapeutics.

58 Introduction

59	The ability to determine complete exon sequencing of relevant tumor driver, suppressor,
60	and resistance genes is paramount for optimizing personalized medicine. Comprehensive
61	genome sequencing (CGS) can serve as a valuable detection tool for actionable alterations,
62	which provide the biological basis of tumorigenesis. Kinase-related gene fusions, point
63	mutations, and amplifications play an important role as drivers in cancer, necessitating
64	optimized targeted therapy against these alterations. The FoundationOne® companion
65	diagnostic (F1CDx) and FoundationOne® Liquid companion diagnostic (F1LCDx) are tissue-
66	and blood-based broad companion diagnostics that have been approved by the Food and Drug
67	Administration and clinically and analytically validated for all solid tumors. In Japan, F1CDx
68	and F1LCDx are covered by public health insurance only after completion of standard
69	treatment, which differs from practices in other countries [1].
70	Gene fusion, particularly those involving tyrosine kinase, plays a pivotal role as a driver
71	mutation in the development of cancer. A hallmark example is the Philadelphia chromosome
72	9-22 translocation, characteristic of chronic myelogenous leukemia (CML), which generates
73	the fusion protein BCR-ABL1 [2,3]. CML, driven by the tyrosine kinase gene fusion BCR-
74	ABL1, stands out as the tumor with the most notable success in molecularly targeted
75	therapeutics to date. Remarkably, almost 11 years of follow-up have shown that the efficacy
76	of imatinib, a molecularly targeted drug, persists over time [4].

77	The prognosis of patients with non-small cell lung cancer (NSCLC) harboring
78	oncogenic driver-gene alterations, such as epidermal growth factor receptor (EGFR) kinase
79	mutation, anaplastic lymphoma kinase (ALK) fusion, c-ros oncogene 1 (ROS1) fusion, or
80	rearranged during transfection (RET) fusion, and those with pan-cancer harboring
81	neurotrophic tyrosine receptor kinase genes 1/2/3 (NTRK1/2/3) fusion, as well as those with
82	cholangiocarcinoma harboring fibroblast growth factor receptor 2 (FGFR2) fusion has
83	improved prominently with the advent of molecularly targeted drugs. However, the
84	therapeutic effects of tyrosine kinase inhibitors (TKIs) vary between EGFR mutation and
85	ALK, ROS1, RET, NTRK1/2/3 FGFR2 fusion. A tail-plateau, which is synonymous with
86	durable response on a Kaplan-Meier survival curve, represents an attractive effect of
87	molecularly targeted therapies [4] and immune checkpoint inhibitors [5,6] and has great
88	clinical significance. In patients with advanced NSCLC with EFGR-mutations, not only the
89	first generation of gefitinib but also the third generation of osimertinib, which is effective
90	against the resistance mutation EGFR T790M, limited the durability of the response and did
91	not show the benefit of tail-plateau on progression-free survival (PFS) curves [7,8]. However,
92	TKIs in NSCLC cases with ALK [9] [10], ROS1 [11], RET fusion [12] and in pan-cancer
93	with NTRK1/2/3 fusion [13] exhibited a tail plateau on the PFS curve. Further, Gao et al.
94	analyzed a cohort of 9,624 samples from The Cancer Genome Atlas with 33 cancer types to
95	detect gene fusion events. They focused on kinase fusion and showed that tumors with fusion

96 events tend to have a lower mutational burden [14].

97	In this study, we hypothesized that the smaller the number of actionable alterations, the
98	stronger the tumorigenesis and that the efficacy of targeted therapy would depend on the
99	driver kinase alterations. Therefore, we aimed to compare the number of actionable
100	alterations in patients with tyrosine or serine/threonine domain fusions, mutations, and
101	amplifications using tissue- and blood-based CGS.
102	

- **Materials and Methods**
- 104 **Patients**

105 In total, 613 patients with 44 different solid cancer types visited our division 106 between June 2020 and April 2024. Of these, 504 patients (82.2%) and 109 patients (17.8%) 107 were analyzed using tissue- and blood-based CGS, respectively. All patients had solid cancer 108 with advanced stage, with performance status of 0 or 1, and had completed standard treatment 109 covered by Japanese health insurance. This cohort also included patients with untreated rare 110 cancers and sarcomas lacking standard treatment protocols. We did not exclude any patients 111 tested by these assays during the data collection period, except patients who were analyzed 112 by F1LCDx and received anti-epidermal growth factor receptor (EGFR) antibody therapy. This exception was due to blood-based sequencing identifying multiple novel mutations, 113 114 copy gains, and fusions associated with anti-EGFR therapy that frequently co-occur as

115	subclonal alterations in the same patient [15]. We are reporting a retrospective study of
116	medical records. The data were accessed for research purposes on 19 May 2024. We had
117	access to information that could identify individual participants during or after data
118	collection. These 40 cancer types were adenoid cystic carcinoma, bladder urothelial
119	carcinoma, brain low grade glioma, breast invasive carcinoma, cervical squamous cell
120	carcinoma and endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma,
121	esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma,
122	kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, lung
123	adenocarcinoma, lung squamous cell carcinoma, mesothelioma, neuroendocrine tumor, NUT
124	carcinoma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma,
125	pheochromocytoma and paraganglioma, porocarcinoma, prostate adenocarcinoma, sarcoma,
126	skin cutaneous melanoma, stomach adenocarcinoma, testicular germ cell tumor, thymoma,
127	thyroid carcinoma, uterine carcinosarcoma, uterine corpus endometrial carcinoma, and uveal
128	melanoma. Patient characteristics such as sex, age, smoking, heavy drinking (approximately
129	60g or more of pure alcohol per day average), prior chemotherapy, prior targeted therapy, and
130	F1CDx or F1LCDx analyses have all been postulated to affect the number of actionable
131	alterations (Table 1).
132	

133 Table 1. Baseline characteristics of different subgroups (n=197)

	Kinase alteration			Fusion	p-value
Factor	Fusion	Mutation	Amplification	tumor	
				suppressor	
n	13	117	58	9	
Female sex, no.	5 (38.5)	64 (54.7)	25 (43.1)	2 (22.2)	0.14
(%)					
Median age (SD)	56.46	61.22	59.34 (13.11)	67.78	0.245
	(19.21)	(13.92)		(12.14)	
Never smoked	7 (53.8)	62 (53.0)	25 (43.1)	4 (44.4)	0.636
(%)					
Heavy drinking	1 (7.7)	17 (14.5)	10 (17.2)	2 (22.2)	0.768
(%)					
Without prior	8 (61.5)	75 (64.1)	43 (74.1)	7 (77.8)	0.489
chemotherapy					
(%)					
Without prior	12 (92.3)	104 (88.9)	55 (94.8)	9 (100.0)	0.448
targeted therapy					
(%)					
blood-based CGS	3 (23.1)	13 (11.1)	4 (6.9)	2 (22.2)	0.192

(%)					
Median no. (IQR)	2 (1-3)	5 (3-7)	6 (4- 8)	4 (2- 9)	<0.001
of actionable					
alteration					

134 CGS, comprehensive genome sequencing; IQR, interquartile range.

135

136 **Ethics approval**

This study was conducted in accordance with the Declaration of Helsinki and approved
by the Ethics Committee and Institutional Review Board of Kagoshima University (approval
number 180053). All patients provided written informed consent.

140

141 Sequencing

Next-generation sequencing was performed using F1CDx and F1LCDx, which are CGS approaches involving the hybrid capture method. These tests targeted a panel of 324 genes, identifying base substitutions, insertions, deletion mutations, and copy number alterations in 309 genes; gene fusion in 36 genes; and tumor mutational burden (TMB) (a measure of the number of somatic protein-coding base substitutions and insertion/deletion mutations) in a tumor specimen. Protein tyrosine kinase and serine/threonine kinase were analyzed for kinase activating mutations. Amplification of CDK4/6, which coexists with other kinase alterations,

149	was excluded from kinase amplification in this study. SS18-SSX and NAB2-STAT6 are
150	disease-specific gene-fusion abnormalities and were detected separately via reverse-
151	transcription polymerase chain reaction.
152	
153	Actionable alterations
154	All the detected gene alterations in cancer-related genes were annotated and curated
155	using the COSMIC (https://cancer.sanger.ac.uk/cosmic), ClinVar
156	(https://www.ncbi.nlm.nih.gov/clinvar/), CIViC (https://civicdb.org/home), SnpEff
157	(https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019B.pdf.), and Clinical
158	Knowledgebase (CKB) (https://ckb.jax.org/) databases. We calculated the validation
159	(database; score) for mutation or fusion and the validation (score) for amplification or the
160	clone status using PleSSision (Mitsubishi Space Software Co., Ltd., Tokyo, Japan), an
161	outsourcing clinical sequencing system [10]. Mutations with a total score of 2 points or more
162	were considered as actionable alterations. We used the following score tables:
163	i) for mutation or fusion of oncogenes: well-known driver status (more than 100 reports in
164	COSMIC or pathogenic in ClinVar; 2), gain of function (CKB; 2), likely gain of function
165	(CKB; 1.5), computational prediction of damage (SnpEff; 0.5);
166	ii) for mutation or fusion of tumor suppressor gene (TSG): germline loss of function (gLOF)
167	(pathogenic in ClinVar; 2), gLOF (truncate mutation; 2), gLOF (CKB or likely pathogenic in

- 168 ClinVar; 2), gLOF of computational prediction (SnpEff; 0.5), somatic loss of function
- 169 (sLOF) (pathogenic in ClinVar; 1), sLOF (truncate mutation; 1), sLOF (CKB or likely
- 170 pathogenic in ClinVar; 1), computational prediction of damage (SnpEff; 0.5);
- 171 iii) for amplification of an oncogene: neutral (0), copy number (CN)<4 (0), CN \ge 4 (1), CN \ge 8
- 172 (2),
- iv) for deletion of TSG, neutral (0), loss of heterozygosity (LOH) (1), uniparental disomy
- 174 (UPD) (1), homologous deletion (HD) (2);
- 175 v) for clone status: main clone (1), subclone, tumor content >50% (1), subclone (0), uncertain
- 176 (0), not a cancer clone or inconsistent with pathology (0), not inherited by cancer clones (-
- 177 0.5).
- 178 For example, the TP53 R282W (LOH) mutation is annotated as sLOF (pathogenic in
- 179 ClinVar; 1), LOH (1), and main clone (1), with a cumulative score of 3. This would be
- 180 considered an actionable alteration, as our criteria specify that mutations with a cumulative
- 181 score ≥ 2 are actionable alterations.
- 182 A multidisciplinary team comprising medical oncologists, pathologists, clinical laboratory
- technologists, bioinformaticians, and clinical geneticists conducted a comprehensive analysis
- to ascertain the clinical significance of these gene alterations.

185

186 Statistical analysis

187	For number of actionable alterations, data are presented as median and interquartile
188	range. Statistical significance was determined using analysis of covariance and the Steel-
189	Dwass multiple comparison test. Results were considered significant at $P < 0.05$.
190	
191	Results
192	Detection of fusion-genes in kinases, transcriptional regulators,
193	and tumor suppressors
194	We analyzed 613 patients with 40 solid-cancer types via CGS. Fig 1 presents the
195	distribution of patients with each cancer type. We identified 44 patients (9.6%) with fusions
196	involving kinases, transcriptional regulators, or tumor suppressors. F1CDx and F1LCDx
197	detected 13 patients (2.1%) with kinase-domain fusion (Table 2). In 12 of 13 patients with
198	kinase-domain fusion, except for patient 9 with CDK6 amp (CN=98), the other kinase-
199	domain mutations and amplifications were mutually exclusive and did not coexist (Tables 1
200	and 3). Patient 13, with FGFR2-TACC2 fusion, exhibited coexistence with serine/threonine
201	kinase mutation, MAP3K13 p.I523V(LOH), which was categorized as a variant of unknown
202	significance. Additionally, patients 5, 6 and 11 showed coexistence of MYC amp (CN=9),
203	KRAS p.Q61H, and MYC amp (CN=11), respectively, which is an interpreted oncogene
204	(Table 3). Furthermore, all 13 patients demonstrated low TMB (Table 3).
205	

Fig 1. Proportions of cancer types in our sample. We analyzed the data of 613 patients with

207 40 different types of solid cancer using c tissue- and blood-based CGS.

208

209 **Table 2. Fusion detection in cancer (n=613)**

Cancer	Type, No.	Fusion, 46 (7.5)				
type	(%)	Kinase, 13 (2.1)	Transcriptional regulator,	Tumor suppressor,		
			24 (3.9)	9 (1.5)		
Adenoid	cystic	-	MYB-NFIB,	-		
carcinom	ıa		MYB-AHI1			
Breast in	vasive	-	-	PLAT-ETV6		
carcinoma						
Cholangiocarcinoma		TRIM4-MET,	CALR-ZNF14	NF1-SSH2,		
		ANKRD55-		TET2-UTRN,		
		FGFR1		ATM-SLC35F2		
		MYH9-ALK				
		FGFR2-BICC1				
		(2)				
Colon		SUPT3H-ROS1,	-	NF1-TANC2		
adenocarcinoma						

Glioblastoma	FGFR1-TACC1	-	-
multiforme			
Kidney renal clear	-	Xp11-TFE3	-
cell carcinoma			
Low-grade glioma	KIAA1549-	C11orf95-RELA,	-
	BRAF	MN1-BEND2	
Neuroendocrine	SORCS1-RET	MLL-PHC2	-
tumor			
NUT carcinoma	-	NUTM1-BRD4	-
Pancreatic	PPP1R9A-BRAF	-	ТТС39В-
adenocarcinoma			CDKN2A
Porocarcinoma	-	NUTM1-BRD4	-
Prostate	SPINT1-IGF1R	TMPRSS2-ERG (5),	-
adenocarcinoma		ASXL1-STX16	
Sarcoma	-	SS18-SSX*, TMPRSS2-	-
		ZNF317, ASPCR1-TFE3,	
		MYOM1-STAT3, ATF1-	
		EWSR1, EWSR1-FLI1(2),	
		EWSR1-NR4A3, NAB2-	

		STAT6*	
Skin cutaneous	SUGT1P1-	-	PTPN1-TMPO
Melanoma	FGFR1		
Stomach	FGFR2-TACC2	-	CH1-CEBPA,
adenocarcinoma			POLE-ANKLE2

210 Cancer types without fusions detected are not shown. Fusion genes detected multiple

- times are indicated by numbers in parentheses.
- 212 *Disease-specific gene-fusion abnormalities were detected separately via reverse-
- 213 transcription polymerase chain reaction.
- 214

Table 3. Actionable alterations of patients with kinase fusion (n=15)

Patient	Cancer type	Kinase	Actionable alterations	No.	ТМВ
		fusion	(AA)	of	(Muts/Mb)
				AA	
1	cholangiocarcinoma	TRIM4-	-	0	1.26*
		MET			
2	cholangiocarcinoma	ANKRD55-	IDH1 p.R132L, IKZF1	2	1.26
		FGFR1	p.R208*		
3	cholangiocarcinoma	МҮН9-	APC p.K139fs*30(LOH),	2	2.41

		ALK	GATA6 amp (CN=14)		
4	cholangiocarcinoma	FGFR2-	TSC1 p.S410*, BAP1	2	0*
		BICC1	p.E450fs*1		
5	cholangiocarcinoma	FGFR2-	MYC amp(CN=9)	1	CBD
		BICC1			
6	colon	SUPT3H-	KRAS p.Q61H, APC	3	4
	adenocarcinoma	ROS1	p.E1379*(LOH), TP53		
			p.R282W(LOH)		
7	glioblastoma	FGFR1-	-	0	5
	multiforme	TACC1			
8	low grade glioma	KIAA1549-	-	0	0
		BRAF			
9	neuroendocrine	SORCS1-	CDK6 amp(CN=98)	1	3.79*
	tumor	RET			
10	pancreatic	PPP1R9A-	BAP1 p.Q261*	1	3.79
	adenocarcinoma	BRAF			
11	prostate	SPINT1-	MYC amp(CN=11), RB1	3	1
	adenocarcinoma	IGF1R	HD, TP53		
			<i>p.K132E(LOH)</i>		

12	skin cutaneous	SUGTIP1-	CDKN2A HD, CDKN2B	3	1.26
	melanoma	FGFRI	HD, MTAP HD		
13	stomach	FGFR2-	MAP3K13	2	1
	adenocarcinoma	TACC2	p.1523V(LOH), TP53		
			p.C229fs*10		

216	TMB, tumor mutation burden; LOH, loss of heterozygosity; amp, amplification; CN,
217	copy number; HD, homozygous deletion; CBD, cannot be determined.
218	*Blood TMB analyzed using blood-based comprehensive genome sequencing.
219	
220	
221	We identified multiple complex chromosomal rearrangements involving NUTM1.
222	These included a possible translocation between NUTM1 on chromosome 15q and a region
223	on chromosome 19p upstream of BRD4 and a possible BRD4-NUTM1 fusion in two patients
224	(one with NUT carcinoma and one with porocarcinoma) (Table 2). Whether this fusion
225	observed in porocarcinoma leads to the BRD4-NUTM1 fusion, which is characteristic of
226	NUT carcinoma, remains unknown.
227	
228	Cancers with kinase fusion tended to have fewer actionable

229 alterations

230	We identified 117 patients (19.1%) with mutations and 58 patients (9.5%) with
231	amplifications involving the kinase domain (Table 1). After adjusting for baseline
232	characteristics (sex, age, smoking, heavy drinking, prior chemotherapy and prior targeted
233	therapy), we applied comprehensive genomic testing using F1CDx or F1LCDx to detect the
234	frequency of actionable alterations in patients with kinase-domain fusions (n=13), mutations
235	(117), amplifications (n=58), and suppressor fusion (n=9). The median counts (IQR) were 2
236	(1–3), 5 (3–7), 6 (4–8), and 4 (2–9), respectively ($P < 0.001$). The number of alterations was
237	significantly lower in patients with kinase fusion than in those with kinase-domain mutations
238	or amplifications ($P < 0.001$; Steel–Dwass multiple comparison test) (Fig 2). However, the
239	number of alterations was not statistically different for patients with suppressor fusions than
240	for those with kinase-domain mutations and amplifications (Fig 2). In addition, the cancers
241	with transcriptional-regulator fusion tended to have fewer actionable alterations $2(0-3.5)$
242	(median [IQR]).
243	
244	Fig 2. Distribution of actionable alterations across each alteration group. Patients with
245	kinase fusions had significantly fewer actionable alterations than patients with kinase

- 246 mutations and amplifications (P < 0.001; Steel–Dwass multiple comparison test). In contrast,
- 247 fusions involving tumor suppressors other than kinase fusion did not show a significant
- 248 difference in the number of actionable alterations.

249

250 **Discussion**

251	These findings reveal that 7.5% of the 613 patients exhibiting 40 types of solid cancer
252	patients included in the cohort had tumors with fusions. In particular, kinase fusions, which
253	may have particular structural properties that are selected for during oncogenesis, were
254	detected in 2.6% of the patients, accounting for 9 solid-cancer types. Cancers with kinase
255	fusions tended to have fewer actionable alterations than those with kinase mutations and
256	amplifications. Furthermore, the other kinase-domain mutations and amplifications were
257	generally mutually exclusive in most patients with kinase fusions. These findings suggest that
258	kinase fusion is a strong biological driver of cancer development. It is well established that
259	CGS of tumor DNA is less sensitive than other methods for detecting fusions. This is a
260	limitation of the study and requires further elaboration. Some tumors with fusions may have
261	been missed, and data from those cases may have been included in other cohorts (for
262	example, cases of kinase mutation only). Detection of fusion in DNA-sequencing data is
263	difficult, and bimodal DNA- and RNA-based gene panels can be useful for this detection.
264	The presence of IGF1R-SPINT1 in prostate adenocarcinoma, which we detected in
265	patient 8, has not been previously reported. This fusion protein lacks an extracellular domain
266	but retains the kinase domain. Removing the entire extracellular domain of the insulin-like
267	growth factor (IGF) receptor activates the receptor, even without bound IGF [11]. Together

with previously reported findings, this result suggests that the *IGF1R-SPINT1* fusion

269 represents an activating mutation.

270	In patients 5, 6, 9, 11 and 13, we detected the coexistence of oncogene alterations with
271	kinase fusions, which are considered generally mutually exclusive (Table 3). The
272	amplification of MYC in patients 5 and 11 was limited to a small number of copies; CN=9
273	and CN=11, respectively. Furthermore, since the TSG (such as RAD21 or NBN) in
274	chromosome 8q, where MYC is present, was amplified with a same copy number, it was
275	considered to be the result of polysomy of chromosome 8q. KRAS p.Q61H in patient 6 was
276	interpreted as a conflicting interpretation of pathogenicity in ClinVar. MAP3K13 (encoding
277	LZK)-amplified head and neck squamous cell carcinoma cells harboring 3q gain are
278	dependent on LZK expression for cell viability and colony formation [16]. LZK expression
279	has been shown to be required for cell proliferation and anchorage- independent growth in
280	MYC-overexpressing breast and hepatocarcinoma cell lines [17]. However, alterations that
281	are predicted to inactivate LZK have also been reported in breast cancer [18]. Therefore, it is
282	unclear whether MAP3K13 p.I523V(LOH) in patient 13 functions as a tumor suppressor or an
283	oncogene. In these patients, the kinase fusions appear to be important for tumorigenesis even
284	with the coexistence of the oncogene alterations. Although there is only one co-existing
285	actionable alteration, high amplification of <i>CDK6 (CN=98)</i> was detected in patient 9.
286	Sitthideatphaiboon et al. defined the pathways limiting EGFR-inhibitor response, including

287	cell-cycle-gene, CDK4/6 amplification [19]. In such patients, the effect of TKIs is expected to
288	be influenced not only by the number but also by the type of comorbid actionable alterations.
289	Molecularly targeted drugs have been most successful in treating CML, which is driven
290	by a kinase fusion (BCR-ABL1) [4]. Integrative genomic analysis revealed cancer-associated
291	mutations in only three out of 19 patients (16%) who responded optimally to imatinib,
292	whereas cancer-gene variants were detected in 15 of 27 patients (56%) with poor outcomes
293	[20]. In our study, sole kinase fusion, without other actionable alterations, may be involved as
294	a significant driver of the development of cancer in three patients (with cholangiocarcinoma,
295	glioblastoma multiforme, and brain low grade glioma). However, in three patients with lung
296	adenocarcinoma harboring an activating EGFR kinase mutation (EGFR p.E746_A750del,
297	p.S768I, and p.L858R) without prior EGFR-targeted therapies, we detected 10, 4 and 3
298	actionable alterations, respectively. Moreover, all three patients had TP53 loss-of-function
299	mutations in uniparental disomy (data not shown). TP53 mutations associate with faster
300	resistance evolution in EGFR-mutant NSCLC and mediate acquisition of resistance mutations
301	to EGFR TKIs [21]. Therefore, it is important to validate tumor alterations, including both
302	driver and actionable mutations by CGS, to evaluate the efficacy of molecularly targeted
303	therapy.
304	Focusing on kinase fusion, Gao et al. [14] showed that a significant proportion of

305 patients harboring fusions involving cancer-driver genes had no driver-gene mutations.

306	Moreover, their analysis highlights an important consideration for immunotherapy in patients
307	with fusions. Specifically, the significantly lower mutational burden observed in patients with
308	driver-gene fusions points toward a reduced efficacy of immunotherapy in these patients,
309	despite fusion peptides being potentially good immunogenic targets. The TMB was also low
310	in all the 13 patients with kinase-domain fusion. Based on their findings, Gao et al. [14]
311	suggested that research into driver-gene fusion can result in the development of targeted
312	drugs and immunotherapy.
313	This study has a limitation in terms of the small sample size. We only included 13
314	patients with kinase-fusion in the analysis; therefore, it is unlikely that the analysis was
315	sufficiently powered to derive conclusions. Therefore, analysis of a large number of patients
316	may be necessary.
317	
318	Conclusions

This study demonstrated that cancers with kinase fusion tend to have fewer actionable alterations than those with kinase mutations and amplifications, reflecting the strong dependence of tumorigenesis on kinase fusion. Therefore, detecting kinase mutations is crucial in developing molecularly targeted therapeutics and immune therapy.

325 Acknowledgments

326

- 327
- 328

329 **References**

- 1. Aoyagi Y, Kano Y, Tohyama K, Matsudera S, Kumaki Y, Takahashi K, et al. Clinical
- utility of comprehensive genomic profiling in Japan: Result of PROFILE-F study. PLOS ONE.
- 332 2022;17: e0266112. doi: 10.1371/journal.pone.0266112.
- 2. Cilloni D, Saglio G. Molecular pathways: BCR-ABL. Clin Cancer Res. 2012;18: 930-
- 334 937. doi: 10.1158/1078-0432.CCR-10-1613.
- 335 3. Sinclair A, Latif AL, Holyoake TL. Targeting survival pathways in chronic myeloid
- 336 leukaemia stem cells. Br J Pharmacol. 2013;169: 1693-1707. doi: 10.1111/bph.12183.
- 4. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-
- term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376:
- 339 917-927. doi: 10.1056/NEJMoa1609324.
- 340 5. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al.
- 341 Nivolumab versus docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N
- 342 Engl J Med. 2015;373: 123-135. doi: 10.1056/NEJMoa1504627.
- 343 6. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-

- 344 year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med.
- 345 2019;381: 1535-1546. doi: 10.1056/NEJMoa1910836.
- 346 7. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib
- or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:
- 348 2380-2388. doi: 10.1056/NEJMoa0909530.
- 8. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH,
- et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J
- 351 Med. 2018;378: 113-125. doi: 10.1056/NEJMoa1713137.
- 352 9. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line
- 353 crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371: 2167-
- 354 2177. doi: 10.1056/NEJMoa1408440.
- 10. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus
- 356 crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377:
- 357 829-838. doi: 10.1056/NEJMoa1704795.
- 11. Drilon A, Camidge DR, Lin JJ, Kim SW, Solomon BJ, Dziadziuszko R, et al.
- Repotrectinib in ROS1 fusion-positive non-small-cell lung cancer. N Engl J Med. 2024;390:
- 360 118-131. doi: 10.1056/NEJMoa2302299.
- 361 12. Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, Gainor J, et al. Efficacy
 362 of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med. 2020;383:

363 813-824. doi: 10.1056/NEJMoa2005653.

364 13. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib
365 in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated
366 analysis of three phase 1-2 trials. Lancet Oncol. 2020;21: 271-282. doi: 10.1016/S1470367 2045(19)30691-6.

Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, et al. Driver
fusions and their implications in the development and treatment of human cancers. Cell Rep.

370 2018;23: 227–238.e3. doi: 10.1016/j.celrep.2018.03.050.

15. Topham JT, O'Callaghan CJ, Feilotter H, Kennecke HF, Lee YS, Li W, et al.

372 Circulating tumor DNA identifies diverse landscape of acquired resistance to anti-epidermal

growth factor receptor therapy in metastatic colorectal cancer. J Clin Oncol. 2023;41: 485-496.

doi: 10.1200/JCO.22.00364.

16. Edwards ZC, Trotter EW, Torres-Ayuso P, Chapman P, Wood HM, Nyswaner K, et

al. Survival of head and neck cancer cells relies upon LZK kinase-mediated stabilization of

377 mutant p53. Cancer Res. 2017;77: 4961-4972. doi: 10.1158/0008-5472.CAN-17-0267.

17. Zhang Q, Li X, Cui K, Liu C, Wu M, Prochownik EV, et al. The MAP3K13-TRIM25-

379 FBXW7alpha axis affects c-Myc protein stability and tumor development. Cell Death Differ.

380 2020;27: 420-433. doi: 10.1038/s41418-019-0363-0.

381 18. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The

382 landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486: 400-

- 383 404. doi: 10.1038/nature11017.
- 384 19. Sitthideatphaiboon P, Teerapakpinyo C, Korphaisarn K, Leelayuwatanakul N,
- 385 Pornpatrananrak N, Poungvarin N, et al. Co-occurrence CDK4/6 amplification serves as
- biomarkers of de novo EGFR TKI resistance in sensitizing EGFR mutation non-small cell lung
- 387 cancer. Sci Rep. 2022;12: 2167. doi: 10.1038/s41598-022-06239-y.
- 388 20. Branford S, Wang P, Yeung DT, Thomson D, Purins A, Wadham C, et al. Integrative
- 389 genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with
- 390 high-risk disease. Blood. 2018;132: 948-961. doi: 10.1182/blood-2018-02-832253.
- 391 21. Vokes NI, Chambers E, Nguyen T, Coolidge A, Lydon CA, Le X, et al. Concurrent
- 392 TP53 mutations facilitate resistance evolution in EGFR-mutant lung adenocarcinoma. J Thorac
- 393 Oncol. 2022;17: 779-792. doi: 10.1016/j.jtho.2022.02.011.

395 Financial Disclosure Statement

- 396 This work was supported by a JSPS KAKENHI grant (grant number 19K08870 to S.S.) for
- 397 Clinical Research (Grant-in-Aid for Scientific Research) from the Ministry of Education,
- 398 Culture, Sports, Science and Technology of Japan. We thank Mr. Sachio Nohara for his
- 399 helpful suggestions.

400 Authors' contributions

- 401 SS designed and performed the experiments, analyzed the data, and wrote and revised the
- 402 manuscript. TA and EA conducted the experiments. AT, MH, IK, MK, MN, TI, SK, JN, HN,
- 403 KU, MY, KI, and SU analyzed the data and wrote and revised the manuscript.

404 Data Availability Statement

- 405 The data that support the findings of this study are available on request from the
- 406 corresponding author, S.S. The data are not publicly available as the study participants did
- 407 not consent to public sharing of their data.

408 **Competing interests**

409 The authors declare no competing interests.

410

* Steel–Dwass's multiple comparison test.; P <0.001

